toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mijin, S.D.; Baum, A.; Bekaert, J.; Solajic, A.; Pesic, J.; Liu, Y.; He, G.; Milošević, M.V.; Petrovic, C.; Popovic, Z., V; Hackl, R.; Lazarevic, N. url  doi
openurl 
  Title (down) Probing charge density wave phases and the Mott transition in 1T-TaS₂I by inelastic light scattering Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 24 Pages 245133  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a polarization-resolved, high-resolution Raman scattering study of the three consecutive charge density wave (CDW) regimes in 1T-TaS2 single crystals, supported by ab initio calculations. Our analysis of the spectra within the low-temperature commensurate (C-CDW) regime shows P (3) over bar symmetry of the system, thus excluding the previously proposed triclinic stacking of the “star-of-David” structure, and promoting trigonal or hexagonal stacking instead. The spectra of the high-temperature incommensurate (IC-CDW) phase directly project the phonon density of states due to the breaking of the translational invariance, supplemented by sizable electron-phonon coupling. Between 200 and 352 K, our Raman spectra show contributions from both the IC-CDW and the C-CDW phases, indicating their coexistence in the so-called nearly commensurate (NC-CDW) phase. The temperature dependence of the symmetry-resolved Raman conductivity indicates the stepwise reduction of the density of states in the CDW phases, followed by a Mott transition within the C-CDW phase. We determine the size of the Mott gap to be Omega(gap) approximate to 170-190 meV, and track its temperature dependence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000664450500002 Publication Date 2021-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:179664 Serial 7015  
Permanent link to this record
 

 
Author Plumadore, R.; Baskurt, M.; Boddison-Chouinard, J.; Lopinski, G.; Modarresi, M.; Potasz, P.; Hawrylak, P.; Sahin, H.; Peeters, F.M.; Luican-Mayer, A. url  doi
openurl 
  Title (down) Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 20 Pages 205408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic scale defects in semiconductors enable their technological applications and realization of different quantum states. Using scanning tunneling microscopy and spectroscopy complemented by ab initio calculations we determine the nature of defects in the anisotropic van der Waals layered semiconductor ReS2. We demonstrate the in-plane anisotropy of the lattice by directly visualizing chains of rhenium atoms forming diamond-shaped clusters. Using scanning tunneling spectroscopy we measure the semiconducting gap in the density of states. We reveal the presence of lattice defects and by comparison of their topographic and spectroscopic signatures with ab initio calculations we determine their origin as oxygen atoms absorbed at lattice point defect sites. These results provide an atomic-scale view into the semiconducting transition metal dichalcogenides, paving the way toward understanding and engineering their properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000587595800007 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 9 Open Access  
  Notes ; The authors acknowledge funding from National Sciences and Engineering Research Council (NSERC) Discovery Grant No. RGPIN-2016-06717. We also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through QC2DM Strategic Project No. STPGP 521420. P.H. thanks uOttawa Research Chair in Quantum Theory of Materials for support. P.P. acknowledges partial financial support from National Science Center (NCN), Poland, Grant Maestro No. 2014/14/A/ST3/00654, and calculations were performed in theWroclaw Center for Networking and Supercomputing. H.S. acknowledges financial support from TUBITAK under Project No. 117F095 and from Turkish Academy of Sciences under the GEBIP program. Our computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:173525 Serial 6584  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Mogulkoc, Y.; Akgenc, B.; Mogulkoc, A.; Peeters, F.M. doi  openurl
  Title (down) Prediction of monoclinic single-layer Janus Ga₂ Te X (X = S and Se) : strong in-plane anisotropy Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 4 Pages 045425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory (DFT) based first-principles calculations, electronic, vibrational, piezo-electric, and optical properties of monoclinic Janus single-layer Ga2TeX (X = S or Se) are investigated. The dynamical, mechanical, and thermal stability of the proposed Janus single layers are verified by means of phonon bands, stiffness tensor, and quantum molecular dynamics simulations. The calculated vibrational spectrum reveals the either pure or coupled optical phonon branches arising from Ga-Te and Ga-X atoms. In addition to the in-plane anisotropy, single-layer Janus Ga2TeX exhibits additional out-of-plane asymmetry, which leads to important consequences for its electronic and optical properties. Electronic band dispersions indicate the direct band-gap semiconducting nature of the constructed Janus structures with energy band gaps falling into visible spectrum. Moreover, while orientation-dependent linear-elastic properties of Janus single layers indicate their strong anisotropy, the calculated in-plane stiffness values reveal the ultrasoft nature of the structures. In addition, predicted piezoelectric coefficients show that while there is a strong in-plane anisotropy between piezoelectric constants along armchair (AC) and zigzag (ZZ) directions, there exists a tiny polarization along the out-of-plane direction as a result of the formation of Janus structure. The optical response to electromagnetic radiation has been also analyzed through density functional theory by considering the independent-particle approximation. Finally, the optical spectra of Janus Ga2TeX structures is investigated and it showed a shift from the ultraviolet region to the visible region. The fact that the spectrum is between these regions will allow it to be used in solar energy and many nanoelectronics applications. The predicted monoclinic single-layer Janus Ga2TeX are relevant for promising applications in optoelectronics, optical dichroism, and anisotropic nanoelasticity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000678811100007 Publication Date 2021-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:180404 Serial 7013  
Permanent link to this record
 

 
Author Clem, J.R.; Mawatari, Y.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title (down) Predicted field-dependent increase of critical currents in asymmetric superconducting nanocircuits Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 14 Pages 144511-144511,16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The critical current of a thin superconducting strip of width W much larger than the Ginzburg-Landau coherence length xi but much smaller than the Pearl length Lambda = 2 lambda(2)/d is maximized when the strip is straight with defect-free edges. When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with H but then decreases more slowly with H when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90 degrees or 180 degrees turns, the zero-field critical current at H = 0 is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be increased by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000302611100004 Publication Date 2012-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 40 Open Access  
  Notes ; This research, supported in part by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, was performed in part at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work also was supported in part by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98263 Serial 2695  
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Tavernier, M.B.; Peeters, F.M. url  doi
openurl 
  Title (down) Power-law dependence of the angular momentum transition fields in few-electron quantum dots Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue Pages 075305,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220055300064 Publication Date 2004-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69382 Serial 2687  
Permanent link to this record
 

 
Author Callewaert, V.; Shastry, K.; Saniz, R.; Makkonen, I.; Barbiellini, B.; Assaf, B.A.; Heiman, D.; Moodera, J.S.; Partoens, B.; Bansil, A.; Weiss, A.H.; url  doi
openurl 
  Title (down) Positron surface state as a spectroscopic probe for characterizing surfaces of topological insulator materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 115411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Topological insulators are attracting considerable interest due to their potential for technological applications and as platforms for exploring wide-ranging fundamental science questions. In order to exploit, fine-tune, control, and manipulate the topological surface states, spectroscopic tools which can effectively probe their properties are of key importance. Here, we demonstrate that positrons provide a sensitive probe for topological states and that the associated annihilation spectrum provides a technique for characterizing these states. Firm experimental evidence for the existence of a positron surface state near Bi2Te2Se with a binding energy of E-b = 2.7 +/- 0.2 eV is presented and is confirmed by first-principles calculations. Additionally, the simulations predict a significant signal originating from annihilation with the topological surface states and show the feasibility to detect their spin texture through the use of spin-polarized positron beams.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383232800012 Publication Date 2016-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes ; I.M. acknowledges discussions with M. Ervasti and A. Harju. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this paper were, in part, provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). I.M. acknowledges financial support from the Academy of Finland (Projects No. 285809 and No. 293932). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE Grant No. DE-AC02-05CH11231. K.S. and A.W. acknowledge financial support from the National Science Foundation through Grants No. DMR-MRI-1338130 and No. DMR-1508719. D.H. received financial support from the National Science Foundation (Grant No. ECCS-1402738). J.S.M. was supported by the STC Center for Integrated Quantum Materials under NSF Grants No. DMR-1231319, No. DMR-1207469, and ONR Grant No. N00014-13-1-0301. B.A.A. also acknowledges support from the LabEx ENS-ICFP Grant No. ANR-10-LABX-0010/ANR-10-IDEX-0001-02 PSL. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:137134 Serial 4362  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. doi  openurl
  Title (down) Positively charged magneto-excitons in a semiconductor quantum well Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 64 Issue Pages 235301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000172867900085 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37279 Serial 2679  
Permanent link to this record
 

 
Author Aierken, Y.; Sahin, H.; Iyikanat, F.; Horzum, S.; Suslu, A.; Chen, B.; Senger, R.T.; Tongay, S.; Peeters, F.M. url  doi
openurl 
  Title (down) Portlandite crystal : bulk, bilayer, and monolayer structures Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 245413  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ca(OH)(2) crystals, well known as portlandite, are grown in layered form, and we found that they can be exfoliated on different substrates. We performed first principles calculations to investigate the structural, electronic, vibrational, and mechanical properties of bulk, bilayer, and monolayer structures of this material. Different from other lamellar structures such as graphite and transition-metal dichalcogenides, intralayer bonding in Ca(OH)(2) is mainly ionic, while the interlayer interaction remains a weak dispersion-type force. Unlike well-known transition-metal dichalcogenides that exhibit an indirect-to-direct band gap crossover when going from bulk to a single layer, Ca(OH)(2) is a direct band gap semiconductor independent of the number layers. The in-plane Young's modulus and the in-plane shear modulus of monolayer Ca(OH)(2) are predicted to be quite low while the in-plane Poisson ratio is larger in comparison to those in the monolayer of ionic crystal BN. We measured the Raman spectrum of bulk Ca(OH)(2) and identified the high-frequency OH stretching mode A(1g) at 3620 cm(-1). In this study, bilayer and monolayer portlandite [Ca(OH)(2)] are predicted to be stable and their characteristics are analyzed in detail. Our results can guide further research on ultrathin hydroxites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356135600007 Publication Date 2015-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Long Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126983 Serial 2675  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title (down) Polaron-cyclotron-resonance spectrum resulting from interface- and slab-phonon modes in a GaAs/AlAs quantum well Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 47 Issue 16 Pages 10358-10374  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract The effects of interface optical-phonon and confined slab LO-phonon modes on the polaron cyclotron-resonance frequency are investigated for a GaAs/AlAs quantum well. Using degenerate second-order perturbation theory, the polaron Landau levels are calculated and the polaron resonant region is investigated. In order to know the relative importance of the different resonant frequencies we present a full calculation of the magneto-optical absorption spectrum. At a fixed magnetic field we found four different peaks in the absorption spectrum. The relative oscillator strength of the different peaks changes with increasing magnetic field. For comparative purposes, the polaron Landau levels and cyclotron mass are also calculated using only the bulk LO-phonon modes. The influence of the finiteness of the confinement potential is investigated. We found that the interface-phonon modes influence the magnetopolaron resonance considerably near the optical-phonon frequencies for narrow wells. In the limit of zero magnetic field we recover our previous results and in the case of an infinite-barrier quantum well we are able to recover the results for a two- and three-dimensional system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LA29800034 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 69 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:5739 Serial 2663  
Permanent link to this record
 

 
Author Farias, G.A.; Peeters, F.M. openurl 
  Title (down) Polaron impurity states on a liquid helium film Type A1 Journal article
  Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 55 Issue Pages 3763-3768  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1997WJ87500071 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 1997 IF: NA  
  Call Number UA @ lucian @ c:irua:19288 Serial 2669  
Permanent link to this record
 

 
Author Farias, G.A.; Costa Filho, R.N.; Peeters, F.M.; Studart, N. doi  openurl
  Title (down) Polaron effects in electron channels on a helium film Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 64 Issue Pages 104301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000170978400033 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37285 Serial 2666  
Permanent link to this record
 

 
Author Shi, J.M.; Peeters, F.M.; Farias, G.A.; Freire, J.A.K.; Hai, G.Q.; Devreese, J.T.; Bednarek, S.; Adamowski, J. doi  openurl
  Title (down) Polaron effect on D- centers in weakly polar semiconductors Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 57 Issue Pages 3900-3904  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000072163300041 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:21907 Serial 2665  
Permanent link to this record
 

 
Author Krstajić, P.M.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title (down) Plasmons and their interaction with electrons in trilayer graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 19 Pages 195423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction between electrons and plasmons in trilayer graphene is investigated within the Overhauser approach resulting in the “plasmaron” quasiparticle. This interaction is cast into a field theoretical problem, and its effect on the energy spectrum is calculated using improved Wigner-Brillouin perturbation theory. The plasmaron spectrum is shifted with respect to the bare electron spectrum by ΔE(k)∼150−200meV for ABC stacked trilayer graphene and for ABA trilayer graphene by ΔE(k)∼30−150 meV[ ΔE(k) ∼1 −5meV] for the hyperbolic (linear) part of the spectrum. The shift in general increases with the electron concentration and electron momentum. The dispersion of plasmarons is more pronounced in ABC stacked than in ABA stacked trilayer graphene, because of the different energy band structure and their different plasmon dispersion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327239200003 Publication Date 2013-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number CMT @ cmt @ c:irua:112702 Serial 4489  
Permanent link to this record
 

 
Author Zhu, J.-J.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title (down) Plasmonic excitations in Coulomb-coupled N-layer graphene structures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085401-85408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study Dirac plasmons and their damping in spatially separated N-layer graphene structures at finite doping and temperatures. The plasmon spectrum consists of one optical excitation with square-root dispersion and N – 1 acoustical excitations with linear dispersion, which are undamped at zero temperature and finite doping within a triangular energy region outside the electron-hole continuum. In the long-wavelength limit the energy and weight of the optical plasmon modes increase, respectively, as the square root and linearly with N in agreement with recent experimental findings. The energy and weight of the upper-lying acoustical branches also increase with N. This increase is strongest for the uppermost acoustical mode, and we find that its energy can exceed at some value of momentum the plasmon energy in an individual graphene sheet. Meanwhile, the energy of the low-lying acoustical branches decreases weakly with N as compared with the single acoustical mode in double-layer graphene structures. Our numerical calculations provide a detailed understanding of the overall behavior of the wave-vector dependence of the optical and acoustical multilayer plasmon modes and show how their dispersion and damping are modified as a function of temperature, interlayer spacing, and inlayer carrier density in (un)balanced graphene multilayer structures. DOI: 10.1103/PhysRevB.87.085401  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314682900005 Publication Date 2013-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 59 Open Access  
  Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107671 Serial 2645  
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title (down) Plasmon and coupled plasmon-phonon modes in graphene in the presence of a driving electric field Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 19 Pages 195447  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study of the plasmon and coupled plasmon-phonon modes induced by intraband electron-electron interaction in graphene in the presence of driving dc electric field. We find that the electric field dependence of these collective excitation modes in graphene differs significantly from that in a conventional two-dimensional electron gas with a parabolic energy spectrum. This is due mainly to the fact that graphene has a linear energy spectrum and the Fermi velocity of electrons in graphene is much larger than the drift velocity of electrons. The obtained results demonstrate that the plasmon and coupled plasmon-phonon modes in graphene can be tuned by applying not only the gate voltage but also the source-to-drain field. The manipulation of plasmon and coupled plasmon-phonon modes by source-to-drain voltage can let graphene be more conveniently applied as an advanced plasmonic material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336841000007 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), the Department of Science and Technology of Yunnan Province, the Chinese Academy of Sciences, and by the National Natural Science Foundation of China (Grant No. 11247002). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:117764 Serial 2642  
Permanent link to this record
 

 
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V. url  doi
openurl 
  Title (down) Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 21 Pages 214403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000416846900002 Publication Date 2017-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 52 Open Access  
  Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:147684 Serial 4890  
Permanent link to this record
 

 
Author Piacente, G.; Peeters, F.M. doi  openurl
  Title (down) Pinning and depinning of a classic quasi-one-dimensional Wigner crystal in the presence of a constriction Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 20 Pages 205208,1-17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000233603900053 Publication Date 2005-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:56051 Serial 2624  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Misko, V.R.; Milošević, M.V.; Escoffier, W.; Grigorieva, I.V.; Peeters, F.M. url  doi
openurl 
  Title (down) Pillars as antipinning centers in superconducting films Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue 2 Pages 024526,1-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000252862600100 Publication Date 2008-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:67818 Serial 2623  
Permanent link to this record
 

 
Author Michel, K.H.; Çakir, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title (down) Piezoelectricity in two-dimensional materials : comparative study between lattice dynamics and ab initio calculations Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 125415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The elastic constant C-11 and piezoelectric stress constant e(1),(11) of two-dimensional (2D) dielectric materials comprising h-BN, 2H-MoS2, and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000396013400005 Publication Date 2017-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes ; The authors acknowledge useful discussions with L. Wirtz and A. Molina-Sanchez. This work was supported by the Methusalem program and the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:142444 Serial 4603  
Permanent link to this record
 

 
Author Zhang, S.H.; Xu, W.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title (down) Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 7 Pages 075443-75445  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the mobility of Dirac fermions in monolayer graphene on a GaAs substrate, limited by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (PA) and of the intrinsic deformation potential of acoustical phonons in graphene (DA). In the high-temperature (T) regime, the momentum relaxation rate exhibits the same linear dependence on T but different dependencies on the carrier density n, corresponding to the mobility mu proportional to 1 root n and 1/n, respectively for the PA and DA scattering mechanisms. In the low-T Bloch-Gruneisen regime, the mobility shows the same square-root density dependence mu proportional to root n, but different temperature dependencies mu proportional to T-3 and T-4, respectively for PA and DA phonon scattering. DOI: 10.1103/PhysRevB.87.075443  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315375200008 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107655 Serial 2622  
Permanent link to this record
 

 
Author Hayne, M.; Jones, C.L.; Bogaerts, R.; Riva, C.; Usher, A.; Peeters, F.M.; Herlach, F.; Moshchalkov, V.V.; Henini, M. doi  openurl
  Title (down) Photoluminescence of negatively charged excitons in high magnetic fields Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 59 Issue Pages 2927-2931  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000078463100064 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 86 Open Access  
  Notes Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:24158 Serial 2614  
Permanent link to this record
 

 
Author Axt, V.M.; Kuhn, T.; Vagov, A.; Peeters, F.M. url  doi
openurl 
  Title (down) Phonon-induced pure dephasing in exciton-biexciton quantum dot systems driven by ultrafast laser pulse sequences Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 12 Pages 125309-125315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A semiconductor quantum dot model accounting for single exciton as well as biexciton states coupled to phonons and laser light is investigated in the limit of strong electronic confinement. For an arbitrary sequence of excitations with ultrafast pulses analytical solutions are obtained for all density-matrix elements. The results are nonperturbative with respect to both the carrier-phonon and the carrier-light coupling. Numerical results for a single pulse excitation are presented illustrating spectral features of our solution as well as pulse area and temperature dependences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232229400075 Publication Date 2005-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 48 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:103139 Serial 2604  
Permanent link to this record
 

 
Author Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F.M. url  doi
openurl 
  Title (down) Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 12 Pages 125415-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by recent experimental observations of Tongay et al. [Nano Lett. 12, 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E' and E '' Raman peaks (E-2g and E-1g in bulk) exhibit significant redshifts (up to similar to 30 cm(-1)), (2) the position of the A'(1) peak remains at similar to 180 cm(-1) (A(1g) in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear, and (4) the electronic band structure undergoes a direct to indirect band gap crossover under similar to 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational, and optical properties of single layer MoSe2 and similar MX2 dichalcogenides. DOI:10.1103/PhysRevB.87.125415  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316383700006 Publication Date 2013-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 171 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Long Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108277 Serial 2605  
Permanent link to this record
 

 
Author Scuracchio, P.; Michel, K.H.; Peeters, F.M. doi  openurl
  Title (down) Phonon hydrodynamics, thermal conductivity, and second sound in two-dimensional crystals Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 14 Pages 144303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from our previous work in which we obtained a system of coupled integrodifferential equations for acoustic sound waves and phonon density fluctuations in two-dimensional (2D) crystals, we derive here the corresponding hydrodynamic equations, and we study their consequences as a function of temperature and frequency. These phenomena encompass propagation and damping of acoustic sound waves, diffusive heat conduction, second sound, and Poiseuille heat flow, all of which are characterized by specific transport coefficients. We calculate these coefficients by means of correlation functions without using the concept of relaxation time. Numerical calculations are performed as well in order to show the temperature dependence of the transport coefficients and of the thermal conductivity. As a consequence of thermal tension, mechanical and thermal phenomena are coupled. We calculate the dynamic susceptibilities for displacement and temperature fluctuations and study their resonances. Due to the thermomechanical coupling, the thermal resonances such as the Landau-Placzek peak and the second-sound doublet appear in the displacement susceptibility, and conversely the acoustic sound wave doublet appears in the temperature susceptibility, Our analytical results not only apply to graphene, but they are also valid for arbitrary 2D crystals with hexagonal symmetry, such as 2D hexagonal boron nitride, 2H-transition-metal dichalcogenides, and oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464717300006 Publication Date 2019-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159346 Serial 5225  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title (down) Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages 115328-115328,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A unified theory of phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride (h-BN) is derived. The dynamical matrix is calculated on the basis of an empirical force constant model of intralayer valence and interlayer van der Waals interactions. Coulomb interactions are calculated by Ewalds method, adapted for the three-dimensional (3D) and the multilayer case. The deformation of the ionic charge distribution with long-wave lattice displacements is taken into account. Special attention is devoted to the nonanalytic long-range Coulomb contribution to the dynamical matrix which is different for the 3D crystal and the multilayer case. Consequently there is a splitting of the transverse optical (TO) and longitudinal optical (LO) phonon branches of E1u symmetry and a discontinuity of the A2u branch at the Γ point in 3D h-BN. No such splitting and discontinuity at Γ are present in multilayer crystals with a finite number N of layers. There a diverging bundle of N overbending optical phonon branches emerges from Γ. Borns long-wave theory is applied and extended for the study of piezoelectricity in layered crystals. While 3D h-BN and h-BN multilayers with an even number of layers (symmetry D6h) are not piezoelectric, multilayers with an uneven number of Nu layers (symmetry D3h) are piezoelectric; the piezoelectric coefficient e1,11 is inversely proportional to Nu.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288783700005 Publication Date 2011-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 82 Open Access  
  Notes ; Discussions with G. Heger, B. Partoens, and F. M. Peeters are gratefully acknowledged. This work has been supported by the Flemish Science Foundation (FWO-V1) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89602 Serial 2603  
Permanent link to this record
 

 
Author Elmurodov, A.K.; Peeters, F.M.; Vodolazov, D.Y.; Michotte, S.; Adam, S.; de Menten de Horne, F.; Piraux, L.; Lucot, D.; Mailly, D. url  doi
openurl 
  Title (down) Phase-slip phenomena in NbN superconducting nanowires with leads Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 21 Pages 214519,1-214519,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transport properties of a superconducting NbN nanowire are studied experimentally and theoretically. Different attached leads (superconducting contacts) allowed us to measure current-voltage (I-V) characteristics of different segments of the wire independently. The experimental results show that with increasing the length of the segment the number of jumps in the I-V curve increases indicating an increasing number of phase-slip phenomena. The system shows a clear hysteresis in the direction of the current sweep, the size of which depends on the length of the superconducting segment. The interpretation of the experimental results is supported by theoretical simulations that are based on the time-dependent Ginzburg-Landau theory, the heat equation has been included in the Ginzbur-Landau theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262244400100 Publication Date 2009-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76004 Serial 2589  
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title (down) Phase transitions in thin mesoscopic superconducting disks Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 57 Issue Pages 13817-13832  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000074061700068 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 200 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24167 Serial 2598  
Permanent link to this record
 

 
Author Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M. url  doi
openurl 
  Title (down) Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 235424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000394546100005 Publication Date 2016-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141978 Serial 4557  
Permanent link to this record
 

 
Author Wang, Z.-H.; Kronmüller, H.; Lebedev, O.I.; Gross, G.M.; Razavi, F.S.; Habermeier, H.U.; Shen, B.G. url  doi
openurl 
  Title (down) Phase transition and magnetic anisotropy of (La,Sr)MnO3 thin films Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue 5 Pages 054411-54416  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetic proper-ties and their correlation with the microstructure and electrical transport are investigated in La0.88Sr0.1MnO3 films grown on (100)SrTiO3 Single crystal substrates with thickness ranging from 100 to 2500 Angstrom. The ultrathin film (t = 100 Angstrom) has a single ferromagnetic transition (FMT) at T-c of 250 K, whereas the thicker films exhibit two FMTs, with the main one at a lowered T-c of 200 K while the minor one around 300 K. Furthermore, a thickness dependent magnetic anisotropy has been found, strongly indicating the existence of strain effect, which is also revealed by the transmission electron microscopy study. The suppressed Jahn-Teller distortion (JTD) by the epitaxial strain, and the recovered JTD due to the strain relexation are suggested to explain the metallic behavior in thin films and the insulating behavior in the thick film (t = 2500 Angstrom), repectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000173647000058 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:103883 Serial 2592  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Furukawa, Y.; Johnston, D.C.; Hemmida, M.; Krug von Nidda, H.-A.; Loidl, A.; Geibel, C.; Rosner, H. url  doi
openurl 
  Title (down) Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5 Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 1 Pages 014429-014429,16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystal structure, electronic structure, and magnetic behavior of the spin-1/2 quantum magnet Na1.5VOPO4F0.5 are reported. The disorder of Na atoms leads to a sequence of structural phase transitions revealed by synchrotron x-ray powder diffraction and electron diffraction. The high-temperature second-order α↔β transition at 500 K is of the order-disorder type, whereas the low-temperature β↔γ+γ′ transition around 250 K is of the first order and leads to a phase separation toward the polymorphs with long-range (γ) and short-range (γ′) order of Na. Despite the complex structural changes, the magnetic behavior of Na1.5VOPO4F0.5 probed by magnetic susceptibility, heat capacity, and electron spin resonance measurements is well described by the regular frustrated square lattice model of the high-temperature α-polymorph. The averaged nearest-neighbor and next-nearest-neighbor couplings are J̅ 1≃−3.7 K and J̅ 2≃6.6 K, respectively. Nuclear magnetic resonance further reveals the long-range ordering at TN=2.6 K in low magnetic fields. Although the experimental data are consistent with the simplified square-lattice description, band structure calculations suggest that the ordering of Na atoms introduces a large number of inequivalent exchange couplings that split the square lattice into plaquettes. Additionally, the direct connection between the vanadium polyhedra induces an unusually strong interlayer coupling having effect on the transition entropy and the transition anomaly in the specific heat. Peculiar features of the low-temperature crystal structure and the relation to isostructural materials suggest Na1.5VOPO4F0.5 as a parent compound for the experimental study of tetramerized square lattices as well as frustrated square lattices with different values of spin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293247400008 Publication Date 2011-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:91770 Serial 2588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: