toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title (up) Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 22 Pages 224512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418653500012 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148504 Serial 4901  
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title (up) Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 2 Pages 025012  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions with near opposite inter-layer twist angles. In a MoS<sub>2</sub>/WSe<sub>2</sub>bilayer, the regions with<inline-formula><tex-math><?CDATA $Rh^h$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>h</mi></msubsup></math><inline-graphic href=“tdmac529dieqn1.gif” type=“simple” /></inline-formula>and<inline-formula><tex-math><?CDATA $Rh^X$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>X</mi></msubsup></math><inline-graphic href=“tdmac529dieqn2.gif” type=“simple” /></inline-formula>stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-reflected across such a twist boundary. In that case, we demonstrate that topologically protected chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-directional excitons with opposite velocities for excitons composed by electronic states with opposite valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760518100001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Conselho Nacional de Desenvolvimento Científico e Tecnológico, PQ ; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187124 Serial 7046  
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Topologically trapped vortex molecules in Bose-Einstein condensates Type A1 Journal article
  Year 2008 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 78 Issue 5 Pages 053610,1-053610,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a numerical experiment based on Gross-Pitaevskii formalism, we demonstrate unique topological quantum coherence in optically trapped Bose-Einstein condensates (BECs). Exploring the fact that vortices in a rotating BEC can be pinned by a geometric arrangement of laser beams, we show the parameter range in which vortex-antivortex molecules or multiquantum vortices are formed as a consequence of the optically imposed symmetry. Being low-energy states, we discuss the conditions for spontaneous nucleation of these unique molecules and their direct experimental observation, and provoke the potential use of the phase print of an antivortex or a multiquantum vortex when realized in unconventional circumstances.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000261215600127 Publication Date 2008-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.925; 2008 IF: 2.908  
  Call Number UA @ lucian @ c:irua:73184 Serial 3679  
Permanent link to this record
 

 
Author González-García, A.; López-Pérez, W.; González-Hernández, R.; Bacaksiz, C.; Šabani, D.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Transition-metal adatoms on 2D-GaAs: a route to chiral magnetic 2D materials by design Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 14 Pages 145803  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using relativistic density-functional calculations, we examine the magneto-crystalline anisotropy and exchange properties of transition-metal atoms adsorbed on 2D-GaAs. We show that single Mn and Mo atom (Co and Os) strongly bind on 2D-GaAs, and induce local out-of-plane (in-plane) magnetic anisotropy. When a pair of TM atoms is adsorbed on 2D-GaAs in a close range from each other, magnetisation properties change (become tunable) with respect to concentrations and ordering of the adatoms. In all cases, we reveal presence of strong Dzyaloshinskii–Moriya interaction. These results indicate novel pathways towards two-dimensional chiral magnetic materials by design, tailored for desired applications in magneto-electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000626453600001 Publication Date 2021-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.649 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.649  
  Call Number CMT @ cmt @c:irua:177483 Serial 6755  
Permanent link to this record
 

 
Author Karapetrov, G.; Milošević, M.V.; Iavarone, M.; Fedor, J.; Belkin, A.; Novosad, V.; Peeters, F.M. url  doi
openurl 
  Title (up) Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 18 Pages 180506,1-180506,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using scanning tunneling microscopy and Ginzburg-Landau simulations, we explore vortex configurations in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayer. The permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-one-dimensional arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices levitating in the antipinning channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000272310900031 Publication Date 2009-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80314 Serial 3729  
Permanent link to this record
 

 
Author Doria, M.M.; Romaguera, A.R. de C.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title (up) Triplet vortex state in magnetic superconductors: effects of boundaries Type A1 Journal article
  Year 2008 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 468 Issue 7-10 Pages 572-575  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000257355300016 Publication Date 2008-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.404; 2008 IF: 0.740  
  Call Number UA @ lucian @ c:irua:69622 Serial 3736  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rodriguez, J.A.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title (up) Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure : an ab initio study Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 26 Pages 265502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The bandgap behavior of 2D-GaAs and graphene have been investigated with van der Waals heterostructured into a yet unexplored graphene/GaAs bilayer, under both uniaxial stress along c axis and different planar strain distributions. The 2D-GaAs bandgap nature changes from Gamma-K indirect in isolated monolayer to Gamma-Gamma direct in graphene/GaAs bilayer. In the latter, graphene exhibits a bandgap of 5 meV. The uniaxial stress strongly affects the graphene electronic bandgap, while symmetric in-plane strain does not open the bandgap in graphene. Nevertheless, it induces remarkable changes on the GaAs bandgap-width around the Fermi level. However, when applying asymmetric in-plane strain to graphene/GaAs, the graphene sublattice symmetry is broken, and the graphene bandgap is open at the Fermi level to a maximum width of 814 meV. This value is much higher than that reported for just graphene under asymmetric strain. The Gamma-Gamma direct bandgap of GaAs remains unchanged in graphene/ GaAs under different types of applied strain. The analyses of phonon dispersion and the elastic constants yield the dynamical and mechanical stability of the graphene/GaAs system, respectively. The calculated mechanical properties for bilayer heterostructure are better than those of their constituent monolayers. This finding, together with the tunable graphene bandgap not only by the strength but also by the direction of the strain, enhance the potential for strain engineering of ultrathin group-III-V electronic devices hybridized by graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465887100001 Publication Date 2019-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 6 Open Access  
  Notes ; This work has been carried out with the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216; and the partial support of DGAPA-UNAM project IN114817-3. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; DGTIC-UNAM under project LANCAD-UNAM-DGTIC-150, and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:160216 Serial 5236  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Tunable kinematics of phase-slip lines in a superconducting stripe with magnetic dots Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 21 Pages 214509,1-214509,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using numerical simulations, we study the dynamic properties of a superconducting stripe with a perpendicular magnetized ferromagnet on top in the presence of an applied dc current. In the resistive state conventional phase-slip lines are transformed into kinematic vortex-antivortex pairs with special dynamic behavior. In addition, the location of phase slippage in the sample is predetermined by the position of the magnetic dot. Both these effects directly influence the dynamics of the superconducting condensate and lead to periodic oscillations of the voltage across the sample with a frequency tunable both by the applied current and by the magnetization of the magnet. We found that the frequency of the voltage oscillations increases with increasing number of magnetic dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000273228200084 Publication Date 2009-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 33 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:80575 Serial 3743  
Permanent link to this record
 

 
Author Chaves, A.; Moura, V.N.; Linard, F.J.A.; Covaci, L.; Milošević, M.V. doi  openurl
  Title (up) Tunable magnetic focusing using Andreev scattering in superconductor-graphene hybrid devices Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 12 Pages 124303  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We perform the wavepacket dynamics simulation of a graphene-based device where propagating electron trajectories are tamed by an applied magnetic field toward a normal/superconductor interface. The magnetic field controls the incidence angle of the incoming electronic wavepacket at the interface, which results in the tunable electron-hole ratio in the reflected wave function due to the angular dependence of the Andreev reflection. Here, mapped control of the quasiparticle trajectories by the external magnetic field not only defines an experimental probe for fundamental studies of the Andreev reflection in graphene but also lays the foundation for further development of magnetic focusing devices based on nanoengineered superconducting two-dimensional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000576393200002 Publication Date 2020-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the Brazilian Council for Research (CNPq) through the PRONEX/FUNCAP and PQ programs and by the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:172730 Serial 6639  
Permanent link to this record
 

 
Author Soenen, M.; Milošević, M.V. url  doi
openurl 
  Title (up) Tunable magnon topology in monolayer CrI₃ under external stimuli Type A1 Journal article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 8 Pages 084402-84409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) honeycomb ferromagnets, such as monolayer chromium trihalides, are predicted to behave as topological magnon insulators, characterized by an insulating bulk and topologically protected edge states, giving rise to a thermal magnon Hall effect. Here we report the behavior of the topological magnons in monolayer CrI3 under external stimuli, including biaxial and uniaxial strain, electric gating, as well as in-plane and out-of-plane magnetic field, revealing that one can thereby tailor the magnetic states as well as the size and the topology of the magnonic bandgap. These findings broaden the perspective of using 2D magnetic materials to design topological magnonic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052941600003 Publication Date 2023-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:199201 Serial 8947  
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V. url  doi
openurl 
  Title (up) Tunable Snell's law for spin waves in heterochiral magnetic films Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 10 Pages 104422  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428238600006 Publication Date 2018-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes This work was supported by the Research Foundation- Flanders (FWO-Vlaanderen) through Project No. G098917N. Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @c:irua:150118UA @ admin @ c:irua:150118 Serial 4915  
Permanent link to this record
 

 
Author Lima, I.L.C.; Milošević, M.V.; Peeters, F.M.; Chaves, A. doi  openurl
  Title (up) Tuning of exciton type by environmental screening Type A1 Journal article
  Year 2023 Publication Physical review B Abbreviated Journal  
  Volume 108 Issue 11 Pages 115303-115308  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the binding energy and electron-hole (e-h) overlap of excitonic states confined at the interface between two-dimensional materials with type-II band alignment, i.e., with lowest conduction and highest valence band edges placed in different materials, arranged in a side-by-side planar heterostructure. We propose a variational procedure within the effective mass approximation to calculate the exciton ground state and apply our model to a monolayer MoS2/WS2 heterostructure. The role of nonabrupt interfaces between the materials is accounted for in our model by assuming a WxMo1-xS2 alloy around the interfacial region. Our results demonstrate that (i) interface-bound excitons are energetically favorable only for small interface thickness and/or for systems under high dielectric screening by the materials surrounding the monolayer, and that (ii) the interface exciton binding energy and its e-h overlap are controllable by the interface width and dielectric environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001077758300002 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2023 IF: 3.836  
  Call Number UA @ admin @ c:irua:200356 Serial 9110  
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title (up) Two-band superconductors : extended Ginzburg-Landau formalism by a systematic expansion in small deviation from the critical temperature Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 14 Pages 144514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We derive the extended Ginzburg-Landau (GL) formalism for a clean s-wave two-band superconductor by employing a systematic expansion of the free-energy functional and the corresponding matrix gap equation in powers of the small deviation from the critical temperature tau = 1 – T/T-c. The two lowest orders of this expansion produce the equation for T-c and the standard GL theory. It is shown that in agreement with previous studies, this two-band GL theory maps onto the single-band GL model and thus fails to describe the difference in the spatial profiles of the two-band condensates. We prove that this difference appears already in the leading correction to the standard GL theory, which constitutes the extended GL formalism. We derive linear differential equations that determine the leading corrections to the band order parameters and magnetic field, discuss the validity of these equations, and consider examples of an important interplay between the band condensates. Finally, we present numerical results for the thermodynamic critical magnetic field and temperature-dependent band gaps for recent materials of interest, which are in very good agreement with those obtained from the full BCS approach in a wide temperature range. To this end, we emphasize the advantages of our extended GL theory in comparison with the often used two-component GL-like model based on an unreconstructed two-band generalization of the Gor'kov derivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309776800001 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Authors are indebted to Y. Singh and R. Prozorov for discussions and for providing recent experimental data. A. V. is grateful to W. Pesch for stimulating discussions and critical comments on this work. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101798 Serial 3769  
Permanent link to this record
 

 
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 20 Pages 207002-207002,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000304064000017 Publication Date 2012-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 75 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:98945 Serial 3770  
Permanent link to this record
 

 
Author Yang, W.; Kong, M.; Milošević, M.V.; Zeng, Z.; Peeters, F.M. url  doi
openurl 
  Title (up) Two-dimensional binary clusters in a hard-wall trap: structural and spectral properties Type A1 Journal article
  Year 2007 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 76 Issue 4 Pages art.041404:part 1  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000250621900066 Publication Date 2007-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.366; 2007 IF: 2.483  
  Call Number UA @ lucian @ c:irua:67325 Serial 3772  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Lopez-Perez, W.; Gonzalez-Hernandez, R.; Rivera-Julio, J.; Espejo, C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title (up) Two-dimensional hydrogenated buckled gallium arsenide: an ab initio study Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 32 Issue 14 Pages 145502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculations have been carried out to investigate the stability, structural and electronic properties of two-dimensional (2D) hydrogenated GaAs with three possible geometries: chair, zigzag-line and boat configurations. The effect of van der Waals interactions on 2D H-GaAs systems has also been studied. These configurations were found to be energetic and dynamic stable, as well as having a semiconducting character. Although 2D GaAs adsorbed with H tends to form a zigzag-line configuration, the energy differences between chair, zigzag-line and boat are very small which implies the metastability of the system. Chair and boat configurations display a – direct bandgap nature, while pristine 2D-GaAs and zigzag-line are indirect semiconductors. The bandgap sizes of all configurations are also hydrogen dependent, and wider than that of pristine 2D-GaAs with both PBE and HSE functionals. Even though DFT-vdW interactions increase the adsorption energies and reduce the equilibrium distances of H-GaAs systems, it presents, qualitatively, the same physical results on the stability and electronic properties of our studied systems with PBE functional. According to our results, 2D buckled gallium arsenide is a good candidate to be synthesized by hydrogen surface passivation as its group III-V partners 2D buckled gallium nitride and boron nitride. The hydrogenation of 2D-GaAs tunes the bandgap of pristine 2D-GaAs, which makes it a potential candidate for optoelectronic applications in the blue and violet ranges of the visible electromagnetic spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000507894400001 Publication Date 2019-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access  
  Notes ; This work has been carried out by the financial support of Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en Ciencias Basicas, ano 2015, Cod: 121571250192, Contrato 110-216. The authors gratefully acknowledge the support from the High Performance Computing core facility CalcUA and the TOPBOF project at the University of Antwerp, Belgium; and the computing time granted on the supercomputer Mogon at Johannes Gutenberg University Mainz (hpc.uni-mainz.de). ; Approved Most recent IF: 2.7; 2020 IF: 2.649  
  Call Number UA @ admin @ c:irua:165644 Serial 6330  
Permanent link to this record
 

 
Author Cabral, L.R.E.; de Aquino, B.R.C.H.T.; de Souza Silva, C.C.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Two-shell vortex and antivortex dynamics in a Corbino superconducting disk Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 014515  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We examine theoretically the dynamics of two vortex shells in pinning-free superconducting thin disks in the Corbino geometry. In the first considered case, the inner shell is composed of vortices and the outer one of antivortices, corresponding to a state induced by the stray field of an off-plane magnetic dipole placed on top of the superconductor. In the second considered case, both shells comprise vortices induced by a homogeneous external field. We derive the equation of motion for each shell within the Bardeen-Stephen model and study the dynamics analytically by assuming both shells are rigid and commensurate. In both cases, two distinct regimes for vortex shell motion are identified: For low applied currents the entire configuration rotates rigidly, while above a threshold current the shells decouple from each other and rotate at different angular velocities. Analytical expressions for the decoupling current, the recombination time in the decoupled phases, as well as the voltage-current characteristics are presented. Our analytical results are in excellent agreement with numerical molecular dynamics simulations of the full many-vortex problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000368481600003 Publication Date 2016-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Brazilian Science Agencies CAPES, CNPq, and FACEPE under Grants No. APQ-1381-1.05/12, No. APQ 2017-1.05/12, and No. APQ-0598/1.05-08 and by EU-COST Action No. MP1201 and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131541 Serial 4270  
Permanent link to this record
 

 
Author Li, C.; Lyu, Y.-Y.; Yue, W.-C.; Huang, P.; Li, H.; Li, T.; Wang, C.-G.; Yuan, Z.; Dong, Y.; Ma, X.; Tu, X.; Tao, T.; Dong, S.; He, L.; Jia, X.; Sun, G.; Kang, L.; Wang, H.; Peeters, F.M.; Milošević, M.V.; Wu, P.; Wang, Y.-L. pdf  doi
openurl 
  Title (up) Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking Type A1 Journal article
  Year 2024 Publication Nano letters Abbreviated Journal  
  Volume 24 Issue 14 Pages 4108-4116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001193010700001 Publication Date 2024-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205553 Serial 9180  
Permanent link to this record
 

 
Author de Aquino, B.R.H.; Neek-Amal, M.; Milošević, M.V. url  doi
openurl 
  Title (up) Unconventional two-dimensional vibrations of a decorated carbon nanotube under electric field : linking actuation to advanced sensing ability Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages 13481  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We show that a carbon nanotube decorated with different types of charged metallic nanoparticles exhibits unusual two-dimensional vibrations when actuated by applied electric field. Such vibrations and diverse possible trajectories are not only fundamentally important but also have minimum two characteristic frequencies that can be directly linked back to the properties of the constituents in the considered nanoresonator. Namely, those frequencies and the maximal deflection during vibrations are very distinctively dependent on the geometry of the nanotube, the shape, element, mass and charge of the nanoparticle, and are vastly tunable by the applied electric field, revealing the unique sensing ability of devices made of molecular filaments and metallic nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000413188600005 Publication Date 2017-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 1 Open Access  
  Notes ; This work was supported by the Research Foundation – Flanders (FWO) and Shahid Rajaee Teacher Training University. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146672 Serial 4796  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title (up) Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 10 Pages 107001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308295700014 Publication Date 2012-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101850 Serial 3801  
Permanent link to this record
 

 
Author Jelić, Z.L.; Milošević, M.V.; Silhanek, A.V. doi  openurl
  Title (up) Velocimetry of superconducting vortices based on stroboscopic resonances Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue Pages 35687  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract An experimental determination of the mean vortex velocity in superconductors mostly relies on the measurement of flux-flow resistance with magnetic field, temperature, or driving current. In the present work we introduce a method combining conventional transport measurements and a frequency-tuned flashing pinning potential to obtain reliable estimates of the vortex velocity. The proposed device is characterized using the time-dependent Ginzburg-Landau formalism, where the velocimetry method exploits the resonances in mean vortex dissipation when temporal commensuration occurs between the vortex crossings and the flashing potential. We discuss the sensitivity of the proposed technique on applied current, temperature and heat diffusion, as well as the vortex core deformations during fast motion.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000385919600001 Publication Date 2016-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 22 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) and EU COST action MP1201. The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:144636 Serial 4701  
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B. doi  openurl
  Title (up) Voltage-controlled superconducting magnetic memory Type A1 Journal article
  Year 2019 Publication AIP advances T2 – 64th Annual Conference on Magnetism and Magnetic Materials (MMM), NOV 04-08, 2019, Las Vegas, NV Abbreviated Journal  
  Volume 9 Issue 12 Pages 125223  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Over the past few decades, superconducting circuits have been used to realize various novel electronic devices such as quantum bits, SQUIDs, parametric amplifiers, etc. One domain, however, where superconducting circuits fall short is information storage. Superconducting memories are based on the quantization of magnetic flux in superconducting loops. Standard implementations store information as magnetic flux quanta in a superconducting loop interrupted by two Josephson junctions (i.e., a SQUID). However, due to the large inductance required, the size of the SQUID loop cannot be scaled below several micrometers, resulting in low-density memory chips. Here, we propose a scalable memory consisting of a voltage-biased superconducting ring threaded by a half-quantum flux bias. By numerically solving the time-dependent Ginzburg-Landau equations, we show that applying a time-dependent bias voltage in the microwave range constitutes a writing mechanism to change the number of stored flux quanta within the ring. Since the proposed device does not require a large loop inductance, it can be scaled down, enabling a high-density memory technology. (C) 2019 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515525300002 Publication Date 2019-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:167551 Serial 8740  
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Clem, J.R.; Tamegai, T. url  doi
openurl 
  Title (up) Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052039  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi2Sr2CaCu2O8+δ disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106137 Serial 3881  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Vortex configurations and critical parameters in superconducting thin films containing antidot arrays: nonlinear Ginzburg-Landau theory Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 17 Pages Artn 174512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000242409000118 Publication Date 2006-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 97 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:61927 Serial 3862  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title (up) Vortex lattice in effective type-I superconducting films with periodic arrays of submicron holes Type A1 Journal article
  Year 2006 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 437/438 Issue Pages 25-28  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000238395700008 Publication Date 2006-01-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.404; 2006 IF: 0.792  
  Call Number UA @ lucian @ c:irua:58358 Serial 3867  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title (up) Vortex manipulation in a superconducting matrix with view on applications Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 19 Pages 192501,1-192501,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k×l matrix of pinning sites defines the desired combination of n bits of information (2n = k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000277756400040 Publication Date 2010-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES and ESF-AQDJJ networks. ; Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:83657 Serial 3869  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.; Jankó, B. doi  openurl
  Title (up) Vortex manipulation in superconducting films with tunable magnetic topology Type A1 Journal article
  Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 24 Issue 2 Pages 024001-024001,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a combination of the phenomenological GinzburgLandau theory and micromagnetic simulations, we study properties of a superconducting film with an array of soft magnetic dots on top. An external in-plane magnetic field gradually drives the magnets from an out-of-plane or magnetic vortex state to an in-plane single-domain state, which changes spatially the distribution of the superconducting condensate. If induced by the magnets, the vortexantivortex molecules exhibit rich transitions as a function of the applied in-plane field. At the same time, we show how the magnetic dots act as very effective dynamic pinning centers for vortices in an applied perpendicular magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000286379900002 Publication Date 2011-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 8 Open Access  
  Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the JSPS/ESF-NES program, the bilateral project between Flanders and the USA, NSF NIRT, ECS-0609249, and the Institute for Theoretical Sciences. ; Approved Most recent IF: 2.878; 2011 IF: 2.662  
  Call Number UA @ lucian @ c:irua:88731 Serial 3870  
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Vortex matter in mesoscopic two-gap superconducting disks: influence of Josephson and magnetic coupling Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 21 Pages 15  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278846600001 Publication Date 2010-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 89 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen), the Belgian Science Policy (IAP), the ESF “Nanoscience and Engineering in Superconductivity” (NES) program, and the ESF “Arrays of Quantum Dots and Josephson Junctions” network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83933 Serial 3872  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title (up) Vortex matter in oblate mesoscopic superconductors with a hole: broken symmetry vortex states and multi-vortex entry Type A1 Journal article
  Year 2009 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 11 Issue Pages 013020,1-013020,21  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using three-dimensional (3D) numerical discretization of the GinzburgLandau (GL) equations, we investigate the superconducting state of a sphere with a piercing hole in the presence of a magnetic field. In the case of samples with central perforation, in axially applied homogeneous magnetic field, we realized unconventional vortex states of broken symmetry due to complex, 3D competing interactions, which depend on the GL parameter ê. For certain sizes of the sample, non-hysteretic multi-vortex entry and exit is predicted with the non-existence of some vorticities as stable states. In a tilted magnetic field, we studied the gradual transformation of 3D flux patterns into 1D vortex chains, where vortices align along the perforation, and the evolvement of the multi-vortex entry as well. We analyze the flux-guiding ability of the hole in a tilted field, which leads to fractional flux response in magnetization M(H) curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000262932500003 Publication Date 2009-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312  
  Call Number UA @ lucian @ c:irua:75986 Serial 3873  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title (up) Vortex matter in the presence of magnetic pinning centra Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics Abbreviated Journal J Low Temp Phys  
  Volume 130 Issue 3/4 Pages 311-320  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000180742900013 Publication Date 2003-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:44988 Serial 3875  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: