toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Partoens, B.; Matulis, A.; Peeters, F.M. doi  openurl
  Title Magnetoplasma excitations of two vertically coupled dots Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 57 Issue Pages 13039-13049  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000073999400054 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 15 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24166 Serial 1921  
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 214504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355647100003 Publication Date 2015-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 15 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:126433 Serial 2089  
Permanent link to this record
 

 
Author Vansant, P.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T. url  doi
openurl 
  Title One-dimensional bipolaron in the strong coupling limit Type A1 Journal article
  Year 1994 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 50 Issue 17 Pages 12524-12532  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1994PR26100027 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited (up) 15 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:9277 Serial 2461  
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title Perturbation of collisional plasma flow around a charged dust particle: kinetic analysis Type A1 Journal article
  Year 2005 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 12 Issue 11 Pages 113501,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000233569600046 Publication Date 2005-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited (up) 15 Open Access  
  Notes Approved Most recent IF: 2.115; 2005 IF: 2.182  
  Call Number UA @ lucian @ c:irua:56048 Serial 2575  
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Spectroscopy of snake states using a graphene Hall bar Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue 23 Pages 233502-233504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore, depending on the value of the magnetic field and applied potential, we can control the lead in which the electrons will end up and hence control the response of the system.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328634900090 Publication Date 2013-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (up) 15 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:113710 Serial 3074  
Permanent link to this record
 

 
Author Chang, K.; Chan, K.S.; Peeters, F.M. url  doi
openurl 
  Title Spin-polarized tunneling through a diluted magnetic semiconductor quantum dot Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 71 Issue Pages 155309,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228762900070 Publication Date 2005-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 15 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69408 Serial 3098  
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Stabilized vortex-antivortex molecules in a superconducting microdisk with a magnetic nanodot on top Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 75 Issue 5 Pages 052502,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000244532600020 Publication Date 2007-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 15 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:63790 Serial 3141  
Permanent link to this record
 

 
Author Abdullah, H.M.; Zarenia, M.; Bahlouli, H.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Gate tunable layer selectivity of transport in bilayer graphene nanostructures Type A1 Journal article
  Year 2016 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 113 Issue 113 Pages 17006  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently it was found that bilayer graphene may exhibit regions with and without van der Waals coupling between the two layers. We show that such structures can exhibit a strong layer selectivity when current flows through the coupled region and that this selectivity can be tuned by means of electrostatic gating. Analysing how this effect depends on the type of bilayer stacking, the potential on the gates and the smoothness of the boundary between the coupled and decoupled regions, we show that nearly perfect layer selectivity is achievable in these systems. This effect can be further used to realise a tunable layer switch.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371479500024 Publication Date 2016-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited (up) 15 Open Access  
  Notes HMA and HB acknowledge the support of the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of King Fahd University of Petroleum and Minerals under physics research group projects RG1306-1 and RG01306-2. This work is supported by the Flemish Science Foundation (FWO-Vl) by a PhD grant (BVD) and a post-doctoral fellowship (MZ). Approved Most recent IF: 1.957  
  Call Number c:irua:131909 c:irua:131909 Serial 4037  
Permanent link to this record
 

 
Author Sadeghi, A.; Neek-Amal, M.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Diffusion of fluorine on and between graphene layers Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 014304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations and reactive force field molecular dynamics simulations, we study the structural properties and dynamics of a fluorine (F) atom, either adsorbed on the surface of single layer graphene (F/GE) or between the layers of AB stacked bilayer graphene (F@ bilayer graphene). It is found that the diffusion of the F atom is very different in those cases, and that the mobility of the F atom increases by about an order of magnitude when inserted between two graphene layers. The obtained diffusion constant for F/GE is twice larger than that experimentally found for gold adatom and theoretically found for C-60 molecule on graphene. Our study provides important physical insights into the dynamics of fluorine atoms between and on graphene layers and explains the mechanism behind the separation of graphite layers due to intercalation of F atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000349125800002 Publication Date 2015-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 15 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132561 Serial 4161  
Permanent link to this record
 

 
Author Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Suslu, A.; Wu, K.; Peeters, F.; Meng, X.; Tongay, S. pdf  doi
openurl 
  Title Exciton pumping across type-I gallium chalcogenide heterojunctions Type A1 Journal article
  Year 2016 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 27 Issue 27 Pages 065203  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quasi-two-dimensional gallium chalcogenide heterostructures are created by transferring exfoliated few-layer GaSe onto bulk GaTe sheets. Luminescence spectroscopy measurements reveal that the light emission from underlying GaTe layers drastically increases on heterojunction regions where GaSe layers make contact with the GaTe. Density functional theory (DFT) and band offset calculations show that conduction band minimum (CBM) (valance band maximum (VBM)) values of GaSe are higher (lower) in energy compared to GaTe, forming type-I band alignment at the interface. Consequently, GaSe layers provide photo-excited electrons and holes to GaTe sheets through relatively large built-in potential at the interface, increasing overall exciton population and light emission from GaTe. Observed results are not specific to the GaSe/GaTe system but observed on GaS/GaSe heterolayers with type-I band alignment. Observed experimental findings and theoretical studies provide unique insights into interface effects across dissimilar gallium chalcogenides and offer new ways to boost optical performance by simple epitaxial coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000368897100008 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited (up) 15 Open Access  
  Notes ; This work was supported by the Arizona State University seeding program, the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus-short Marie Curie Fellowship. We acknowledge the use of the John M Cowley Center for High Resolution Electron Microscopy at Arizona State University. The authors thank Anupum Pant for useful discussions. We gratefully acknowledge the use of the facilities at the LeRoy Eyring Center for Solid State Science at Arizona State University. S Tongay acknowledges support from DMR-1552220. ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:131570 Serial 4179  
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title N-doped graphene : polarization effects and structural properties Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 174112  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The structural and mechanical properties of N-doped graphene (NG) are investigated using reactive force field (ReaxFF) potentials in large-scale molecular dynamics simulations. We found that ripples, which are induced by the dopants, change the roughness of NG, which depends on the number of dopants and their local arrangement. For any doping ratio N/C, the NG becomes ferroelectric with a net dipole moment. The formation energy increases nonlinearly with N/C ratio, while the Young's modulus, tensile strength, and intrinsic strain decrease with the number of dopants. Our results for the structural deformation and the thermoelectricity of the NG sheet are in good agreement with recent experiments and ab initio calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376245900002 Publication Date 2016-05-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 15 Open Access  
  Notes ; This work was supported by the ESF-Eurographene project CONGRAN, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134148 Serial 4212  
Permanent link to this record
 

 
Author Li, L.; Leenaerts, O.; Kong, X.; Chen, X.; Zhao, M.; Peeters, F.M. pdf  doi
openurl 
  Title Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators Type A1 Journal article
  Year 2017 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 10 Issue 10 Pages 2168-2180  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quantum spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III-V monolayers and their halides, which have a chair structure (regular hexagonal framework), have been widely studied. Using first-principles calculations, we formulate a new structure model for the functionalized group III-V monolayers, which consist of rectangular GaBi-X-2 (X = I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a far lower energy than the GaBi-X-2 monolayers with a chair structure. Remarkably, the DHF GaBi-X-2 monolayers are all QSH insulators, which exhibit sizeable nontrivial band gaps ranging from 0.17 to 0.39 eV. The band gaps can be widely tuned by applying different spin-orbit coupling strengths, resulting in a distorted Dirac cone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401320700029 Publication Date 2017-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited (up) 15 Open Access  
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI. ; Approved Most recent IF: 7.354  
  Call Number UA @ lucian @ c:irua:143739 Serial 4598  
Permanent link to this record
 

 
Author Abdullah, H.M.; Van Duppen, B.; Zarenia, M.; Bahlouli, H.; Peeters, F.M. pdf  doi
openurl 
  Title Quantum transport across van der Waals domain walls in bilayer graphene Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 29 Issue 42 Pages 425303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer graphene can exhibit deformations such that the two graphene sheets are locally detached from each other resulting in a structure consisting of domains with different van der Waals inter-layer coupling. Here we investigate how the presence of these domains affects the transport properties of bilayer graphene. We derive analytical expressions for the transmission probability, and the corresponding conductance, across walls separating different inter-layer coupling domains. We find that the transmission can exhibit a valley-dependent layer asymmetry and that the domain walls have a considerable effect on the chiral tunnelling properties of the charge carriers. We show that transport measurements allow one to obtain the strength with which the two layers are coupled. We perform numerical calculations for systems with two domain walls and find that the availability of multiple transport channels in bilayer graphene significantly modifies the conductance dependence on inter-layer potential asymmetry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000410958400001 Publication Date 2017-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited (up) 15 Open Access  
  Notes ; HMA and HB acknowledge the Saudi Center for Theoretical Physics (SCTP) for their generous support and the support of KFUPM under physics research group projects RG1502-1 and RG1502-2. This work is supported by the Flemish Science Foundation (FWO-VI) by a post-doctoral fellowship (BVD). ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:146664 Serial 4793  
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Multicomponent screening and superfluidity in gapped electron-hole double bilayer graphene with realistic bands Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 14 Pages 144517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superfluidity has recently been reported in double electron-hole bilayer graphene. The multiband nature of the bilayers is important because of the very small band gaps between conduction and valence bands. The long-range nature of the superfluid pairing interaction means that screening must be fully taken into account. We have carried out a systematic mean-field investigation that includes (i) contributions to screening from both intraband and interband excitations, (ii) the low-energy band structure of bilayer graphene with its small band gap and flattened Mexican-hat-like low-energy bands, (iii) the large density of states at the bottom of the bands, (iv) electron-hole pairing in the multibands, and (v) electron-hole pair transfers between the conduction and valence band condensates. We find that the superfluidity strongly modifies the intraband contributions to the screening, but that the interband contributions are unaffected. Unexpectedly, a net effect of the screening is to suppress Josephson-like pair transfers and to confine the superfluid pairing entirely to the conduction-band condensate even for very small band gaps, making the system behave similarly to a one-band superfluid.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465160000004 Publication Date 2019-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 15 Open Access  
  Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem Foundation. We thank Mohammad Zarenia and Alfredo VargasParedes for useful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:159332 Serial 5221  
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Peeters, F.M. pdf  url
doi  openurl
  Title Tuning flexoelectricty and electronic properties of zig-zag graphene nanoribbons by functionalization Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon  
  Volume 171 Issue Pages 551-559  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The flexoelectric and electronic properties of zig-zag graphene nanoribbons are explored under mechanical bending using state of the art first principles calculations. A linear dependence of the bending induced out of plane polarization on the applied strain gradient is found. The inferior flexoelectric properties of graphene nanoribbons can be improved by more than two orders of magnitude by hydrogen and fluorine functionalization (CH and CF nanoribbons). A large out of plane flexoelectric effect is predicted for CF nanoribbons. The origin of this enhancement lies in the electro-negativity difference between carbon and fluorine atoms, which breaks the out of plane charge symmetry even for a small strain gradient. The flexoelectric effect can be further improved by co-functionalization with hydrogen and fluorine (CHF Janus-type nanoribbon), where a spontaneous out of plane dipole moment is formed even for flat nanoribbons. We also find that bending can control the charge localization of valence band maxima and therefore enables the tuning of the hole effective masses and band gaps. These results present an important advance towards the understanding of flexoelectric and electronic properties of hydrogen and fluorine functionalized graphene nanoribbons, which can have important implications for flexible electronic applications. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000598371500058 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited (up) 15 Open Access OpenAccess  
  Notes ; The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Flemish Science Foundation (FWO-VI). T. P. is supported by a postdoctoral research fellowship from BOF-UAntwerpen. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:175014 Serial 6700  
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Valley filtering in graphene due to substrate-induced mass potential Type A1 Journal article
  Year 2017 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 29 Issue 21 Pages 215502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction of monolayer graphene with specific substrates may break its sublattice symmetry and results in unidirectional chiral states with opposite group velocities in the different Dirac cones (Zarenia et al 2012 Phys. Rev. B 86 085451). Taking advantage of this feature, we propose a valley filter based on a transversal mass kink for low energy electrons in graphene, which is obtained by assuming a defect region in the substrate that provides a change in the sign of the substrate-induced mass and thus creates a non-biased channel, perpendicular to the kink, for electron motion. By solving the time-dependent Schrodinger equation for the tight-binding Hamiltonian, we investigate the time evolution of a Gaussian wave packet propagating through such a system and obtain the transport properties of this graphene-based substrate-induced quantum point contact. Our results demonstrate that efficient valley filtering can be obtained, provided: (i) the electron energy is sufficiently low, i.e. with electrons belonging mostly to the lowest sub-band of the channel, and (ii) the channel length (width) is sufficiently long (narrow). Moreover, even though the transmission probabilities for each valley are significantly affected by impurities and defects in the channel region, the valley polarization in this system is shown to be robust against their presence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400092700002 Publication Date 2017-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 15 Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152636 Serial 8730  
Permanent link to this record
 

 
Author Vodolazov, D.; Baelus, B.J.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamics of the superconducting condensate in the presence of a magnetic field : channelling of vortices in superconducting strips at high currents Type A1 Journal article
  Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 404 Issue 1-4 Pages 400-404  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract On the basis of the time-dependent Ginzburg-Landau equation we studied the dynamics of the superconducting condensate in a wide two-dimensional sample in the presence of a perpendicular magnetic field and applied current. We could identify two critical currents: the current at which the pure superconducting state becomes unstable (J(c2)(1)) and the current at which the system transits from the resistive state to the superconducting state (J(c1) < J(c2)). The current J(c2) decreases monotonically with external magnetic field, while J(c1) exhibits a maximum at H*. For sufficient large magnetic fields the hysteresis disappears and J(c1) = J(c2) = Jc. In this high magnetic field region and for currents close to Jc the voltage appears as a result of the motion of separate vortices. With increasing current the moving vortices form,channels' with suppressed order parameter along which the vortices can move very fast. This leads to a sharp increase of the voltage. These 'channels' resemble in some respect the phase slip lines which occur at zero magnetic field. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000221211500074 Publication Date 2004-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: 1.404; 2004 IF: 1.072  
  Call Number UA @ lucian @ c:irua:95108 Serial 784  
Permanent link to this record
 

 
Author Peeters, F.M.; Smondyrev, M.A. openurl 
  Title Exact and approximate results for the polaron in one dimension Type A1 Journal article
  Year 1991 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 43 Issue Pages 4920-4924  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1991EY62300044 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited (up) 16 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:963 Serial 1104  
Permanent link to this record
 

 
Author Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title First-principles investigation of B- and N-doped fluorographene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 3 Pages 035434-35435  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of substitutional doping of fluorographene with boron and nitrogen atoms on its electronic and magnetic properties is investigated using first-principles calculations. It is found that boron dopants can be readily incorporated in the fluorographene crystal where they act as shallow acceptors and cause hole doping, but no changes in the magnetic properties are observed. Nitrogen dopants act as deep donors and give rise to a magnetic moment, but the resulting system becomes chemically unstable. These results are opposite to what was found for substitutional doping of graphane, i.e., hydrogenated graphene, in which case B substituents induce magnetism and N dopants do not.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322083700002 Publication Date 2013-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109807 Serial 1210  
Permanent link to this record
 

 
Author Galván Moya, J.E.; Peeters, F.M. url  doi
openurl 
  Title Ginzburg-Landau theory of the zigzag transition in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 13 Pages 134106,1-134106,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a mean-field description of the zigzag phase transition of a quasi-one-dimensional system of strongly interacting particles, with interaction potential r−ne−r/λ, that are confined by a power-law potential (yα). The parameters of the resulting one-dimensional Ginzburg-Landau theory are determined analytically for different values of α and n. Close to the transition point for the zigzag phase transition, the scaling behavior of the order parameter is determined. For α=2, the zigzag transition from a single to a double chain is of second order, while for α>2, the one-chain configuration is always unstable and, for α<2, the one-chain ordered state becomes unstable at a certain critical density, resulting in jumps of single particles out of the chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000296289500004 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93583 Serial 1345  
Permanent link to this record
 

 
Author Riva, C.; Peeters, F.M.; Varga, K. pdf  doi
openurl 
  Title Ground state of excitons and charged excitons in a quantum well Type A1 Journal article
  Year 2000 Publication Physica status solidi: A: applied research T2 – 6th International Conference on Optics of Excitons in Confined Systems, (OECS-6), AUG 30-SEP 02, 1999, ASCONA, SWITZERLAND Abbreviated Journal Phys Status Solidi A  
  Volume 178 Issue 1 Pages 513-517  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A variational calculation of the ground state of a neutral exciton and of positively and negatively charged excitons (trions) in a single quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. Our results are compared with previous theoretical results and with available experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000086440500089 Publication Date 2002-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103467 Serial 1389  
Permanent link to this record
 

 
Author Vagov, A.; Croitoru, M.D.; Axt, V.M.; Kuhn, T.; Peeters, F.M. doi  openurl
  Title High pulse area undamping of Rabi oscillations in quantum dots coupled to phonons Type A1 Journal article
  Year 2006 Publication Physica status solidi B – Basic solid state physics Abbreviated Journal Phys Status Solidi B  
  Volume 243 Issue 10 Pages 2233-2240  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000239932300005 Publication Date 2006-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: 1.674; 2006 IF: 0.967  
  Call Number UA @ lucian @ c:irua:60891 Serial 1440  
Permanent link to this record
 

 
Author Mlinar, V.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Hole and exciton energy levels in InP/InxGa1-xP quantum dot molecules: influence of geometry and magnetic field dependence Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue 23 Pages 235336,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000238696600104 Publication Date 2006-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:59708 Serial 1474  
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M. url  doi
openurl 
  Title Influence of the substrate orientation on the electronic and optical properties of InAs/GaAs quantum dots Type A1 Journal article
  Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 89 Issue 26 Pages 1-3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000243157600032 Publication Date 2006-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: 3.411; 2006 IF: 3.977  
  Call Number UA @ lucian @ c:irua:62199 Serial 1653  
Permanent link to this record
 

 
Author Benedict, M.G.; Földi, P.; Peeters, F.M. doi  openurl
  Title Microwave emission from a crystal of molecular magnets: the role of a resonant cavity Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 21 Pages 214430,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000234335400099 Publication Date 2005-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:56302 Serial 2081  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.; Grigorieva, I.V.; Geim, A.K. url  doi
openurl 
  Title Nonlocal response and surface-barrier-induced rectification in Hall-shaped mesoscopic superconductors Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue Pages 024537,1-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000230890100156 Publication Date 2005-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:69412 Serial 2361  
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M., Jr.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Snake states in graphene quantum dots in the presence of a p-n junction Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 3 Pages 035426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell-shaped electron distribution. The results are presented as a function of the junction parameters and the applied magnetic flux. DOI: 10.1103/PhysRevB.87.035426  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313941000003 Publication Date 2013-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 16 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:110087 Serial 3048  
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Hai, G.-Q.; Peeters, F.M. doi  openurl
  Title Spin- and valley-dependent commensurability oscillations and electric-field-induced quantum Hall plateaux in periodically modulated silicene Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 21 Pages 213109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the commensurability oscillations in silicene subject to a perpendicular electric field E-z, a weak magnetic field B, and a weak periodic potential V = V-0 cos(Cy); C = 2 pi/a(0) with a(0) its period. The field E-z and/or the modulation lift the spin degeneracy of the Landau levels and lead to spin and valley resolved Weiss oscillations. The spin resolution is maximal when the field E-z is replaced by a periodic one E-z = E-0 cos(Dy); D = 2 pi/b(0), while the valley one is maximal for b(0) = a(0). In certain ranges of B values, the current is fully spin or valley polarized. Additional quantum Hall conductivity plateaux arise due to spin and valley intra-Landau-level transitions. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000337143000047 Publication Date 2014-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (up) 16 Open Access  
  Notes ; The work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. Also, G. Q. H. was supported by FAPESP and CNPq (Brazil). ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:118409 Serial 3078  
Permanent link to this record
 

 
Author Cornelissens, Y.G.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Transition from two-dimensional to three-dimensional classical artificial atoms Type A1 Journal article
  Year 2000 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 8 Issue Pages 314-322  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000165183000003 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: 2.221; 2000 IF: 0.878  
  Call Number UA @ lucian @ c:irua:34349 Serial 3700  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Vortex-antivortex nucleation in superconducting films with arrays of in-plane dipoles Type A1 Journal article
  Year 2006 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 437/438 Issue Pages 208-212  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000238395700050 Publication Date 2006-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited (up) 16 Open Access  
  Notes Approved Most recent IF: 1.404; 2006 IF: 0.792  
  Call Number UA @ lucian @ c:irua:58359 Serial 3860  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: