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Spin-polarized tunneling through a diluted magnetic semiconductor quantum dot embedded in a tunneling
barrier is investigated using the Bardeen transfer Hamiltonian. The tunneling current oscillates with an increas-
ing magnetic field for a fixed bias. Many peaks are observed with an increasing external bias under a fixed
magnetic field. Spin polarization of the tunneling current is tuned by changing the external bias under a weak
magnetic field.
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I. INTRODUCTION

Diluted magnetic semiconductorssDMSd provide us with
an interesting possibility to tailor the spin splitting and the
spin polarization via thes-d exchange interaction between
the conduction-band electron and the localized magnetic
ions. The spin splitting in DMS systems can be tuned by
changing the external magnetic field, which induces spin-
polarized transport. The spin-polarized current in a semicon-
ductor is the crucial ingredient for spintronic devices.1 One
of the main obstacles for these applications is to find a highly
efficient way to inject spin-polarized carriers into a semicon-
ductor. The successful spin-polarized current through a DMS
junction was demonstrated theoretically2 and experimentally
by applying strong magnetic fields at low temperature,3 i.e.,
the three-dimensional–two-dimensional–three-dimensional
s3D-2D-3Dd tunneling case. An oscillating, tunneling, mag-
netoresistance was found theoretically for ballistic DMS
single-barrier and double-barrier structures,4 even in the case
of a superlattice.5 In all of the above studies, a strong mag-
netic field is required to enhance the spin splitting and to
induce spin polarization of the electron. Such a strong mag-
netic field is a big obstacle for practical applications in spin-
tronic devices, e.g., to create a spin filter.

Very recently,6–8 the incorporation of Mn ions into the
crystal matrix of different II–VI semiconductors lead to the
successful fabrication of DMS quantum dotssQDd and
magnet-DMS hybrid structures. PhotoluminescencesPLd sig-
nals clearly demonstrated the confinement of quasi-zero-
dimensional electron-hole pairs in these nanostructures. The
optical property of the DMS QD can be well understood by
calculations based on the effective-mass theory.9 In this pa-
per, we calculate the spin-polarized tunneling current utiliz-
ing magnetotunneling through a semiconductor quantum dot
and demonstrate theoretically that strong spin-polarized tun-
neling can be realized in this system in the presence of a
weak perpendicular magnetic field. Furthermore, we find that
the spin polarization of the current can be easily tuned by
changing the external bias under a weak magnetic field.
Thus, such a device will be very helpful for potential spin-
tronic nanodevice applications.

The paper is organized as follows. The theoretical model
and formalism are presented in Sec. II. In Sec. III we present
the numerical results along with our discussions. A brief con-
clusion is given in Sec. IV.

II. THEORETICAL MODEL AND FORMALISM

The typical semiconductor structures used to study verti-
cal tunneling through quantum dots consist of a double-
barrier quantum well that is confined in the lateral direction.
The lateral confinement can be realized using ecthing, ion
bombardment, or metallic gates. Consider a 2D-0D-2D struc-
ture, which is shown schematically in Fig. 1; the emitter and
collector regions consist of a nonmagneticsNMSd or diluted
magnetic semiconductor two-dimensional electron gas
s2DEGd, and the NMS or DMS quantum dot is embedded in
the tunneling barrier. The Hamiltonian of an electron in the
emitter regionsDMS or NMS 2DEGd is

Ĥ =
"2

2mi
* sk i + eAd2 + HZ + Ĥex +

"2kz
2

2m'
* + Vconf

e szd, s1d

where the magnetic fieldB is applied along thez axis, i.e.,
the current direction.kz is the momentum along thez axis.
We takemi

* =m'
* =m* , since the conduction band is isotropic

near theG point. The form of the confining potentialVconf
e szd

is of a triangular shape which depends on the external bias,

FIG. 1. Potential profile of the tunneling structure. The quantum
dot is embedded in the barrier.
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and we assume that only the lowest subbandE0
e of this ac-

cumulation layer is filled and contributes to the tunneling
current. The symmetric gauge is adopted for the vector po-
tentialA =s−By/2 ,Bx/2 ,0d in order to optimally use the cyl-
inder symmetry of the system.HZ is the intrinsic Zeeman
term.Vcszd is the confining potential along the growth direc-
tion. The exchange interactionHex describes thes-d interac-
tion between the conduction electrons and the 3d5 electrons
of the Mn ions,

Ĥex =H0, for NMS 2DEG

o
i

Js-dsrW − RW idsW ·SW i, for DMS 2DEGJ ,

s2d

where Js-d is the electron-ions-d exchange coupling con-

stant, andrW andRW i are coordinates of the band electron and

the Mn2+ ions. sW and SW i denote the spin operator of the
conduction-band electron and Mn2+ ion, respectively. The
summation is over the lattice sites occupied by the Mn2+

ions. Within the mean-field approximation,SW i can be re-
placed by its thermal average,kSzl=−S0B5/2sjd, j
=gMnSmBB/kBsT+T0d. BJsxd is the Brillouin function,kB is
the Boltzmann constant,S= 5

2 is the spin of Mn2+, andS0 and
T0 are phenomenological parameters describing the antifer-
romagnetic superexchange effect between the Mn2+ ions.
Within the mean-field approximation, we have

Hex = N0axszkSzl, s3d

whereN0 is the number of cation sites per unit volume,x is
the concentration of Mn ions, anda is the absolute value of
the exchange-coupling integral per unit cell.

The energy of the eigenstate in the 2DEG is

Ene,me,kz
= "vcSne +

me + umeu
2

+
1

2
D + EZ

e + EZ
s-d + E0

e, s4d

wherevc=eB/m* , E0
e is the ground-state energy of the elec-

tron along thez axis, andEZ
e and EZ

s-d denote the intrinsic
Zeeman energy and the spin splitting caused by thes-d ex-
change interaction, respectively.EZ

s-d is zero for the NMS
2DEG and nonzero for the DMS 2DEG. The wave function
of the electron is

Cesr,w,zd =
e im w

Î2p
Rneme

srdfszd, s5d

whereRneme
srd is a function that can be expressed in terms of

the hypergeometric function,

Rneme
srd ~ e−j/2jumu/2Fs− n,umu + 1,jd,

j = vcm
*r2/2". s6d

In the QD structure, we have

H =
"2ki

2

2m* +
m*v0

2r2

2
+

Lzvc

2
+ HZ + Hex +

"2kz
2

2m
+ Vc

dszd,

s7d

wherevd=Îv0
2+vc

2/4, andVc
dszd is the confining potential in

the QD along thez axis, which is assumed to be a square
well. Hex is described in Eq.s2d. Assuming that the quantum
confinement along thez axis is much stronger than the in-
plane confinement, the energy of the eigenstate is

End,md
= "vds2nd + umdu + 1d +

"vc

2
md + EZ

e + EZ
s-d + E0

d.

s8d

The value of the exchange interaction termEZ
s-d depends on

the materialfsee Eq.s4dg. The wave function isCdsr ,w ,zd
=1/Î2pe im dwRndmd

srdgszd, whereRndmd
srd is the same as in

Eq. s6d, but j=vdm
*r2/".

The tunneling process is a two-step process in which elec-
trons first tunnel from the emitter to the dot and eventually
from the dot to the collector. At equilibrium the tunneling
current from the emitter to the dot must be equal to that from
the dot to the collector, and the strength of the tunneling
current is determined by the overlap integral between the
wave function of the QD states and those of the contacts.
According to Bardeen’s description of tunneling,10 the tun-
neling current in the steady state is given by11

I =
e

h
o
s
E dkdk8TLRsEL,ERdf1 − fRsERdgfLsELd

−
e

h
o
s
E dkdk8TRLsER,ELdf1 − fLsELdgfRsERd, s9d

whereTLRsEL ,ERd is the transmission of electron tunneling
from the emitter to the dot andTRLsER,ELd is the same, but
for the reverse direction. The Pauli blocking factors 1−fLsRd

are introduced, considering that an electron that tunnels from
one side to the other side should find an empty final state.
For resonant tunnelingEne,me,kz

=End,md
, TLR=TRL, and we as-

sume that the ground state of the QD is high above the Fermi
energy of the collector, which makes the Pauli blocking fac-
tor unimportant. Then the tunneling current can be obtained
from

I = 2eG/p o
s,nd,md,ne,me

uMe-du2fsEnd,md
d

sEne,me
− End,md

− eVextd2 + G2 ,

s10d

where fsEd=(1+expfsE−EFd /kBTg)−1 is the Fermi distribu-
tion function with Fermi energyEF, which can be deter-
mined from the following equation:

:e = e2/4plB
2 o

s,ne,me

fsEne,me
d, s11d

where :e is the density of electrons in the 2DEG. In our
numerical calculation the density of statessDOSd of the
2DEG, assuming a simple Lorentzian spectral function, is
rsEd=sG /pd / fsEne,me

−End,md
−eVextd2+G2g, G is the broaden-
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ing factor of the Landau level, andVext is the external voltage
between the emitter and the QD. The current matrix element
in Eq. s10d is given by

Me-d = S "2

2m
DE

R

sCe ¹ Cd
* − Cd

* ¹ CeddR = Me-d
i Me-d

' ,

s12d

where R is the surface across the emitter-dot barrier, i.e.,
perpendicular to thez axis. But here we calculate the transi-
tion elementMe-d

' following Ref. 12, and consequently the
in-plane transition element Me-d

i can be obtained
analytically,13

Me-d
i =

1

2p
E

0

2p

eisme−mddwdwE
0

`

rRnd,md
srdRne,me

srddr

= dmd,me

NdNe

2
Gsgdl−nd−ne−gsl − kddndsl − kedne

3 FF− nd,− ne,g,
kdke

sl − kddsl − ked
G , s13d

wheree andd denote the states in the emitter and in the QD,
Fsn,m,x,yd is the hypergeometric function,l=sae

−2

+ad
−2d /4, kd,e=1/s2ad,e

2 d, Nd,e

=Îsumd,eu+nd,ed ! / s2umd,eund,e! umd,eu ! d /ad,e
g , g= umd,eu+1, ad,e

=Î" / s2m*vd,ed, andve=wc/2. It is interesting to notice that
the angular part of the integral gives the selection rule for the
tunneling process, i.e., only the states withme=md contribute
to the tunneling current.

The parameters used in our calculations for MnxCd1−xTe
and CdTe arem* =0.096m0, :e=431011 cm−2, x=0.1, gMn
=2, N0a=220 meV, ge=−1.47, S0=1.32, T0=3.1 K sRefs.
9,14d G=0.2 meV.

III. NUMERICAL RESULTS AND DISCUSSIONS

Figure 1 schematically depicts our single barrier structure
in which the QDs are embedded. The emitter and the collec-
tor regions consist of NMS or DMS 2DEG. Figures 2sad and

2sbd show the energy spectra for the electron in the NMS and
DMS 2DEG, respectively, as a function of the magnetic field
for zero bias. The thickest curves denote the Fermi energy in
the 2DEG for two different electron densities; the thick solid
lines describe the energies of the electron states insad NMS
and sbd DMS QD for different spin orientations. The Fermi
energy exhibits the well known oscillatory behavior with an
increasing magnetic field. The Landau-level fans forsad
NMS and sbd DMS 2DEG are rather different due to the
s-d exchange interaction. From these figures we see that the
occupied states are spin-down states for DMS 2DEG at high
magnetic fields, while spin-up and spin-down states coexist
for NMS 2DEG, even at high magnetic fields. This feature
arises from the s-d exchange interaction between the electron
and the magnetic ionsfsee Eq.s3dg; namely, the spin splitting
caused by thes-d exchange interaction is much larger than
that caused by the intrinsic Zeeman effect. This feature con-
sequently leads to a different spin polarization of the 2DEG
at higher magnetic fields.

In Figs. 3sad and 3sbd we plot the tunneling current due to
the presence of the QD as a function of the magnetic field
under a fixed bias for two different structuressDMS 2DEG
contacts with NMS QD embedded in the barrier and NMS
2DEG contacts with DMS QD embedded in the barrierd. The
insets show the tunneling currents for the spin-up and the
spin-down electrons. The tunneling current is mainly deter-
mined by the energy difference between the Landau levels in
the emitter below the Fermi energy and the states in the QD
and the overlap factor. The magnetic field shifts the minima
of the subbands to higher energies and confines the electrons
towards the center of the QD. The localization of the QD
states leads to an increase of the overlap factor in the lateral
direction, and consequently it increases the current. The tun-
neling current oscillates with an increasing magnetic field,
but approaches zero at a high magnetic field because of the
diminishing number of available tunnel channels. The oscil-
lations in the current arise from those in the Landau levels
below the Fermi energy, which become resonant with quan-
tum states in the QD structure. In order to understand this
more clearly, we plot the energy spectrum at a fixed bias
Vext=10 mV in Figs. 3scd and 3sdd. From Figs. 3scd and 3sdd,

FIG. 2. The Landau-level fan
in sad DMS and sbd NMS 2DEG
for spin-up sthe thin solid linesd
and spin-downsthe thin dashed
linesd electron. The thinner lines
correspond to the energies of the
spin-upssolid linesd and the spin-
down sdashed linesd electron
states in the QD. The thickest
curves depict the Fermi energy
versus the magnetic fields, where
the solid line and the dashed-
dotted line correspond to the elec-
tron density:e=431011/cm2 and
231011/cm2, respectively. We set
T=1 K, "v0=15 meV.
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the spin-up and the spin-down Landau levels in the emitter
cross with the spin-up and the spin-down ground states of the
QD at different magnetic fields. These crossing points corre-
spond to the peak positions in Figs. 3sad and 3sbd ssee the
arrows in these figuresd. The minimum of the lowest Landau
subband of the DMS 2DEG increases with an increasing
magnetic field and even becomes higher than that of the
ground state of the QDsmd=0d, but lower than that of the
higher states of the QDsmd=1d fsee Figs. 2sad and 2sbdg;
therefore the tunneling current approaches zero at a higher
magnetic field. The same is true for the NMS/DMS QD/
NMS structure due to the same physical mechanism. A big
difference between the spin-up and spin-down tunneling cur-
rents is found in these figures, even at intermediate magnetic
fields fsee the insets of Figs. 3sad and 3sbdg, resulting in a
spin polarization of the current. For tunneling through a
NMS QD with DMS contacts, the spin polarization of the
tunneling current is higher than the spin polarization of the
tunneling current through the DMS QD with NMS contacts.
This is because the lower states of the DMS 2DEG are spin-
down states, but the spin-up states are also still present in the
NMS 2DEG fsee Figs. 2sad and 2sbdg.

Figures 4sad–4sdd show the tunneling current versus the
external bias for two different values of the magnetic fields.
The insets depict the tunneling currents for the spin-up and
the spin-down electrons separately. We find several broad
peaks in the tunneling current, and the spin polarization can
be easily tuned by changing the external bias, even at small
magnetic fieldsssee the insetsd. These broad peaks corre-
spond to the Landau levels below the Fermi energy in the
2DEG, which are resonant with the QD statessthe ground
and excited statesd and are indicated in Figs. 4sed and 4sfd.
The minima of the tunneling current correspond to the Lan-
dau levels below the Fermi energy, which are situated be-
tween the energies of the QD statessmd=0 andmd=1d, and
the widths of the minima are determined by the spacing of
the QD states. Notice that there are many subpeaks, i.e.,
oscillation, on top of each broad peak for sufficiently strong
magnetic fields. These sharp subpeaks appear when each
Landau level becomes resonant with the QD states and ap-
pears only if the Landau-level separation becomes larger
than the width of the individual Landau levels. For tunneling
through the NMS QD with DMS contactsfsee Figs. 4sad and
4sbdg, a maximum of spin polarization can be up to 35% and
90% forB=0.2 T and 0.8 T respectively. Except for the tun-

FIG. 3. The tunneling current versus the mag-
netic field for a fixed biassDV=10 mVd for the
sad NMS/DMS QD/NMS and sbd DMS/NMS
QD/DMS cases. The insets show the tunneling
current for different spin orientations. Partsscd
andsdd show the corresponding energy spectra in
the emitter and the QD. The thick solid lines de-
note the Fermi energy in the emitter, the thin
solid and dashed lines for the spin-up and the
spin-down Landau levels in the emitter and the
thicker solid and dashed lines for the spin-up and
the spin-down QD states. We set"vd=15 meV,
G=0.2 meV, andT=1 K.
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neling through the DMS QD with NMS contactsfsee Figs.
4scd and 4sddg, the maximum of the spin polarization can
approach 100%, even at small magnetic fieldssi.e., B
=0.2 Td. Therefore, spin polarization of the tunneling current

through the NMS QD with DMS contacts is stronger than
that through the DMS QD with NMS contacts. This phenom-
enon can be understood from the energy spectra of the NMS
and the DMS 2DEG for a fixed magnetic fieldsB=0.8 Td

FIG. 4. The tunneling current versus the ex-
ternal bias for two different magnetic field values
and two different configuratons: NMS/DMS QD/
NMS fsad andsbdg and DMS/NMS QD/DMSfscd
and sddg. The insets show the tunneling current
for different spin orientations. The energy spectra
are shown as a function of the external bias insed
andsfd, and the line types are the same as in Figs.
3scd and 3sdd. We used "v0=15 meV, G
=0.2 meV,T=1 K, andDE0=E0

d−E0
e, whereE0

d,e

are the quantized energies along thez axis of the
QD and the 2DEG.
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fsee Figs. 4sed and 4sfdg. The QD states align with the lower
Landau levels of the 2DEG with an increasing external bias.
The lower Landau levels of the DMSsNMSd 2DEG fsee
Figs. 4sed and 4sfdg are the spin-downsthe spin-up and the
spin-downd states. Therefore, the spin polarization of the tun-
neling current through the NMS QD with the DMS 2DEG
contacts is higher than that through the DMS QD with the
NMS 2DEG contacts.

IV. CONCLUSIONS

In summary, we demonstrated theoretically that strong
spin-polarized current can be realized by utilizing the tunnel-
ing between a 2DEG and a QD structure even at small mag-

netic fields. The tunneling current oscillates and decreases
with an increasing magnetic field. The spin polarization of
the system can be easily tuned by changing the external bias
under a weak magnetic field. The proposed system is useful
as, e.g., a spin filter.
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