toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kirsanova, M.A.; Mori, T.; Maruyama, S.; Abakumov, A.M.; Van Tendeloo, G.; Olenev, A.; Shevelkov, A.V. pdf  doi
openurl 
  Title Cationic clathrate of type-III Ge172-xPxTey (y\approx21,5, x\approx2y) : synthesis, crystal structure and thermoelectric properties Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 14 Pages 8272-8279  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A first germanium-based cationic clathrate of type-III, Ge129.3P42.7Te21.53, was synthesized and structurally characterized (space group P42/mnm, a = 19.948(3) Å, c = 10.440(2) Å, Z = 1). In its crystal structure, germanium and phosphorus atoms form three types of polyhedral cages centered with Te atoms. The polyhedra share pentagonal and hexagonal faces to form a 3D framework. Despite the complexity of the crystal structure, the Ge129.3P42.7Te21.53 composition corresponds to the Zintl counting scheme with a good accuracy. Ge129.3P42.7Te21.53 demonstrates semiconducting/insulating behavior of electric resistivity, high positive Seebeck coefficient (500 μV K1 at 300 K), and low thermal conductivity (<0.92 W m1 K1) within the measured temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000322087100052 Publication Date 2013-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 3 Open Access  
  Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:109214 Serial 301  
Permanent link to this record
 

 
Author Tarakina, N.V.; Nikulina, E.A.; Hadermann, J.; Kellerman, D.G.; Tyutunnik, A.P.; Berger, I.F.; Zubkov, V.G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Crystal structure and magnetic properties of complex oxides Mg4-xNixO9, 0\leq x\leq4 Type A1 Journal article
  Year 2007 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 180 Issue 11 Pages 3180-3187  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the Mg4−xNixNb2O9 (0x4) system two ranges of solid solution have been found. One of the solid solutions has a corundum-related structure type (space group ); the second one adopts the II-Ni4Nb2O9 structure type (space group Pbcn). The unit cell constants and atomic positions have been determined and refined using neutron powder diffraction data. Electron diffraction and high-resolution transmission electron microscopy (HRTEM) from MgNi3Nb2O9 crystals identify the presence of planar defects and the intergrowth of several (structurally related) phases. The magnetic susceptibility of Mg3NiNb2O9, measured in the temperature range T=2300 K, shows no indications of magnetic ordering at low temperatures, while for MgNi3Nb2O9 there is a magnetic ordering at temperatures below 45.5 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000260636200025 Publication Date 2007-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited (up) 3 Open Access  
  Notes Belgium Science Policy Approved Most recent IF: 2.299; 2007 IF: 2.149  
  Call Number UA @ lucian @ c:irua:72944 Serial 559  
Permanent link to this record
 

 
Author Volkov, V.V.; van Landuyt, J.; Amelinckx, S.; Pervov, V.S.; Makhonina, E.V. pdf  doi
openurl 
  Title Electron microscopic and X-ray structural analysis of the layered crystals TaReSe4: structure, defect structure, and microstructure, including rotation twins Type A1 Journal article
  Year 1998 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 135 Issue Pages 235-255  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000072900200008 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 2.299; 1998 IF: 1.432  
  Call Number UA @ lucian @ c:irua:29672 Serial 938  
Permanent link to this record
 

 
Author Ibrahim, I.S.; Peeters, F.M. doi  openurl
  Title Electrons in a periodic magnetic field Type A1 Journal article
  Year 1996 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci  
  Volume 361/362 Issue Pages 341-344  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1996UZ03300083 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.925 Times cited (up) 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:15815 Serial 1020  
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Nistor, L.; Van Tendeloo, G.; Amelinckx, S.; Antipov, E.V.; Kovba, L.M. pdf  doi
openurl 
  Title High resolution electron microscopic study of Ba7Sc6Al2O19 and related phases Type A1 Journal article
  Year 1994 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 113 Issue Pages 193-203  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1994PP02200027 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.133 Times cited (up) 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:10036 Serial 1443  
Permanent link to this record
 

 
Author Bosch, B.; Leleu, M.; Oustrière, P.; Sarcia, C.; Sureau, J.F.; Blommaert, W.; Gijbels, R.; Sadurski, A.; Vandelannoote, R.; Van Grieken, R.; Van 'T Dack, L.; pdf  doi
openurl 
  Title Hydrogeochemistry in the zinclead mining district of Les Malines (Gard, France) Type A1 Journal article
  Year 1986 Publication Chemical geology Abbreviated Journal Chem Geol  
  Volume 55 Issue 1/2 Pages 31-44  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Sensitive multi-element analysis techniques together with major-element and isotopic analyses were applied to spring, mine and surface waters in the vicinity of an important known zinclead deposit in a carbonate environment, in the Les Malines area (Gard, France). Both the dissolved and suspended phases were investigated, and concretions and sediments were also considered in some cases. This methodological test shows that the ore body leaves various clear fingerprints, such as the Zn, As, Sb, Pb and U levels in the dissolved phase, the sulfate increment and the δ 34S. Some of the elements in solution are controlled by slightly soluble compounds, e.g. Zn by smithsonite and hydrozincite, Ba by barite, and Pb by hydrocerussite. Mapping the saturation indices for these elements appears useful for displaying the hydrogeochemical anomaly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1986C743300003 Publication Date 2003-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.524 Times cited (up) 3 Open Access  
  Notes Approved CRYSTALLOGRAPHY 19/26 Q3 # PHYSICS, CONDENSED MATTER 53/67 Q4 #  
  Call Number UA @ lucian @ c:irua:111481 Serial 1537  
Permanent link to this record
 

 
Author Tsoufis, T.; Georgakilas, V.; Ke, X.; Van Tendeloo, G.; Rudolf, P.; Gournis, D. pdf  doi
openurl 
  Title Incorporation of pure fullerene into organoclays : towards C60-pillared clay structures Type A1 Journal article
  Year 2013 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 19 Issue 24 Pages 7937-7943  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercalation from water solution. To overcome this bottleneck, we organically modified the clay with quaternary amines by using well-established reactions in clay science in order to expand the interlayer space and render the galleries organophilic. During the reaction with the fullerene solution, the organic solvent could enter into the clay galleries, thus transferring along the fullerene molecules. Furthermore, we demonstrate that the surfactant molecules, can be selectively removed by either simple ion-exchange reaction (e.g., interaction with Al(NO3)3 solution to replace the surfactant molecules with Al3+ ions) or thermal treatment (heating at 350 °C) to obtain novel fullerene-pillared clay structures exhibiting enhanced surface area. The synthesized hybrid materials were characterized in detail by a combination of experimental techniques including powder X-ray diffraction, transmission electron microscopy, X-ray photoemission, and UV/Vis spectroscopy as well as thermal analysis and nitrogen adsorptiondesorption measurements. The reported fullerene-pillared clay structures constitute a new hybrid system with very promising potential for the use in areas such as gas storage and/or gas separation due to their high surface area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000319825500035 Publication Date 2013-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited (up) 3 Open Access  
  Notes 262348 Esmi; 246791 Countatoms Approved Most recent IF: 5.317; 2013 IF: 5.696  
  Call Number UA @ lucian @ c:irua:107347 Serial 1599  
Permanent link to this record
 

 
Author Kato, T.; Neyts, E.C.; Abiko, Y.; Akama, T.; Hatakeyama, R.; Kaneko, T. pdf  url
doi  openurl
  Title Kinetics of energy selective Cs encapsulation in single-walled carbon nanotubes for damage-free and position-selective doping Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 11903-11908  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A method has been developed for damage-free cesium (Cs) encapsulation within single-walled carbon nanotubes (SWNTs) with fine position selectivity. Precise energy tuning of Cs-ion irradiation revealed that there is a clear energy window (2060 eV) for the efficient encapsulation of Cs through the hexagonal network of SWNT sidewalls without causing significant damage. This minimum energy threshold of Cs-ion encapsulation (∼20 eV) matches well with the value obtained by ab initio simulation (∼22 eV). Furthermore, position-selective Cs encapsulation was carried out, resulting in the successful formation of pn-junction SWNT thin films with excellent environmental stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000355495600072 Publication Date 2015-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:125928 Serial 1760  
Permanent link to this record
 

 
Author Vassiliev, S.Y.; Laurinavichute, V.K.; Abakumov, A.M.; Govorov, V.A.; Bendovskii, E.B.; Turner, S.; Filatov, A.Y.; Tarasovskii, V.P.; Borzenko, A.G.; Alekseeva, A.M.; Antipov, E.V. pdf  doi
openurl 
  Title Microstructural aspects of the degradation behavior of SnO2-based anodes for aluminum electrolysis Type A1 Journal article
  Year 2010 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 157 Issue 5 Pages C178-C186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The performance of SnO2 ceramic anodes doped with copper and antimony oxides was examined in cryolite alumina melts under anodic polarization at different cryolite ratios, temperatures, times, and current densities. The corroded part consists of a narrow strong corrosion zone at the anode surface with damage of the intergrain contacts and a large increase in porosity, a wider moderate corrosion zone with a smaller porosity increase, and a Cu depletion zone, where the ceramic retains its initial microstructure and a slight porosity increase occurs due to the removal of the Cu-rich inclusions. Mechanical destruction of the anode was never observed in the 10100 h tests. A microstructural model of the ceramic was suggested, consisting of grains with an Sb-doped SnO2 grain core surrounded by an ~200 to 500 nm grain shell where SnO2 was simultaneously doped with Sb and Mn+ (M=Cu2+,Fe3+,Al3+). The grains were separated by a few nanometers thick Cu-enriched grain boundaries. Different secondary charge carrier (holes) concentrations and electric conductivities in the grain core and grain shell result in a higher current density at the intergrain regions that leads to their profound degradation, especially in the low temperature acidic melt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000276555300037 Publication Date 2010-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 3.259; 2010 IF: 2.427  
  Call Number UA @ lucian @ c:irua:82260 Serial 2040  
Permanent link to this record
 

 
Author Lenaerts, J.; Verlinden, G.; Ignatova, V.A.; van Vaeck, L.; Gijbels, R.; Geuens, I. doi  openurl
  Title Modeling of the sputtering process of cubic silver halide microcrystals and its relevance in depth profiling by secondary ion-mass spectrometry (SIMS) Type A1 Journal article
  Year 2001 Publication Fresenius' journal of analytical chemistry Abbreviated Journal Fresen J Anal Chem  
  Volume 370 Issue 5 Pages 654-662  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000170115200032 Publication Date 2002-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:37251 Serial 2135  
Permanent link to this record
 

 
Author Napierala, C.; Lepoittevin, C.; Edely, M.; Sauques, L.; Giovanelli, F.; Laffez, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title Moderate pressure synthesis of rare earth nickelate with metal-insulator transition using polymeric precursors Type A1 Journal article
  Year 2010 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 183 Issue 7 Pages 1663-1669  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Rare earth nickelates exhibit a reversible metalsemiconductor phase transition that is, in the infrared range, responsible for a thermo-optical contrast. The state of the art synthesis of these compounds usually requires high oxygen pressure to stabilize Ni in the oxidation state 3+. In this work, using polymeric precursor associated with moderate pressure annealing, we show that it is possible to obtain fully oxidized rare earth nickelate with metalinsulator transition. Using thermogravimetric analysis, X-ray diffraction and transmission electronic microscopy we compare different samples synthesized at different oxygen pressures and demonstrate their structural similarity. Thermo-optical properties were measured, in the infrared range, using reflectance measurements and confirmed the metalinsulator transition at 60 °C in both samples.TEM observations lead to the conclusion that the structure commonly obtained at 175 bar is perfectly observed in the 20 bar sample without major structural defects. The two samples exhibit a thermochromic behavior and thermo-optical properties of the two samples are equivalent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000279711200028 Publication Date 2010-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 2.299; 2010 IF: 2.261  
  Call Number UA @ lucian @ c:irua:83679 Serial 2156  
Permanent link to this record
 

 
Author Nicholls, D.; Li, R.R.; Ware, B.; Pansegrau, C.; Çakir, D.; Hoffmann, M.R.; Oncel, N. doi  openurl
  Title Scanning tunneling microscopy and density functional theory study on zinc(II)-phthalocyanine tetrasulfonic acid on bilayer epitaxial graphene on silicon carbide(0001) Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages 9845-9850  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Zinc(II)-phthalocyanine tetrasulfonic acid (Zn-PcS) molecules physisorbed on bilayer epitaxial graphene on silicon carbide (SiC(0001)) were studied by using scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT). Two different methods were used to deposit Zn-PcS molecules and regardless of the method being used, the surface coverage stayed very low indicating the weakness of surface-molecule interaction. STS measurements revealed that derivative of tunneling current with respect to voltage (dI/dV) measured on Zn-PcS molecules did not exhibit the characteristic dip observed on dI/dV curves of pristine bilayer epitaxial graphene. DFT calculations show that the energy of the lowest unoccupied molecular orbital (LUMO) of the Zn-PcS molecule is below the Dirac point of graphene which enhances local density of states (LDOS). We attribute the disappearance of the dip in the dI/dV curves measured on the Zn-PcS/bilayer system to the LUMO of Zn-PcS. Charge density calculations along Zn-PcS/graphene interface reveal that there is a small charge transfer from graphene to the molecule. Calculated adsorption energy (3.13 eV) of the molecule is notably low and is consistent with the observed low surface coverage at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000354339000020 Publication Date 2015-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 3 Open Access  
  Notes ; We gratefully acknowledge the NSF (Grant Nos.: DMR-1306101, EPS-814442, and EPS-1354366) for financial support. ; Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126370 Serial 2947  
Permanent link to this record
 

 
Author Schoeters, B.; Neyts, E.C.; Khalilov, U.; Pourtois, G.; Partoens, B. url  doi
openurl 
  Title Stability of Si epoxide defects in Si nanowires : a mixed reactive force field/DFT study Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 15 Issue 36 Pages 15091-15097  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Modeling the oxidation process of silicon nanowires through reactive force field based molecular dynamics simulations suggests that the formation of Si epoxide defects occurs both at the Si/SiOx interface and at the nanowire surface, whereas for flat surfaces, this defect is experimentally observed to occur only at the interface as a result of stress. In this paper, we argue that the increasing curvature stabilizes the defect at the nanowire surface, as suggested by our density functional theory calculations. The latter can have important consequences for the opto-electronic properties of thin silicon nanowires, since the epoxide induces an electronic state within the band gap. Removing the epoxide defect by hydrogenation is expected to be possible but becomes increasingly difficult with a reduction of the diameter of the nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000323520600029 Publication Date 2013-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited (up) 3 Open Access  
  Notes ; BS gratefully acknowledges financial support of the IWT, Institute for the Promotion of Innovation by Science and Technology in Flanders, via the SBO project “SilaSol”. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. ; Approved Most recent IF: 4.123; 2013 IF: 4.198  
  Call Number UA @ lucian @ c:irua:110793 Serial 3130  
Permanent link to this record
 

 
Author Massobrio, C.; Djimbi, D.M.; Matsubara, M.; Scipioni, R.; Boero, M. doi  openurl
  Title Stability of Ge12C48 and Ge20C40 heterofullerenes : a first principles molecular dynamics study Type A1 Journal article
  Year 2013 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 556 Issue Pages 163-167  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract By using first-principles molecular dynamics, we address the issue of structural stability for the C-60 Ge-m(m) family of doped heterofullerenes through a set of calculations targeting C48Ge12 and C40Ge20. Three kinds of theoretical tools are employed: (a) static structural optimization, (b) a bonding analysis based on localized orbitals (Wannier wavefunctions and centers) and (c) first-principles molecular dynamics at finite temperature. This latter tool allows concluding that the segregated form of C40Ge20 is less stable than its Si-based counterpart. However, the non-segregated forms of C40Ge20 and C40Si20 have comparable stabilities at finite temperatures. (C) 2012 Elsevier B. V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000313644100032 Publication Date 2012-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 1.815; 2013 IF: 1.991  
  Call Number UA @ lucian @ c:irua:110085 Serial 3132  
Permanent link to this record
 

 
Author Kazin, P.E.; Abakumov, A.M.; Zaytsev, D.D.; Tretyakov, Y.D.; Khasanova, N.R.; Van Tendeloo, G.; Jansen, M. pdf  doi
openurl 
  Title Synthesis and crystal structure of Sr2ScBiO6 Type A1 Journal article
  Year 2001 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 162 Issue 1 Pages 142-147  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000172586400019 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 2.299; 2001 IF: 1.614  
  Call Number UA @ lucian @ c:irua:54710 Serial 3426  
Permanent link to this record
 

 
Author Abakumov, A.M.; Rozova, M.G.; Chizhov, P.S.; Antipov, E.V.; Hadermann, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Synthesis and crystal structure of the novel Pb5Sb2MnO11 compound Type A1 Journal article
  Year 2004 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 177 Issue Pages 2855-2861  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000223145500030 Publication Date 2004-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 2.299; 2004 IF: 1.815  
  Call Number UA @ lucian @ c:irua:47316 Serial 3428  
Permanent link to this record
 

 
Author Yang, T.; Perkisas, T.; Hadermann, J.; Croft, M.; Ignatov, A.; Van Tendeloo, G.; Greenblatt, M. doi  openurl
  Title Synthesis and structure determination of ferromagnetic semiconductors LaAMnSnO6(A = Sr, Ba) Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 1 Pages 199-205  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LaAMnSnO(6) (A = Sr, Ba) have been synthesized by high temperature solid-state reactions under dynamic 1% H(2)/Ar flow. Rietveld refinements on room temperature powder X-ray diffraction data indicate that LaSrMnSnO(6) crystallizes in the GdFeO(3)-structure, with space group Pnma and, combined with transmission electron microscopy, LaBaMnSnO(6) in Imma. Both space groups are common in disordered double-perovskites. The Mn(3+) and Sn(4+) ions whose valence states were confirmed by X-ray absorption spectroscopy, are completely disordered over the B-sites and the BO(6) octahedra are slightly distorted. LaAMnSnO(6) are ferromagnetic semiconductors with a T(C) = 83 K for the Sr- and 66 K for the Ba-compound. The title compounds, together with the previously reported LaCaMnSnO(6) provide an interesting example of progression from Pnma to Imma as the tolerance factor increases. An analysis of the relationship between space group and tolerance factor for the series LaAMnMO(6) (A = Ca, Sr, Ba; M = Sn, Ru) provides a better understanding of the symmetry determination for double perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000285067300025 Publication Date 2010-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95527 Serial 3440  
Permanent link to this record
 

 
Author Tyutyunnik, A.P.; Slobodin, B.V.; Samigullina, R.F.; Verberck, B.; Tarakina, N.V. doi  openurl
  Title K2CaV2O7 : a pyrovanadate with a new layered type of structure in the A2BV2O7 family Type A1 Journal article
  Year 2013 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 42 Issue 4 Pages 1057-1064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The crystal structure of K2CaV2O7 prepared by a conventional solid-state reaction has been solved by a direct method and refined using Rietveld full profile fitting based on X-ray powder diffraction data. This compound crystallises in the triclinic space group (P (1) over bar, Z = 2) with unit cell constants a = 7.1577(1) angstrom, b = 10.5104(2) angstrom, c = 5.8187(1) angstrom, alpha = 106.3368(9)degrees, beta = 106.235(1)degrees, gamma = 71.1375(9)degrees. The structure can be described as infinite undulating CaV2O72- layers parallel to the ac plane, which consist of pairs of edge-sharing CaO6 octahedra connected to each other through V2O7 pyrogroups. The potassium atoms are positioned in two sites between the layers, with a distorted IX-fold coordination of oxygen atoms. The chemical composition obtained from the structural solution was confirmed by energy-dispersive X-ray analysis. The stability of compounds in the family of alkali metal calcium pyrovanadates is discussed based on an analysis of the correlation between anion and cation sizes and theoretical first-principles calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000312659200030 Publication Date 2012-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited (up) 3 Open Access  
  Notes ; N.V.T. acknowledges funding by the Bavarian Ministry of Sciences, Research and the Arts. B. V. was financially supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 4.029; 2013 IF: 4.097  
  Call Number UA @ lucian @ c:irua:105945 Serial 3536  
Permanent link to this record
 

 
Author Antipov, E.V.; Khasanova, N.R.; Pshirkov, J.S.; Putilin, S.N.; Bougerof, C.; Lebedev, O.I.; Van Tendeloo, G.; Baranov, A.; Park, Y.W. pdf  doi
openurl 
  Title The superconducting bismuth-based mixed oxides Type A1 Journal article
  Year 2003 Publication Journal of low temperature physics T2 – International Conference on Physics and Chemistry of Molecular and Oxide, Superconductors (MOS2002), AUG 13-18, 2002, HSINCHU, TAIWAN Abbreviated Journal J Low Temp Phys  
  Volume 131 Issue 3-4 Pages 575-587  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The present paper describes the synthesis, characterization of mixed-valence bismuthates with 3- or 2-dimensional perovskite-like structures and structural criteria that influence superconductivity in these compounds. Single-phase samples of Sr1-xKxBiO3 were prepared for the broad range of K-content: 0.25 less than or equal to x less than or equal to 0.65. For these bismuthates the symmetry of the structure changes from monoclinic to orthorhombic and finally to tetragonal upon increasing the K-content thus resulting in the decrease of the Bi-O distances and reduction of the network distortions. Superconductivity with maximum T-c = 12K exists in the narrow range (x approximate to 0.5 – 0.6) within the stability field of the tetragonal phase (0.33 less than or equal to x less than or equal to 0.65), when the 3-dimensional octahedral framework has close to the ideal perovskite structure arrangement. At the same time compositions with close to optimal Bi-valence (x = 0.33 and 0.43) do not show any sign of superconductivity, probably, due to structural distortions. The layered type (BaK)(3)Bi2O7 and (Ba,K)(2)BiO4 bismuthates belonging to the A(n+1)B(n)O(3n+1) homologous series were investigated Buckling of the (BiO2) layers in the structure of the n = 2 member was revealed The formation of the n=1 bismuthate was found by Electron Microscopy and X-ray powder diffraction studies. Both types of compounds are considered to be possible candidates for new superconducting materials among bismuthates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000181768000061 Publication Date 2003-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.3 Times cited (up) 3 Open Access  
  Notes Approved Most recent IF: 1.3; 2003 IF: 1.171  
  Call Number UA @ lucian @ c:irua:102803 Serial 3597  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 472-477  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368562200057 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 3 Open Access  
  Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536  
  Call Number c:irua:130677 Serial 4002  
Permanent link to this record
 

 
Author Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Bi(3n+1)Ti7Fe(3n-3)O(9n+11) Homologous Series: Slicing Perovskite Structure with Planar Interfaces Containing Anatase-like Chains Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 1245-1257  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The n = 3-6 members of a new perovskite-based homologous series Bi(3n+1)Ti7Fe(3n-3)O(9n+11) are reported. The crystal structure of the n = 3 Bi10Ti7Fe6O38 member is refined using a combination of X-ray and neutron powder diffraction data (a = 11.8511(2) A, b = 3.85076(4) A, c = 33.0722(6) A, S.G. Immm), unveiling the partially ordered distribution of Ti(4+) and Fe(3+) cations and indicating the presence of static random displacements of the Bi and O atoms. All Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures are composed of perovskite blocks separated by translational interfaces parallel to the (001)p perovskite planes. The thickness of the perovskite blocks increases with n, while the atomic arrangement at the interfaces remains the same. The interfaces comprise chains of double edge-sharing (Fe,Ti)O6 octahedra connected to the octahedra of the perovskite blocks by sharing edges and corners. This configuration shifts the adjacent perovskite blocks relative to each other over a vector (1/2)[110]p and creates S-shaped tunnels along the [010] direction. The tunnels accommodate double columns of the Bi(3+) cations, which stabilize the interfaces owing to the stereochemical activity of their lone electron pairs. The Bi(3n+1)Ti7Fe(3n-3)O(9n+11) structures can be formally considered either as intergrowths of perovskite modules and polysynthetically twinned modules of the Bi2Ti4O11 structure or as intergrowths of the 2D perovskite and 1D anatase fragments. Transmission electron microscopy (TEM) on Bi10Ti7Fe6O38 reveals that static atomic displacements of Bi and O inside the perovskite blocks are not completely random; they are cooperative, yet only short-range ordered. According to TEM, the interfaces can be laterally shifted with respect to each other over +/-1/3a, introducing an additional degree of disorder. Bi10Ti7Fe6O38 is paramagnetic in the 1.5-1000 K temperature range due to dilution of the magnetic Fe(3+) cations with nonmagnetic Ti(4+). The n = 3, 4 compounds demonstrate a high dielectric constant of 70-165 at room temperature.  
  Address Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology , Nobelya str. 3, 143026 Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369356800031 Publication Date 2016-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 3 Open Access  
  Notes We are grateful to the Laboratory for Neutron Scattering and Imaging of Paul Scherrer Institut (LNS PSI, Villigen, Switzerland) for granting beam time at the HRPT diffrac- tometer and to Dr. Denis Sheptyakov for the technical support during the experiment. We are also grateful to Valery Verchenko for his help with magnetization measurements. The work has been supported by the Russian Science Foundation (grant 14-13-00680). A.A.T. was partly supported by the Federal Ministry for Education and Science through a Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 4.857  
  Call Number c:irua:132247 Serial 4073  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Tsirlin, A.A.; Hadermann, J.; Abakumov, A.M. pdf  url
doi  openurl
  Title Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics Type A1 Journal article
  Year 2015 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 54 Issue 54 Pages 14787-14790  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.  
  Address Chemistry Department, Moscow State University, 119991, Moscow (Russia). artem.abakumov@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367723400031 Publication Date 2015-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited (up) 3 Open Access  
  Notes A.M.A. is grateful to the Russian Science Foundation (grant 14-13-00680). AT was funded by the Mobilitas grant MTT77 of the ESF and by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of Alexander von Humboldt Foundation. Approved Most recent IF: 11.994; 2015 IF: 11.261  
  Call Number c:irua:131104 Serial 4080  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Tyablikov, O.A.; Hadermann, J.; Abakumov, A.M. pdf  doi
openurl 
  Title Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3,O9n+11 Perovskite-Anatase lntergrowths Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 56 Pages 931-942  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The Bi3n+1Ti7Fe3n-3,O9n+11 materials are built of (001)(p) plane parallel perovskite blocks with a thickness of n (Ti,Fe)O-6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge -sharing (Ti,Fe)O-6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3,O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mossbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in,a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of +/- a(p) along [100](p). The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3a(p), b = b(p), c = 2(n + 1)c(p) and a = 3a(p), b = b(p), c = 2(n + 1)c(p) – a(p), respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3,O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O-2 layers at the border of the perovskite blocks. The coupling is strong in the 1/ = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3,O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below T-N = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000392262400029 Publication Date 2016-12-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; The work was supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:141471 Serial 4495  
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C. url  doi
openurl 
  Title Atomistic simulations of graphite etching at realistic time scales Type A1 Journal article
  Year 2017 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 8 Issue 10 Pages 7160-7168  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale

limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411730500055 Publication Date 2017-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited (up) 3 Open Access OpenAccess  
  Notes DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 8.668  
  Call Number PLASMANT @ plasmant @c:irua:145519 Serial 4707  
Permanent link to this record
 

 
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M. pdf  doi
openurl 
  Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 15 Pages 8782-8792  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000407405500026 Publication Date 2017-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:145727 Serial 4744  
Permanent link to this record
 

 
Author Wei, H.; Hu, Z.-Y.; Xiao, Y.-X.; Tian, G.; Ying, J.; Van Tendeloo, G.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Control of the interfacial wettability to synthesize highly dispersed PtPd nanocrystals for efficient oxygen reduction reaction Type A1 Journal article
  Year 2018 Publication Chemistry: an Asian journal Abbreviated Journal Chem-Asian J  
  Volume 13 Issue 9 Pages 1119-1123  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Highly dispersed PtPd bimetallic nanocrystals with enhanced catalytic activity and stability were prepared by adjusting the interfacial wettability of the reaction solution on a commercial carbon support. This approach holds great promise for the development of high-performance and low-cost catalysts for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000431625200006 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1861-4728; 1861-471x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.083 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; This work supported by National Key R&D Program of China (2017YFC1103800), PCSIRT (IRT15R52), NSFC (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166), ISTCP (2015DFE52870), HPNSF (2016CFA033, 2017CFB487), and Open Project Program of State Key Laboratory of Petroleum Pollution Control (Grant No. PPC2016007), CNPC Research Institute of Safety and Environmental Technology, SKLPPC. ; Approved Most recent IF: 4.083  
  Call Number UA @ lucian @ c:irua:151525 Serial 5018  
Permanent link to this record
 

 
Author Malkov, I., V; Krivetskii, V.V.; Potemkin, D., I; Zadesenets, A., V; Batuk, M.M.; Hadermann, J.; Marikutsa, A., V; Rumyantseva, M.N.; Gas'kov, A.M. pdf  doi
openurl 
  Title Effect of Bimetallic Pd/Pt Clusters on the Sensing Properties of Nanocrystalline SnO2 in the Detection of CO Type A1 Journal article
  Year 2018 Publication Russian journal of inorganic chemistry Abbreviated Journal Russ J Inorg Chem+  
  Volume 63 Issue 8 Pages 1007-1011  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline tin dioxide modified by Pd and Pt clusters or by bimetallic PdPt nanoparticles was synthesized. Distribution of the modifers on the SnO2 surface was studied by high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis with element distribution mapping. It was shown that the Pd/Pt ratio in bimetallic particles varies over a broad range and does not depend on the particle diameter. The effect of platinum metals on the reducibility of nanocrystalline SnO2 by hydrogen was determined. The sensing properties of the resulting materials towards 6.7 ppm CO in air were estimated in situ by electrical conductivity measurements. The sensor response of SnO2 modified with bimetallic PdPt particles was a superposition of the signals of samples with Pt and Pd clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000442749500003 Publication Date 2018-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-0236 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.787 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; This work was supported by the ERA.Net RUS Plus program (project 096 FONSENS, RFBR grant 16-53-76001). ; Approved Most recent IF: 0.787  
  Call Number UA @ lucian @ c:irua:153752 Serial 5092  
Permanent link to this record
 

 
Author Volykhov, A.A.; Sanchez-Barriga, J.; Batuk, M.; Callaert, C.; Hadermann, J.; Sirotina, A.P.; Neudachina, V.S.; Belova, A.I.; Vladimirova, N.V.; Tamm, M.E.; Khmelevsky, N.O.; Escudero, C.; Perez-Dieste, V.; Knop-Gericke, A.; Yashina, L.V. pdf  doi
openurl 
  Title Can surface reactivity of mixed crystals be predicted from their counterparts? A case study of (Bi1-xSbx)2Te3 topological insulators Type A1 Journal article
  Year 2018 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 33 Pages 8941-8949  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The behavior of ternary mixed crystals or solid solutions and its correlation with the properties of their binary constituents is of fundamental interest. Due to their unique potential for application in future information technology, mixed crystals of topological insulators with the spin-locked, gapless states on their surfaces attract huge attention of physicists, chemists and material scientists. (Bi1-xSbx)(2)Te-3 solid solutions are among the best candidates for spintronic applications since the bulk carrier concentration can be tuned by varying x to obtain truly bulk-insulating samples, where the topological surface states largely contribute to the transport and the realization of the surface quantum Hall effect. As this ternary compound will be evidently used in the form of thin-film devices its chemical stability is an important practical issue. Based on the atomic resolution HAADF-TEM and EDX data together with the XPS results obtained both ex situ and in situ, we propose an atomistic picture of the mixed crystal reactivity compared to that of its binary constituents. We find that the surface reactivity is determined by the probability of oxygen attack on the Te-Sb bonds, which is directly proportional to the number of Te atoms bonded to at least one Sb atom. The oxidation mechanism includes formation of an amorphous antimony oxide at the very surface due to Sb diffusion from the first two quintuple layers, electron tunneling from the Fermi level of the crystal to oxygen, oxygen ion diffusion to the crystal, and finally, slow Te oxidation to the +4 oxidation state. The oxide layer thickness is limited by the electron transport, and the overall process resembles the Cabrera-Mott mechanism in metals. These observations are critical not only for current understanding of the chemical reactivity of complex crystals, but also to improve the performance of future spintronic devices based on topological materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443279300007 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited (up) 3 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support within the bilateral program "Russian-German Laboratory at BESSY II''. We thank Helmholtz-Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and ISISS. Support of ALBA staff during measurements at the CIRCE beamline is gratefully acknowledged. We thank Dr Ivan Bobrikov for support in the XRD measurements and Daria Tsukanova for the participation in crystal preparation and XPS measurements. A. Volykhov thanks RSF (grant 18-73-00248) for financial support. A. I. Belova acknowledges support from the G-RISC Centre of Excellence. The work was supported by Helmholtz Gemeinschaft (Grant No. HRJRG-408) and RFBR (grant 14-03-31518). J. H. and C. C. acknowledge support from the University of Antwerp through the BOF grant 31445. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:153647 Serial 5080  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Michielsen, I.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title How process parameters and packing materials tune chemical equilibrium and kinetics in plasma-based CO2 conversion Type A1 Journal article
  Year 2019 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 372 Issue Pages 1253-1264  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma (catalysis) reactors are increasingly being used for gas-based chemical conversions, providing an alternative method of energy delivery to the molecules. In this work we explore whether classical concepts such as

equilibrium constants, (overall) rate coefficients, and catalysis exist under plasma conditions. We specifically

investigate the existence of a so-called partial chemical equilibrium (PCE), and how process parameters and

packing properties influence this equilibrium, as well as the overall apparent rate coefficient, for CO2 splitting in

a DBD plasma reactor. The results show that a PCE can be reached, and that the position of the equilibrium, in

combination with the rate coefficient, greatly depends on the reactor parameters and operating conditions (i.e.,

power, pressure, and gap size). A higher power, higher pressure, or smaller gap size enhance both the equilibrium constant and the rate coefficient, although they cannot be independently tuned. Inserting a packing

material (non-porous SiO2 and ZrO2 spheres) in the reactor reveals interesting gap/material effects, where the

type of material dictates the position of the equilibrium and the rate (inhibition) independently. As a result, no

apparent synergistic effect or plasma-catalytic behaviour was observed for the non-porous packing materials

studied in this reaction. Within the investigated parameters, equilibrium conversions were obtained between 23

and 71%, while the rate coefficient varied between 0.027 s−1 and 0.17 s−1. This method of analysis can provide

a more fundamental insight in the overall reaction kinetics of (catalytic) plasma-based gas conversion, in order

to be able to distinguish plasma effects from true catalytic enhancement.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000471670400116 Publication Date 2019-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited (up) 3 Open Access Not_Open_Access: Available from 05.05.2021  
  Notes European Fund for Regional Development; FWOFWO, G.0254.14N ; University of Antwerp; FWO-FlandersFWO-Flanders, 11V8915N ; The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. K. M. B. was funded as a PhD fellow (aspirant) of the FWOFlanders (Fund for Scientific Research-Flanders), Grant 11V8915N. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159979 Serial 5171  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A. pdf  url
doi  openurl
  Title Transport of cystine across xC-antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 664 Issue Pages 117-126  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461411200014 Publication Date 2019-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.165 Times cited (up) 3 Open Access OpenAccess  
  Notes Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: