|
Record |
Links |
|
Author |
Schoeters, B.; Neyts, E.C.; Khalilov, U.; Pourtois, G.; Partoens, B. |
|
|
Title |
Stability of Si epoxide defects in Si nanowires : a mixed reactive force field/DFT study |
Type |
A1 Journal article |
|
Year |
2013 |
Publication |
Physical chemistry, chemical physics |
Abbreviated Journal |
Phys Chem Chem Phys |
|
|
Volume |
15 |
Issue |
36 |
Pages |
15091-15097 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Modeling the oxidation process of silicon nanowires through reactive force field based molecular dynamics simulations suggests that the formation of Si epoxide defects occurs both at the Si/SiOx interface and at the nanowire surface, whereas for flat surfaces, this defect is experimentally observed to occur only at the interface as a result of stress. In this paper, we argue that the increasing curvature stabilizes the defect at the nanowire surface, as suggested by our density functional theory calculations. The latter can have important consequences for the opto-electronic properties of thin silicon nanowires, since the epoxide induces an electronic state within the band gap. Removing the epoxide defect by hydrogenation is expected to be possible but becomes increasingly difficult with a reduction of the diameter of the nanowires. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Cambridge |
Editor |
|
|
|
Language |
|
Wos |
000323520600029 |
Publication Date |
2013-07-16 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1463-9076;1463-9084; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.123 |
Times cited |
3 |
Open Access |
|
|
|
Notes |
; BS gratefully acknowledges financial support of the IWT, Institute for the Promotion of Innovation by Science and Technology in Flanders, via the SBO project “SilaSol”. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. ; |
Approved |
Most recent IF: 4.123; 2013 IF: 4.198 |
|
|
Call Number |
UA @ lucian @ c:irua:110793 |
Serial |
3130 |
|
Permanent link to this record |