|   | 
Details
   web
Records
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A.
Title Stabilization of the Perovskite Phase in the Y-Bi-O System By Using a BaBiO3 Buffer Layer Type A1 Journal Article
Year 2019 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R
Volume 13 Issue 7 Pages 1970028
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y–Bi–O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Additional Links
Impact Factor 3.032 Times cited (up) Open Access
Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project Solarpaint of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved Most recent IF: 3.032
Call Number EMAT @ emat @ Serial 5358
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H.
Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469200401163 Publication Date 2018-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160468 Serial 5365
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J.
Title Towards Reproducible and Transparent Science of (Big) Electron Microscopy Data Using Version Control Type P1 Proceeding
Year 2019 Publication Microscopy and microanalysis T2 – Microscopy & Microanalysis 2019, 4-8 August, 2019, Portland, Oregon Abbreviated Journal Microsc Microanal
Volume 25 Issue S2 Pages 232-233
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited (up) Open Access
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @c:irua:164058 Serial 5377
Permanent link to this record
 

 
Author Nord, M.; Verbeeck, J.
Title Open Source Development Tools for Robust and Reproducible Electron Microscopy Data Analysis Type P3
Year 2019 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 25 Issue S2 Pages 138-139
Keywords P3; Electron Microscopy for Materials Science (EMAT) ;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links
Impact Factor 1.891 Times cited (up) Open Access
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @ Serial 5378
Permanent link to this record
 

 
Author Esteban, D.A.; Vanrompay, H.; Skorikov, A.; Béché, A.; Verbeeck, J.; Freitag, B.; Bals, S.
Title Fast electron low dose tomography for beam sensitive materials Type A1 Journal article
Year 2021 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
Volume 27 Issue S1 Pages 2116-2118
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor 1.891 Times cited (up) Open Access OpenAccess
Notes Approved Most recent IF: 1.891
Call Number EMAT @ emat @c:irua:183278 Serial 6813
Permanent link to this record
 

 
Author Lebedev, N.; Huang, Y.; Rana, A.; Jannis, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J.
Title Resistance minimum in LaAlO3/Eu1-xLaxTiO3/SrTiO3 heterostructures Type A1 Journal article
Year 2022 Publication Physical review materials Abbreviated Journal
Volume 6 Issue 7 Pages 075003-75010
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper we study LaAlO3/Eu1-xLaxTiO3/SrTiO3 structures with nominally x = 0, 0.1 and different thicknesses of the Eu1-xLaxTiO3 layer. We observe that both systems have many properties similar to previously studied LaAlO3/EuTiO3/SrTiO3 and other oxide interfaces, such as the formation of a two-dimensional electron liquid for two unit cells of Eu1-xLaxTiO3; a metal-insulator transition driven by the increase in thickness of the Eu1-xLaxTiO3 layer; the presence of an anomalous Hall effect when driving the systems above the Lifshitz point with a back-gate voltage; and a minimum in the temperature dependence of the sheet resistance below the Lifshitz point in the one-band regime, which becomes more pronounced with increasing negative gate voltage. However, and notwithstanding the likely presence of magnetism in the system, we do not attribute that minimum to the Kondo effect, but rather to the properties of the SrTiO3 crystal and the inevitable effects of charge trapping when using back gates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000834035300001 Publication Date 2022-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited (up) Open Access OpenAccess
Notes N.L. and J.A. gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). J.V. and N.G. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the European Union’s horizon 2020 research and innovation programme under grant agreement №823717 – ESTEEM3. The QuAnt-EM microscope used in this study was partly funded by the Hercules fund from the Flemish Government. The authors want to thank M. Stehno, G. Koster, and F.J.G. Roesthuis for useful discussions.; esteem3reported; esteem3TA Approved Most recent IF: 3.4
Call Number UA @ admin @ c:irua:189674 Serial 7094
Permanent link to this record
 

 
Author Mary Joy, R.; Pobedinskas, P.; Baule, N.; Bai, S.; Jannis, D.; Gauquelin, N.; Pinault-Thaury, M.-A.; Jomard, F.; Sankaran, K.J.; Rouzbahani, R.; Lloret, F.; Desta, D.; D’Haen, J.; Verbeeck, J.; Becker, M.F.; Haenen, K.
Title The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films Type A1 Journal Article
Year 2024 Publication Acta materialia Abbreviated Journal Acta Materialia
Volume 264 Issue Pages 119548
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This study reports the impact of film microstructure and composition on the Young’s modulus and residual stress in nanocrystalline diamond (NCD) thin films ( thick) grown on silicon substrates using a linear antenna microwave plasma-enhanced chemical vapor deposition (CVD) system. Combining laser acoustic wave spectroscopy to determine the elastic properties with simple wafer curvature measurements, a straightforward method to determine the intrinsic stress in NCD films is presented. Two deposition parameters are varied: (1) the substrate temperature from 400 °C to 900 °C, and (2) the [P]/[C] ratio from 0 ppm to 8090 ppm in the H2/CH4/CO2/PH3 diamond CVD plasma. The introduction of PH3 induces a transition in the morphology of the diamond film, shifting from NCD with larger grains to ultra-NCD with a smaller grain size, concurrently resulting in a decrease in Young’s modulus. Results show that the highest Young’s modulus of (113050) GPa for the undoped NCD deposited at 800 °C is comparable to single crystal diamond, indicating that NCD with excellent mechanical properties is achievable with our process for thin diamond films. Based on the film stress results, we propose the origins of tensile intrinsic stress in the diamond films. In NCD, the tensile intrinsic stress is attributed to larger grain size, while in ultra-NCD films the tensile intrinsic stress is due to grain boundaries and impurities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001126632800001 Publication Date 2023-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.4 Times cited (up) Open Access Not_Open_Access
Notes This work was financially supported by the Special Research Fund (BOF) via Methusalem NANO network, the Research Foundation – Flanders (FWO) via Project G0D4920N, and the CORNET project nr 263-EN “ULTRAHARD: Ultrahard optical diamond coatings” (2020–2021). Approved Most recent IF: 9.4; 2024 IF: 5.301
Call Number EMAT @ emat @c:irua:202169 Serial 8989
Permanent link to this record
 

 
Author Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G.
Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
Year 2023 Publication APL materials Abbreviated Journal
Volume 11 Issue 3 Pages 031109
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953363800004 Publication Date 2023-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited (up) Open Access OpenAccess
Notes This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335
Call Number EMAT @ emat @c:irua:196135 Serial 7377
Permanent link to this record
 

 
Author Samal, D.; Gauquelin, N.; Takamura, Y.; Lobato, I.; Arenholz, E.; Van Aert, S.; Huijben, M.; Zhong, Z.; Verbeeck, J.; Van Tendeloo, G.; Koster, G.
Title Unusual structural rearrangement and superconductivity in infinite layer cuprate superlattices Type A1 Journal article
Year 2023 Publication Physical review materials Abbreviated Journal
Volume 7 Issue 5 Pages 054803
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001041792100007 Publication Date 2023-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited (up) Open Access OpenAccess
Notes Air Force Office of Scientific Research; European Office of Aerospace Research and Development, FA8655-10-1-3077 ; Office of Science, DE-AC02-05CH11231 ; National Science Foundation, DMR-1745450 ; Seventh Framework Programme, 278510 ; Bijzonder Onderzoeksfonds UGent; Approved Most recent IF: 3.4; 2023 IF: NA
Call Number EMAT @ emat @c:irua:196973 Serial 8790
Permanent link to this record
 

 
Author Mary Joy, R.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Görlitz, J.; Herrmann, D.; Noël, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesládek, M.; Haenen, K.
Title Germanium vacancy centre formation in CVD nanocrystalline diamond using a solid dopant source Type A3 Journal article
Year 2023 Publication Science talks Abbreviated Journal Science Talks
Volume 5 Issue Pages 100157
Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2772-5693 ISBN Additional Links UA library record
Impact Factor Times cited (up) Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:196969 Serial 8791
Permanent link to this record
 

 
Author Denisov, N.; Jannis, D.; Orekhov, A.; Müller-Caspary, K.; Verbeeck, J.
Title Characterization of a Timepix detector for use in SEM acceleration voltage range Type A1 Journal article
Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 253 Issue Pages 113777
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hybrid pixel direct electron detectors are gaining popularity in electron microscopy due to their excellent properties. Some commercial cameras based on this technology are relatively affordable which makes them attractive tools for experimentation especially in combination with an SEM setup. To support this, a detector characterization (Modulation Transfer Function, Detective Quantum Efficiency) of an Advacam Minipix and Advacam Advapix detector in the 15–30 keV range was made. In the current work we present images of Point Spread Function, plots of MTF/DQE curves and values of DQE(0) for these detectors. At low beam currents, the silicon detector layer behaviour should be dominant, which could make these findings transferable to any other available detector based on either Medipix2, Timepix or Timepix3 provided the same detector layer is used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001026912700001 Publication Date 2023-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited (up) Open Access OpenAccess
Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are grateful to Dr. Lobato for productive discussion of methods. Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:198258 Serial 8815
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.; Annys, A.; Jannis, D.; Verbeeck, J.
Title Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy Type A1 Journal article
Year 2023 Publication Scientific reports Abbreviated Journal
Volume 13 Issue 1 Pages 13724
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their corresponding elements. This can be especially bothersome in spectrum imaging, where a large amount of spectra are recorded when spatially scanning over a sample area. This paper introduces a synthetic dataset with 736,000 labeled EELS spectra, computed from available generalized oscillator strength tables, that represents 107 K, L, M or N core-loss edges and 80 chemical elements. Generic lifetime broadened peaks are used to mimic the fine structure due to band structure effects present in experimental core-loss edges. The proposed dataset is used to train and evaluate a series of neural network architectures, being a multilayer perceptron, a convolutional neural network, a U-Net, a residual neural network, a vision transformer and a compact convolutional transformer. An ensemble of neural networks is used to further increase performance. The ensemble network is used to demonstrate fully automated elemental mapping in a spectrum image, both by directly mapping the predicted elemental content and by using the predicted content as input for a physical model-based mapping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052937600046 Publication Date 2023-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited (up) Open Access OpenAccess
Notes A.A. would like to acknowledge the resources and services used in this work provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. J.V. acknowledges the IMPRESS project. The IMPRESS project has received funding from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. Approved Most recent IF: 4.6; 2023 IF: 4.259
Call Number UA @ admin @ c:irua:198647 Serial 8846
Permanent link to this record
 

 
Author Van den Broek, W.; Jannis, D.; Verbeeck, J.
Title Convexity constraints on linear background models for electron energy-loss spectra Type A1 Journal Article
Year 2023 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 254 Issue Pages 113830
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In this paper convexity constraints are derived for a background model of electron energy loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental quantification results. Owing to the model’s linearity, the constraints can be imposed through fitting by quadratic programming. This has important advantages over conventional nonlinear power-law fitting such as high speed and a guaranteed unique solution without need for initial parameters. As such, the need for user input is significantly reduced, which is essential for unsupervised treatment of large datasets. This is demonstrated on a demanding spectrum image of a semiconductor device sample with a high number of elements over a wide energy range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record
Impact Factor 2.2 Times cited (up) Open Access Not_Open_Access
Notes ECSEL, 875999 ; Horizon 2020; Horizon 2020 Framework Programme; Electronic Components and Systems for European Leadership; Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:200588 Serial 8961
Permanent link to this record
 

 
Author Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168639900001 Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-709X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.8 Times cited (up) Open Access OpenAccess
Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA
Call Number EMAT @ emat @c:irua:204363 Serial 8995
Permanent link to this record
 

 
Author Mayda, S.; Monico, L.; Krishnan, D.; De Meyer, S.; Cotte, M.; Garrevoet, J.; Falkenberg, G.; Sandu, I.C.A.; Partoens, B.; Lamoen, D.; Romani, A.; Miliani, C.; Verbeeck, J.; Janssens, K.
Title A combined experimental and computational approach to understanding CdS pigment oxidation in a renowned early 20th century painting Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume 35 Issue 24 Pages 10403-10415
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Cadmium sulfide (CdS)-based yellow pigments have been used in a number of early 20th century artworks, including The Scream series painted by Edvard Munch. Some of these unique paintings are threatened by the discoloration of these CdS-based yellow oil paints because of the oxidation of the original sulfides to sulfates. The experimental data obtained here prove that moisture and cadmium chloride compounds play a key role in promoting such oxidation. To clarify how these two factors effectively prompt the process, we studied the band alignment between CdS, CdCl2, and Cd-(OH)Cl as well as the radicals center dot OH and H3O center dot by density functional theory (DFT) methods. Our results show that a stack of several layers of Cd-(OH)Cl creates a pocket of positive holes at the Cl-terminated surface and a pocket of electrons at the OH-terminated surface by leading in a difference in ionization energy at both surfaces. The resulting band alignment indicates that Cd-(OH)Cl can indeed play the role of an oxidative catalyst for CdS in a moist environment, thus providing an explanation for the experimental evidence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001133000900001 Publication Date 2023-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.6 Times cited (up) Open Access
Notes The experimental research on the cadmium yellow powders/paint mock-ups and The Scream (ca. 1910) was financially supported by the European Union, research projects IPERION-CH (H2020-INFRAIA-2014-2015, GA no. 654028) and IPERION-HS (H2020-INFRAIA-2019-1, GA no. 871034) and the project AMIS within the program Dipartimenti di Eccellenza 2018-2022 (funded by MUR and the University of Perugia). For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiments HG64 and HG95), the DESY-P06 beamline, a member of the Helmholtz Association HGF (experiments I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the GA no. 730872 from the E.U. Framework Programme for Research and Innovation Horizon 2020. All of the staff of the MUNCH Museum (Conservation Department) is acknowledged for their collaboration. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO – Vlaanderen and the Flemish Government, Department EWI. Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number UA @ admin @ c:irua:202836 Serial 8999
Permanent link to this record
 

 
Author Hugenschmidt, M.; Jannis, D.; Kadu, A.A.; Grünewald, L.; De Marchi, S.; Perez-Juste, J.; Verbeeck, J.; Van Aert, S.; Bals, S.
Title Low-dose 4D-STEM tomography for beam-sensitive nanocomposites Type A1 Journal article
Year 2023 Publication ACS materials letters Abbreviated Journal
Volume 6 Issue 1 Pages 165-173
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal-organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electron tomography without inducing electron-beam damage. Another significant challenge is the high contrast in high-angle annular dark field scanning transmission electron microscopy that can be expected for nanocomposites composed of a metal nanoparticle and an MOF. This strong contrast leads to so-called metal artifacts in the 3D reconstruction. To overcome these limitations, we here present low-dose electron tomography based on four-dimensional scanning transmission electron microscopy (4D-STEM) data sets, collected using an ultrafast and highly sensitive direct electron detector. As a proof of concept, we demonstrate the applicability of the method for an Au nanostar embedded in a ZIF-8 MOF, which is of great interest for applications in various fields, including drug delivery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001141178500001 Publication Date 2023-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited (up) Open Access Not_Open_Access
Notes This work was supported by the European Research Council (Grant 815128 REALNANO to S.B., Grant 770887 PICOMETRICS to S.V.A.). J.P.-J. and S.M. acknowledge financial support from the MCIN/AEI/10.13039/501100011033 (Grants No. PID2019-108954RB-I00) and EU Horizon 2020 research and innovation program under grant agreement no. 883390 (SERSing). J.V., S.B., S.V.A., and L.G. acknowledge funding from the Flemish government (iBOF-21-085 PERsist). Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202771 Serial 9053
Permanent link to this record
 

 
Author Ignatova, K.; Vlasov, E.; Seddon, S.D.; Gauquelin, N.; Verbeeck, J.; Wermeille, D.; Bals, S.; Hase, T.P.A.; Arnalds, U.B.
Title Phase coexistence induced surface roughness in V2O3/Ni magnetic heterostructures Type A1 Journal Article
Year 2024 Publication APL Materials Abbreviated Journal
Volume 12 Issue 4 Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract We present an investigation of the microstructure changes in V2O3 as it goes through its inherent structural phase transition. Using V2O3 films with a well-defined crystal structure deposited by reactive magnetron sputtering on r-plane Al2O3 substrates, we study the phase coexistence region and its impact on the surface roughness of the films and the magnetic properties of overlying Ni magnetic layers in V2O3/Ni hybrid magnetic heterostructures. The simultaneous presence of two phases in V2O3 during its structural phase transition was identified with high resolution x-ray diffraction and led to an increase in surface roughness observed using x-ray reflectivity. The roughness reaches its maximum at the midpoint of the transition. In V2O3/Ni hybrid heterostructures, we find a concomitant increase in the coercivity of the magnetic layer correlated with the increased roughness of the V2O3 surface. The chemical homogeneity of the V2O3 is confirmed through transmission electron microscopy analysis. High-angle annular dark field imaging and electron energy loss spectroscopy reveal an atomically flat interface between Al2O3 and V2O3, as well as a sharp interface between V2O3 and Ni.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001202661800003 Publication Date 2024-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited (up) Open Access
Notes This work was supported by the funding from the University of Iceland Research Fund, the Icelandic Research Fund Grant No. 207111. Instrumentation funding from the Icelandic Infrastructure Fund is acknowledged. This work was based on experiments per- formed at the BM28 (XMaS) beamline at the European Synchrotron Radiation Facility, Grenoble, France. XMaS is a National Research Facility funded by the UK EPSRC and managed by the Universi- ties of Liverpool and Warwick. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717—ESTEEM3. Approved Most recent IF: 6.1; 2024 IF: 4.335
Call Number EMAT @ emat @c:irua:205569 Serial 9120
Permanent link to this record
 

 
Author Vlasov, E.; Heyvaert, W.; Ni, B.; Van Gordon, K.; Girod, R.; Verbeeck, J.; Liz-Marzán, L.M.; Bals, S.
Title High-Throughput Morphological Chirality Quantification of Twisted and Wrinkled Gold Nanorods Type A1 Journal Article
Year 2024 Publication ACS Nano Abbreviated Journal ACS Nano
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Chirality in gold nanostructures offers an exciting opportunity to tune their differential optical response to left- and right-handed circularly polarized light, as well as their interactions with biomolecules and living matter. However, tuning and understanding such interactions demands quantification of the structural features that are responsible for the chiral behavior. Electron tomography (ET) enables structural characterization at the single-particle level and has been used to quantify the helicity of complex chiral nanorods. However, the technique is time-consuming and consequently lacks statistical value. To address this issue, we introduce herein a high-throughput methodology that combines images acquired by secondary electron-based electron beam-induced current (SEEBIC) with quantitative image analysis. As a result, the geometric chirality of hundreds of nanoparticles can be quantified in less than 1 h. When combining the drastic gain in data collection efficiency of SEEBIC with a limited number of ET data sets, a better understanding of how the chiral structure of individual chiral nanoparticles translates into the ensemble chiroptical response can be reached.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links
Impact Factor 17.1 Times cited (up) Open Access
Notes The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S.B.) and from MCIN/AEI/10.13039/501100011033 (Grant PID2020-117779RB-I00 to L.M.L.-M and FPI Fellowship PRE2021-097588 to K.V.G.). Funded by the European Union under Project 101131111 − DELIGHT, JV acknowledges the eBEAM project supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07- 2020: emerging paradigms and communities. Approved Most recent IF: 17.1; 2024 IF: 13.942
Call Number EMAT @ emat @ Serial 9121
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Bals, S.; Erni, R.; van Dyck, D.; Van Tendeloo, G.
Title Atomic resolution mapping using quantitative high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue S:2 Pages 464-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000208119100230 Publication Date 2009-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited (up) 1 Open Access
Notes Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:96555UA @ admin @ c:irua:96555 Serial 178
Permanent link to this record
 

 
Author Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Liu, Y.-L.; Grivel, J.-C.
Title Quantitative electron microscopy of (Bi,Pb)2Sr2Ca2Cu3O10+\delta/Ag multifilament tapes during initial stages of annealing Type A1 Journal article
Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 88 Issue 2 Pages 431-436
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)(2)Sr2Ca2Cu3O10+delta/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+delta to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta transformation. Ca and/or Pb-rich (Bi,Pb)(2)Sr2CaCu2O8+delta grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta formation. Apparently, a Ca/Sr ratio of around I is sufficient to keep (Bi,Pb)(2)Sr2Ca2Cu3O10+delta nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000227510200030 Publication Date 2005-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited (up) 1 Open Access
Notes Approved Most recent IF: 2.841; 2005 IF: 1.586
Call Number UA @ lucian @ c:irua:54876UA @ admin @ c:irua:54876 Serial 2754
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; Schryvers, D.; de Backer, S.; Scheunders, P.
Title Tomographic spectroscopic imaging; an experimental proof of concept Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 4 Pages 296-303
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Recording the electron energy loss spectroscopy data cube with a series of energy filtered images is a dose inefficient process because the energy slit blocks most of the electrons. When recording the data cube by scanning an electron probe over the sample, perfect dose efficiency is attained; but due to the low current in nanoprobes, this often is slower, with a smaller field of view. In W. Van den Broek et al. [Ultramicroscopy, 106 (2006) 269], we proposed a new method to record the data cube, which is more dose efficient than an energy filtered series. It produces a set of projections of the data cube and then tomographically reconstructs it. In this article, we demonstrate these projections in practice, we present a simple geometrical model that allows for quantification of the projection angles and we present the first successful experimental reconstruction, all on a standard post-column instrument.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000265345400003 Publication Date 2008-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited (up) 1 Open Access
Notes Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:77271 Serial 3671
Permanent link to this record
 

 
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K.
Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun
Volume 8 Issue 3 Pages 1311-1320
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000448887900089 Publication Date 2018-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2159-6859; 2159-6867 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.01 Times cited (up) 1 Open Access
Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01
Call Number UA @ admin @ c:irua:155521 Serial 5364
Permanent link to this record
 

 
Author Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M.
Title Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume 10 Issue 52 Pages 31261-31270
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000566579400025 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited (up) 1 Open Access OpenAccess
Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108
Call Number EMAT @ emat @c:irua:172059 Serial 6416
Permanent link to this record
 

 
Author Lebedev, N.; Stehno, M.; Rana, A.; Gauquelin, N.; Verbeeck, J.; Brinkman, A.; Aarts, J.
Title Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO₃/SrTiO₃ interfaces Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 5 Pages 055001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000588209300001 Publication Date 2020-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited (up) 1 Open Access OpenAccess
Notes ; NL and JA gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors thank J Jobst, S Smink, K Lahabi and G Koster for useful discussion. ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:173679 Serial 6545
Permanent link to this record
 

 
Author Savchenko, T.M.; Buzzi, M.; Howald, L.; Ruta, S.; Vijayakumar, J.; Timm, M.; Bracher, D.; Saha, S.; Derlet, P.M.; Béché, A.; Verbeeck, J.; Chantrell, R.W.; Vaz, C.A.F.; Nolting, F.; Kleibert, A.
Title Single femtosecond laser pulse excitation of individual cobalt nanoparticles Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 20 Pages 205418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the magnetic, structural, and chemical stability of individual magnetic nanoparticles excited by single femtosecond laser pulses. We find that the energy transfer from the fs laser pulse to the nanoparticles is limited by the Rayleigh scattering cross section, which in combination with the light absorption of the supporting substrate and protective layers determines the increase in the nanoparticle temperature. We investigate individual Co nanoparticles (8 to 20 nm in size) as a prototypical model system, using x-ray photoemission electron microscopy and scanning electron microscopy upon excitation with single femtosecond laser pulses of varying intensity and polarization. In agreement with calculations, we find no deterministic or stochastic reversal of the magnetization in the nanoparticles up to intensities where ultrafast demagnetization or all-optical switching is typically reported in thin films. Instead, at higher fluences, the laser pulse excitation leads to photo-chemical reactions of the nanoparticles with the protective layer, which results in an irreversible change in the magnetic properties. Based on our findings, we discuss the conditions required for achieving laser-induced switching in isolated nanomagnets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000589602000005 Publication Date 2020-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited (up) 1 Open Access OpenAccess
Notes This work received funding by the Swiss National Foundation (SNF) (Grants No. 200021160186 and No. 2002153540), the Swiss Nanoscience Institute (SNI) (Grant No. SNI P1502), the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 737093 (FEMTOTERABYTE), and the COST Action CA17123 (MAGNETOFON). Part of this work was performed at the SIM beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. Part of the simulations were undertaken on the VIKING cluster, which is a high-performance compute facility provided by the University of York. We kindly acknowledge Anja Weber from PSI for preparation of substrates with marker structures. A.B. and Jo Verbeeck acknowledge funding through FWO Project No. G093417N (“Compressed sensing enabling low dose imaging in transmission electron microscopy”) from the Flanders Research Fund. Jo Verbeeck acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717 – ESTEEM3. S.S. acknowledges ETH Zurich Post-Doctoral fellowship and Marie Curie actions for people COFUND program.; esteem3JRA; esteem3reported Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number EMAT @ emat @c:irua:174273 Serial 6669
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Verbeeck, J.; Rijnders, G.; Koster, G.
Title Asymmetric Interfacial Intermixing Associated Magnetic Coupling in LaMnO3/LaFeO3 Heterostructures Type A1 Journal article
Year 2021 Publication Frontiers in physics Abbreviated Journal Front. Phys.
Volume 9 Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structural and magnetic properties of LaMnO<sub>3</sub>/LaFeO<sub>3</sub>(LMO/LFO) heterostructures are characterized using a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy, bulk magnetometry, and resonant x-ray reflectivity. Unlike the relatively abrupt interface when LMO is deposited on top of LFO, the interface with reversed growth order shows significant cation intermixing of Mn<sup>3+</sup>and Fe<sup>3+</sup>, spreading ∼8 unit cells across the interface. The asymmetric interfacial chemical profiles result in distinct magnetic properties. The bilayer with abrupt interface shows a single magnetic hysteresis loop with strongly enhanced coercivity, as compared to the LMO plain film. However, the bilayer with intermixed interface shows a step-like hysteresis loop, associated with the separate switching of the “clean” and intermixed LMO sublayers. Our study illustrates the key role of interfacial chemical profile in determining the functional properties of oxide heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000745284500001 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424X ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited (up) 1 Open Access OpenAccess
Notes This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). The X-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. NG and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. RG was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:185176 Serial 6901
Permanent link to this record
 

 
Author Vlasov, E.; Denisov, N.; Verbeeck, J.
Title Low-cost electron detector for scanning electron microscope Type A1 Journal article
Year 2023 Publication HardwareX Abbreviated Journal HardwareX
Volume 14 Issue Pages e00413
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron microscopy is an indispensable tool for the characterization of (nano) materials. Electron microscopes are typically very expensive and their internal operation is often shielded from the user. This situation can provide fast and high quality results for researchers focusing on e.g. materials science if they have access to the relevant instruments. For researchers focusing on technique development, wishing to test novel setups, however, the high entry price can lead to risk aversion and deter researchers from innovating electron microscopy technology further. The closed attitude of commercial entities about how exactly the different parts of electron microscopes work, makes it even harder for newcomers in this field. Here we propose an affordable, easy-to-build electron detector for use in a scanning electron microscope (SEM). The aim of this project is to shed light on the functioning of such detectors as well as show that even a very modest design can lead to acceptable performance while providing high flexibility for experimentation and customization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001042486000001 Publication Date 2023-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0672 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 1 Open Access OpenAccess
Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO [Grant No. S000121N]. JV acknowledges funding from the HORIZON-INFRA-2022-TECH-01-01 project IMPRESS [Grant No. 101094299]. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:195886 Serial 7252
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S.
Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume Issue Pages 1916-1921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001006191600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (up) 1 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:197004 Serial 8795
Permanent link to this record
 

 
Author Vijayakumar, J.; Savchenko, T.M.; Bracher, D.M.; Lumbeeck, G.; Béché, A.; Verbeeck, J.; Vajda, Š.; Nolting, F.; Vaz, Ca.f.; Kleibert, A.
Title Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume 14 Issue 1 Pages 174
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Understanding chemical reactivity and magnetism of 3<italic>d</italic>transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co<sub>3</sub>O<sub>4</sub>and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000955726400021 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited (up) 1 Open Access OpenAccess
Notes Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021160186 2002153540 ; EC | Horizon 2020 Framework Programme, 810310 823717 ; University of Basel | Swiss Nanoscience Institute, P1502 ; This work is funded by Swiss National Foundation (SNF) (Grants. No 200021160186 and 2002153540) and the Swiss Nanoscience Institut (SNI) (Grant No. SNI P1502). S.V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 810310, which corresponds to the J. Heyrovsky Chair project (“ERA Chair at J. Heyrovský Institute of Physical Chemistry AS CR – The institutional approach towards ERA”). The funders had no role in the preparation of the article. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. We kindly acknowledge Anja Weber and Elisabeth Müller from PSI for their help in fabricating the sample markers. A.B. and J. Verbeeck received funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No. 823717 – ESTEEM3 reported Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number EMAT @ emat @c:irua:196738 Serial 8804
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeeck, J.; Van Aert, S.
Title Phase object reconstruction for 4D-STEM using deep learning Type A1 Journal article
Year 2023 Publication Microscopy and microanalysis Abbreviated Journal
Volume 29 Issue 1 Pages 395-407
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full-phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033590800038 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited (up) 1 Open Access OpenAccess
Notes We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 770887 PICOMETRICS) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823717 ESTEEM3. J.V. and S.V.A acknowledge funding from the University of Antwerp through a TOP BOF project. The direct electron detector (Merlin, Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. This work was supported by the FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). Approved Most recent IF: 2.8; 2023 IF: 1.891
Call Number UA @ admin @ c:irua:198221 Serial 8912
Permanent link to this record