toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Filonenko, V.P.; Gonnissen, J.; Tan, H.; Verbeeck, J.; Gemmi, M.; Antipov, E.V.; Rosner, H. pdf  doi
openurl 
  Title Direct space structure solution from precession electron diffraction data: resolving heavy and light scatterers in Pb13Mn9O25 Type A1 Journal article
  Year 2010 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 110 Issue 7 Pages 881-890  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of a novel compound Pb13Mn9O25 has been determined through a direct space structure solution with a Monte-Carlo-based global optimization using precession electron diffraction data (a=14.177(3) Å, c=3.9320(7) Å, SG P4/m, RF=0.239) and compositional information obtained from energy dispersive X-ray analysis and electron energy loss spectroscopy. This allowed to obtain a reliable structural model even despite the simultaneous presence of both heavy (Pb) and light (O) scattering elements and to validate the accuracy of the electron diffraction-based structure refinement. This provides an important benchmark for further studies of complex structural problems with electron diffraction techniques. Pb13Mn9O25 has an anion- and cation-deficient perovskite-based structure with the A-positions filled by the Pb atoms and 9/13 of the B positions filled by the Mn atoms in an ordered manner. MnO6 octahedra and MnO5 tetragonal pyramids form a network by sharing common corners. Tunnels are formed in the network due to an ordered arrangement of vacancies at the B-sublattice. These tunnels provide sufficient space for localization of the lone 6s2 electron pairs of the Pb2+ cations, suggested as the driving force for the structural difference between Pb13Mn9O25 and the manganites of alkali-earth elements with similar compositions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000280050900023 Publication Date 2010-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 24 Open Access  
  Notes Fwo; Bof; Esteem Approved Most recent IF: 2.843; 2010 IF: 2.063  
  Call Number UA @ lucian @ c:irua:84085UA @ admin @ c:irua:84085 Serial 721  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D. doi  openurl
  Title Energy-loss near-edge structure changes with bond length in carbon systems Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 19 Pages 193104,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000233603700004 Publication Date 2005-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:56050 Serial 1041  
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.; doi  openurl
  Title Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
  Year 2014 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 5 Issue 4 Pages 1599-1610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000332467400044 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 8.668; 2014 IF: 9.211  
  Call Number UA @ lucian @ c:irua:117064 Serial 1045  
Permanent link to this record
 

 
Author Bourgeois, J.; Hervieu, M.; Poienar, M.; Abakumov, A.M.; Elkaïm, E.; Sougrati, M.T.; Porcher, F.; Damay, F.; Rouquette, J.; Van Tendeloo, G.; Maignan, A.; Haines, J.; Martin, C.; url  doi
openurl 
  Title Evidence of oxygen-dependent modulation in LuFe2O4 Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 6 Pages 064102-064120,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of LuFe2O4 has been investigated by means of powder synchrotron x-ray and neutron diffraction and transmission electron microscopy (TEM), along with Mössbauer spectroscopy and transport and magnetic properties. A monoclinic distortion is unambiguously evidenced, and the crystal structure is refined in the monoclinic C2/m space group [aM = 5.9563(1) Å, bM = 3.4372(1) Å, cM = 8.6431(1) Å, β = 103.24(1)°]. Along with the previously reported modulations distinctive of the charge-ordering (CO) of the iron species, a new type of incommensurate order is observed, characterized by a vector q⃗1 = α1a⃗M* + γ1c⃗M* (with α1 ≅ 0.55, γ1 ≅ 0.13). In situ heating TEM observations from 300 to 773 K confirm that the satellites associated with q⃗1 vanish completely, only at a temperature significantly higher than the CO temperature. This incommensurate modulation has a displacive character and corresponds primarily to a transverse displacive modulation wave of the Lu cations position, as revealed by the high resolution, high angle annular dark field scanning TEM images and in agreement with synchrotron data refinements. Analyses of vacuum-annealed samples converge toward the hypothesis of a new ordering mechanism, associated with a tiny oxygen deviation from the O4 stoichiometry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000299896900003 Publication Date 2012-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 24 Open Access  
  Notes Hercules Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:95042 Serial 1095  
Permanent link to this record
 

 
Author Damm, H.; Adriaensens, P.; De Dobbelaere, C.; Capon, B.; Elen, K.; Drijkoningen, J.; Conings, B.; Manca, J.V.; D’Haen, J.; Detavernier, C.; Magusin, P.C.M.M.; Hadermann, J.; Hardy, A.; Van Bael, M.K.; doi  openurl
  Title Factors Influencing the Conductivity of Aqueous Sol(ution)-Gel-Processed Al-Doped ZnO Films Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 26 Issue 20 Pages 5839-5851  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343950300004 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 9.466; 2014 IF: 8.354  
  Call Number UA @ lucian @ c:irua:121211 Serial 1170  
Permanent link to this record
 

 
Author Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R.L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Sophie, P.; Dubois, P.; Godfroid, T.; Hecq, M.; Bittencourt, C.; pdf  doi
openurl 
  Title Functionalization of MWCNTs with atomic nitrogen Type A1 Journal article
  Year 2009 Publication Micron Abbreviated Journal Micron  
  Volume 40 Issue 1 Pages 85-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study of the changes induced by exposing MWCNTs to a nitrogen plasma, it was found by HRTEM that the atomic nitrogen exposure does not significantly etch the surface of the carbon nanotube (CNT). Nevertheless, the atomic nitrogen generated by a microwave plasma effectively grafts amine, nitrile, amide, and oxime groups onto the CNT surface, as observed by XPS, altering the density of valence electronic states, as seen in UPS. (C) 2008 Elsevier Ltd. All fights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000261420900017 Publication Date 2008-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited (up) 24 Open Access  
  Notes Pai 6/1; Pa 6/27 Approved Most recent IF: 1.98; 2009 IF: 1.626  
  Call Number UA @ lucian @ c:irua:103080 Serial 1305  
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title High resolution electron tomography Type A1 Journal article
  Year 2013 Publication Current opinion in solid state and materials science Abbreviated Journal Curr Opin Solid St M  
  Volume 17 Issue 3 Pages 107-114  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reaching atomic resolution in 3D has been the ultimate goal in the field of electron tomography for many years. Significant progress, both on the theoretical as well as the experimental side has recently resulted in several exciting examples demonstrating the ability to visualise atoms in 3D. In this paper, we will review the different steps that have pushed the resolution in 3D to the atomic level. A broad range of methodologies and practical examples together with their impact on materials science will be discussed. Finally, we will provide an outlook and will describe future challenges in the field of high resolution electron tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000323869800003 Publication Date 2013-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-0286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.938 Times cited (up) 24 Open Access  
  Notes Fwo; 312483 Esteem; Countatoms; Approved Most recent IF: 6.938; 2013 IF: 7.167  
  Call Number UA @ lucian @ c:irua:109454 Serial 1457  
Permanent link to this record
 

 
Author Lin, H.; Ohta, T.; Paul, A.; Hutchison, J.A.; Kirilenko, D.; Lebedev, O.; Van Tendeloo, G.; Hofkens, J.; Uji-i, H. pdf  doi
openurl 
  Title Light-assisted nucleation of silver nanowires during polyol synthesis Type A1 Journal article
  Year 2011 Publication Journal of photochemistry and photobiology: A: chemistry Abbreviated Journal J Photoch Photobio A  
  Volume 221 Issue 2/3 Pages 220-223  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This report describes the effect of light irradiation on the synthesis of silver nanowires by the well-known polyol method. High quality nanowires are produced in high yields when the reaction suspension is irradiated with 400500 nm light during the nucleation stage. These studies suggest that light accelerates the formation of the nanoparticle seeds most appropriate for nanowire growth.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000293813800018 Publication Date 2011-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1010-6030; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.625 Times cited (up) 24 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 2.625; 2011 IF: 2.421  
  Call Number UA @ lucian @ c:irua:91262 Serial 1818  
Permanent link to this record
 

 
Author Filippousi, M.; Siafaka, P.I.; Amanatiadou, E.P.; Nanaki, S.G.; Nerantzaki, M.; Bikiaris, D.N.; Vizirianakis, I.S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal J Mater Chem B  
  Volume 3 Issue 3 Pages 5991-6000  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesoporous strontium hydroxyapatite (SrHAp) nanorods (NRs) have been successfully synthesized using a simple and efficient chemical route, i.e. the hydrothermal method. Structural and morphological characterization of the as-synthesized SrHAp NRs have been performed by transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). TEM and HAADF-STEM measurements of the NRs reveal the coexistence of longer and shorter particles with the length ranging from 50 nm to 400 nm and a diameter of about 20-40 nm. Electron tomography measurements of the NRs allow us to better visualize the mesopores and their facets. Two model drugs, hydrophobic risperidone and hydrophilic pramipexole, were loaded into the SrHAp NRs. These nanorods were coated using a modified chitosan (CS) with poly(2-hydroxyethyl methacrylate) (PHEMA), in order to encapsulate the drug-loaded SrHAp nanoparticles and reduce the cytotoxicity of the loaded materials. The drug release from neat and encapsulated SrHAp NRs mainly depends on the drug hydrophilicity. Importantly, although neat SrHAp nanorods exhibit some cytotoxicity against Caco-2 cells, the Cs-g-PHEMA-SrHAp drug-loaded nanorods show an acceptable cytocompatibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000358065100009 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X;2050-7518; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.543 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 4.543; 2015 IF: 4.726  
  Call Number c:irua:127131 Serial 2161  
Permanent link to this record
 

 
Author Nayuk, R.; Zacher, D.; Schweins, R.; Wiktor, C.; Fischer, R.A.; Van Tendeloo, G.; Huber, K. pdf  doi
openurl 
  Title Modulated formation of MOF-5 nanoparticles : a SANS analysis Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue 10 Pages 6127-6135  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract MOF-5 nanoparticles were prepared by mixing a solution of [Zn4O(C6H5COO)(6)] with a solution of benzene-1,4-dicarboxylic acid in DMF at ambient conditions. The former species mimics as a secondary building unit (SBU), and the latter acts as linker. Mixing of the two solutions induced the formation of MOF-5 nanoparticles in dilute suspension. The applied conditions were identified as suitable for a closer investigation of the particle formation process by combined light and small angle neutron scattering (SANS). Scattering analysis revealed a significant impact of the molar ratio of the two components in the reaction mixture. Excessive use of the building unit slowed down the process. A similar effect was observed upon addition of 4n-decylbenzoic acid, which is supposed to act as a modulator. The formation mechanism leads to initial intermediates, which turn into cubelike nanoparticles with a diameter of about 60-80 nm. This initial stage is followed by an extended formation period, where nucleation proceeds over hours, leading to an increasing number of nanoparticles with the same final size of 60-80 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000301509600020 Publication Date 2012-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:97789 Serial 2163  
Permanent link to this record
 

 
Author de Witte, K.; Meynen, V.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F.; Vansant, E.F.; Cool, P. pdf  doi
openurl 
  Title Multi-step loading of titania on mesoporous silica: influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOC's Type A1 Journal article
  Year 2008 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 84 Issue 1/2 Pages 125-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Titania nanoparticles have been deposited on inert porous silica supports with high specific surface area. These materials have potential applications in paint and textile industry as the titania particles selectively deposited on the inner surface of the silica supports act as a photocatalyst. The inert external surface is necessary to avoid photodegradation of the textile material or the paint components. The photocatalytic activity of the catalysts has been evaluated with two catalytic setups. One setup in aqueous phase, for the degradation of dyes such as rhodamine-6G, is commonly used. The second setup is a continuous flow gaseous phase setup which was used for the mineralization of ethanol as a representative volatile organic compound (VOC). The influence of the porosity and the morphology of the silica supports on the photocatalytic activity are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000260728300017 Publication Date 2008-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited (up) 24 Open Access  
  Notes Iwt 30916; Fwo Approved Most recent IF: 9.446; 2008 IF: 4.853  
  Call Number UA @ lucian @ c:irua:68279 Serial 2213  
Permanent link to this record
 

 
Author Jorissen, K.; Rehr, J.J.; Verbeeck, J. url  doi
openurl 
  Title Multiple scattering calculations of relativistic electron energy loss spectra Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 15 Pages 155108,1-155108,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A generalization of the real-space Greens-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite C  K edge, for which we present an accurate magic angle measurement consistent with the predicted value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277210500038 Publication Date 2010-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 24 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82805UA @ admin @ c:irua:82805 Serial 2230  
Permanent link to this record
 

 
Author Guerrero, A.; Pfannmöller, M.; Kovalenko, A.; Ripolles, T.S.; Heidari, H.; Bals, S.; Kaufmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G. pdf  url
doi  openurl
  Title Nanoscale mapping by electron energy-loss spectroscopy reveals evolution of organic solar cell contact selectivity Type A1 Journal article
  Year 2015 Publication Organic electronics: physics, materials, applications Abbreviated Journal Org Electron  
  Volume 16 Issue 16 Pages 227-233  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Organic photovoltaic (OPV) devices are on the verge of commercialization being long-term stability a key challenge. Morphology evolution during lifetime has been suggested to be one of the main pathways accounting for performance degradation. There is however a lack of certainty on how specifically the morphology evolution relates to individual electrical parameters on operating devices. In this work a case study is created based on a thermodynamically unstable organic active layer which is monitored over a period of one year under non-accelerated degradation conditions. The morphology evolution is revealed by compositional analysis of ultrathin cross-sections using nanoscale imaging in scanning transmission electron microscopy (STEM) coupled with electron energy-loss spectroscopy (EELS). Additionally, devices are electrically monitored in real-time using the non-destructive electrical techniques capacitance-voltage (C-V) and Impedance Spectroscopy (IS). By comparison of imaging and electrical techniques the relationship between nanoscale morphology and individual electrical parameters of device operation can be conclusively discerned. It is ultimately observed how the change in the cathode contact properties occurring after the migration of fullerene molecules explains the improvement in the overall device performance. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000345649500029 Publication Date 2014-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1566-1199; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.399 Times cited (up) 24 Open Access OpenAccess  
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 3.399; 2015 IF: 3.827  
  Call Number c:irua:122169 Serial 2267  
Permanent link to this record
 

 
Author Pelloquin, D.; Hadermann, J.; Giot, M.; Caignaert, V.; Michel, C.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title Novel, oxygen-deficient n=3 RP-member Sr3NdFe3O9-\delta and its topotactic derivatives Type A1 Journal article
  Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 16 Issue Pages 1715-1724  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000221345000019 Publication Date 2004-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103  
  Call Number UA @ lucian @ c:irua:47318 Serial 2381  
Permanent link to this record
 

 
Author de Backer, A.; De wael, A.; Gonnissen, J.; Van Aert, S. pdf  url
doi  openurl
  Title Optimal experimental design for nano-particle atom-counting from high-resolution STEM images Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 151 Issue 151 Pages 46-55  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present paper, the principles of detection theory are used to quantify the probability of error for atom-counting from high resolution scanning transmission electron microscopy (HR STEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom-counting using the expression for the probability of error. We show that for very thin objects LAADF is optimal and that for thicker objects the optimal inner detector angle increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000351237800007 Publication Date 2014-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 24 Open Access  
  Notes 312483 Esteem2; Fwo G039311; G037413; esteem2_jra2 Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:123926 c:irua:123926 Serial 2481  
Permanent link to this record
 

 
Author Idrissi, H.; Kobler, A.; Amin-Ahmadi, B.; Coulombier, M.; Galceran, M.; Raskin, J.-P.; Godet, S.; Kuebel, C.; Pardoen, T.; Schryvers, D. doi  openurl
  Title Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 10 Pages 101903  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In-situ bright field transmission electron microscopy (TEM) nanomechanical tensile testing and in-situ automated crystallographic orientation mapping in TEM were combined to unravel the elementary mechanisms controlling the plasticity of ultrafine grained Aluminum freestanding thin films. The characterizations demonstrate that deformation proceeds with a transition from grain rotation to intragranular dislocation glide and starvation plasticity mechanism at about 1% deformation. The grain rotation is not affected by the character of the grain boundaries. No grain growth or twinning is detected. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000333082800022 Publication Date 2014-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:116866 Serial 2649  
Permanent link to this record
 

 
Author Fang, C.M.; van Huis, M.A.; Jansen, J.; Zandbergen, H.W. url  doi
openurl 
  Title Role of carbon and nitrogen in Fe2C and Fe2N from first-principles calculations Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 9 Pages 094102-094102,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although Fe2C and Fe2N are technologically important materials, the exact nature of the chemical bonding of C and N atoms and the related impact on the electronic properties are at present unclear. Here, results of first-principles electronic structure calculations for Fe2X (X = C, N) phases are presented. The electronic structure calculations show that the roles of N and C in iron nitrides and carbides are comparable, and that the X-X interactions have significant impact on electronic properties. Accurate analysis of the spatially resolved differences in electron densities reveals a subtle distinction between the chemical bonding and charge transfer of N and C ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294772800003 Publication Date 2011-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92327 Serial 2912  
Permanent link to this record
 

 
Author Richard, O.; Schuddinck, W.; Van Tendeloo, G.; Millange, F.; Hervieu, M.; Caignaert, C.; Raveau, B. doi  openurl
  Title Room temperature and low-temperature structure of Nd1-xCaxMnO3 (0.3*x*0.5) Type A1 Journal article
  Year 1999 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A  
  Volume 55 Issue Pages 704-718  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000081697500013 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.725 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 5.725; 1999 IF: 1.601  
  Call Number UA @ lucian @ c:irua:29715 Serial 2929  
Permanent link to this record
 

 
Author Philippaerts, A.; Paulussen, S.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Poelman, H.; Bulut, M.; de Clippel, F.; Smeets, P.; Sels, B.; Jacobs, P. pdf  doi
openurl 
  Title Selectivity in sorption and hydrogenation of methyl oleate and elaidate on MFI zeolites Type A1 Journal article
  Year 2010 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 270 Issue 1 Pages 172-184  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Different zeolites were tested for selective removal of methyl elaidate (trans isomer) from an equimolar mixture with methyl oleate (cis isomer). Sorption experiments of the geometric isomers show that only ZSM-5 samples with reduced Al content in the framework are able to discriminate among the bent cis and the linear trans fatty acid methyl esters. Hydrogenation experiments of equimolar methyl oleate and elaidate mixtures at low temperature (65 °C) and high hydrogen pressure (6.0 MPa), using Pt catalysts, confirm this result. Only with a Pt/NaZSM-5 catalyst outspoken selectivity for the hydrogenation of the trans isomer is obtained. In order to prepare a selective Pt/ZSM-5 catalyst, the influence of Pt addition (impregnation, ion-exchange and competitive ion-exchange) and Pt activation (different calcination and reduction temperatures) on the Pt-distribution and Pt particle size was investigated using SEM, bright-field and HR TEM, EDX, electron tomography, CO-chemisorption, XPS, XRD, and UVvis measurements. The best result in terms of hydrogenation activity and selectivity is obtained with a Pt/ZSM-5 catalyst, which is prepared via competitive ion-exchange, followed by slow calcination up to 350 °C under high O2 flow and a reduction up to 500 °C under H2. This preparation method leads to a Pt/ZSM-5 catalyst with the best Pt distribution and the smallest Pt clusters occluded in the zeolite structure. Finally, the influence of zeolite crystal size, morphology, and elemental composition of ZSM-5 on hydrogenation activity and selectivity was investigated in detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, Calif. Editor  
  Language Wos 000275966100021 Publication Date 2010-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited (up) 24 Open Access  
  Notes FWO; IAP-IV; Methusalem Approved Most recent IF: 6.844; 2010 IF: 5.415  
  Call Number UA @ lucian @ c:irua:82435 Serial 2970  
Permanent link to this record
 

 
Author Hervieu, M.; Martin, C.; Maignan, A.; Van Tendeloo, G.; Jirak, Z.; Hejtmanek, J.; Barnabe, A.; Thopart, D.; Raveau, B. doi  openurl
  Title Structural and magnetotransport transitions in the electron-doped Pr1-xSrxMnO3(0.85\leq x\leq1) manganites Type A1 Journal article
  Year 2000 Publication Chemistry and materials Abbreviated Journal Chem Mater  
  Volume 12 Issue 5 Pages 1456-1462  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The exploration of the Mn4+-rich side of the Pr1-xSrxMnO3 system has allowed the extension of the domain of the cubic perovskite, by using a two-step process, combining synthesis under Ar flow at high temperature and O-2 pressure annealing at lower temperature. We show that these Pr-doped cubic perovskites exhibit a coupled structural (cubic-tetragonal) and magnetic (para-antiferro) transition connected with a resistivity jump at the same temperature. The strong interplay between lattice, charges, and spins for these oxides results from the appearance at low temperature of the distorted C-type antiferromagnetic structure. The Pr1-xSrxMnO3 magnetic phase diagram shows, for 0.9 less than or equal to x less than or equal to 1 (i.e., on the Mn4+-rich side), the existence at low temperature of C- and G-type antiferromagnetism. The absence of ferromagnetic-antiferromagnetic competition explains that magnetoresistante properties are not observed in this system, in contrast to Mn4+-rich Ln(1-x)Ca(x)MnO(3) systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000087136800039 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 9.466; 2000 IF: 3.580  
  Call Number UA @ lucian @ c:irua:103454 Serial 3198  
Permanent link to this record
 

 
Author Schattschneider, P.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Hell, J.; Verbeeck, J. pdf  doi
openurl 
  Title Sub-nanometer free electrons with topological charge Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 115 Issue Pages 21-25  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The holographic mask technique is used to create freely moving electrons with quantized angular momentum. With electron optical elements they can be focused to vortices with diameters below the nanometer range. The understanding of these vortex beams is important for many applications. Here, we produce electron vortex beams and compare them to a theory of electrons with topological charge. The experimental results show excellent agreement with simulations. As an immediate application, fundamental experimental parameters like spherical aberration and partial coherence are determined. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000302962400004 Publication Date 2012-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited (up) 24 Open Access  
  Notes vortex ECASJO_; Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:98279 Serial 3344  
Permanent link to this record
 

 
Author Panin, R.V.; Khasanova, N.R.; Abakumov, A.M.; Antipov, E.V.; Van Tendeloo, G.; Schnelle, W. doi  openurl
  Title Synthesis and crystal structure of the palladium oxides NaPd3O4, Na2PdO3 and K3Pd2O4 Type A1 Journal article
  Year 2007 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 180 Issue 5 Pages 1566-1574  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000246892800007 Publication Date 2007-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited (up) 24 Open Access  
  Notes Approved Most recent IF: 2.299; 2007 IF: 2.149  
  Call Number UA @ lucian @ c:irua:64740 Serial 3429  
Permanent link to this record
 

 
Author Yan, L.; Tan, Z.; Ji, G.; Li, Z.; Fan, G.; Schryvers, D.; Shan, A.; Zhang, D. pdf  url
doi  openurl
  Title A quantitative method to characterize the Al4C3-formed interfacial reaction: the case study of MWCNT/Al composites Type A1 Journal article
  Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 112 Issue 112 Pages 213-218  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Al4C3-formed interfacial reaction plays an important role in tuning the mechanical and thermal properties of carbon/aluminum (C/Al) composites reinforced with carbonaceous materials such as multi-wall carbon nanotube (MWCNT) and graphene nanosheet. In terms of the hydrolysis nature of Al4C3, an electrochemical dissolution method was developed to quantitatively characterize the extent of C/Al interfacial reaction, which involves dissolving the composite samples in alkaline solution first, then collecting and measuring the CH4 gas released by Al4C3 hydrolysis with a gas chromatograph. Through a case study with powder metallurgy fabricated 2.0 wt.% MWCNT/Al composites, the detectability limit of the proposed method is 0.4 wt.% Al4C3, corresponding to 5 % extent of interfacial reaction with a measurement error of ±3 %. And then, with the already known MWCNT/Al reaction extent vs different sintering temperature and time, the reaction kinetics with an activation energy of 281 kJ mol-1 was successfully derived. Therefore, this rapid, sensitive, accurate method supplies an useful tool to optimize the processing and properties of all kinds of C/Al composites via interface design/control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370109200026 Publication Date 2015-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited (up) 24 Open Access  
  Notes The authors would like to acknowledge the financial support of the National Basic Research Program of China (973 Program, No. 2012CB619600), the National High-Tech R&D Program (863 Program, No. 2012AA030611), the National Natural Science Foundation (Nos. 51071100, 51131004, 51401123, 51511130038) and the research grant (Nos. 14DZ2261200, 15JC1402100, 14520710100) from Shanghai government. Dr. Z.Q. Tan would also like to thank the project funded by the China Postdoctoral Science Foundation (No. 2014M561469). The research leading to these results has partially received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative – I3).; esteem2_jra2 Approved Most recent IF: 2.714; 2015 IF: 1.845  
  Call Number c:irua:130066 c:irua:130066 Serial 3997  
Permanent link to this record
 

 
Author Babynina, A.; Fedoruk, M.; Kuhler, P.; Meledin, A.; Doblinger, M.; Lohmueller, T. url  doi
openurl 
  Title Bending Gold Nanorods with Light Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 16 Issue 16 Pages 6485-6490  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract V-shaped gold nanoantennas are the functional components of plasmonic metasurfaces, which are capable of manipulating light in unprecedented ways. Designing a metasurface requires the custom arrangement of individual antennas with controlled shape and orientation. Here, we show how highly crystalline gold nanorods in solution can be bend, one-by one, into a V-shaped geometry and printed to the surface of a solid support through a combination of plasmonic heating and optical force. Significantly, we demonstrate that both the bending angle and the orientation of each rod-antenna can be adjusted independent from each other by tuning the laser intensity and polarization. This approach is applicable for the patterning of V-shaped plasmonic antennas on almost any substrate, which holds great potential for the fabrication of ultrathin optical components and devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385469800072 Publication Date 2016-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited (up) 24 Open Access  
  Notes PMID:27598653 We would also like to thank Prof. Jochen Feldmann and Bernhard Bohn for fruitful discussions. Approved Most recent IF: 12.712  
  Call Number c:irua:135172 Serial 4122  
Permanent link to this record
 

 
Author Ustarroz, J.; Geboes, B.; Vanrompay, H.; Sentosun, K.; Bals, S.; Breugelmans, T.; Hubin, A. url  doi
openurl 
  Title Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 16168-16177  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoporous Pt nanoparticles (NPs) are promising fuel cell catalysts due to their large surface area and increased electrocatalytic activity towards the oxygen reduction reaction (ORR). Herein, we report on the infuence of the growth mechanisms on the surface properties of electrodeposited Pt dendritic NPs with large surface areas. The electrochemically active surface was studied by hydrogen underpotential deposition (HUPD) and compared for the rst time to high angle annular dark eld scanning transmission electron microscopy (HAADF-STEM) quantitative 3D electron tomography of individual nanoparticles. Large nucleation overpotential leads to a large surface coverage of Pt roughened spheroids, which provide large roughness factor (Rf ) but low mass-speci c electrochemically active surface area (EASA). Lowering the nucleation overpotential leads to highly porous Pt NPs with pores protruding to the center of the structure. At the expense of smaller Rf , the obtained EASA values of these structures are in the range of these of large surface area supported fuel cell catalysts. The active surface area of the Pt dendritic NPs was measured by electron tomography and it was found that the potential cycling in the H adsorption/desorption and Pt oxidation/reduction region, which is generally performed to determine the EASA, leads to a signi cant reduction of that surface area due to a partial collapse of their dendritic and porous morphology. Interestingly, the extrapolation of the microscopic tomography results to macroscopic electrochemical parameters indicated that the surface properties measured by H UPD are comparable to the values measured on individual NPs by electron tomography after the degradation caused by the H UPD measurement. These results highlight that the combination of electrochemical and quantitative 3D surface analysis techniques is essential to provide insights into the surface properties, the electrochemical stability and, hence, the applicability of these materials. Moreover, it indicates that care must be taken with widely used electrochemical methods of surface area determination, especially in the case of large surface area and possibly unstable nanostructures, since the measured surface can be strongly a ected by the measurement itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401782500028 Publication Date 2017-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited (up) 24 Open Access OpenAccess  
  Notes Jon Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). S.B. and T.B. acknowledge the University of Antwerp for nancial support in the frame of a GOA project. H.V. gratefully acknowledges nancial support by the Flemish Fund for Scienti c Research (FWO Vlaanderen). All the authors acknowledge Laurens Stevaert for his contribution to the work presented in this manuscript. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:142345UA @ admin @ c:irua:142345 Serial 4552  
Permanent link to this record
 

 
Author Lambrinou, K.; Charalampopoulou, E.; Van der Donck, T.; Delville, R.; Schryvers, D. pdf  url
doi  openurl
  Title Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C Type A1 Journal article
  Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 490 Issue 490 Pages 9-27  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253e3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was nonuniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403132300002 Publication Date 2017-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited (up) 24 Open Access OpenAccess  
  Notes The authors would like to acknowledge the following 316L stainless steel suppliers: Industeel, ArcelorMittal Group, for the 316LSA plate procured and characterised in the FP6 EUROTRANSDEMETRA project (Contract no. FI6W-CT-2004-516520); OLARRA Aceros Inoxidables, Spain, for the 316LH1 rod; and SIDERO STAAL nv, Belgium, for the 316LH2 rod. K. Lambrinou would like to thank J. Joris for technical support during the launching and follow up of all corrosion tests, J. Lim for the manufacturing and calibration of the oxygen sensors used in these tests, T. Lapauw for the XRD measurements on the pristine steels, and S. Van den Broeck for the FIB sample preparation. Special thanks to S. Gavrilov for fruitful and intense discussions. The authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved Most recent IF: 2.048  
  Call Number EMAT @ emat @ c:irua:142644 Serial 4563  
Permanent link to this record
 

 
Author Ata, I.; Ben Dkhil, S.; Pfannmoeller, M.; Bals, S.; Duche, D.; Simon, J.-J.; Koganezawa, T.; Yoshimoto, N.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J.; Baeuerle, P. url  doi
openurl 
  Title The influence of branched alkyl side chains in A-D-A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells Type A1 Journal article
  Year 2017 Publication Organic chemistry frontiers : an international journal of organic chemistry Abbreviated Journal Org Chem Front  
  Volume 4 Issue 4 Pages 1561-1573  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Besides providing sufficient solubility, branched alkyl chains also affect the film-forming and packing properties of organic semiconductors. In order to avoid steric hindrance as it is present in wide-spread alkyl chains comprising a branching point position at the C2-position, i.e., 2-ethylhexyl, the branching point can be moved away from the pi-conjugated backbone. In this report, we study the influence of the modification of the branching point position from the C2-position in 2-hexyldecylamine (1) to the C4-position in 4-hexyldecylamine (2) connected to the central dithieno[3,2-b: 2', 3'-d] pyrrole (DTP) moiety in a well-studied A-D-A oligothiophene on the optoelectronic properties and photovoltaic performance in solution- processed bulk heterojunction solar cells (BHJSCs) with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor material. Post-treatment of the photoactive layers is performed via solvent vapor annealing (SVA) in order to improve the film microstructure of the bulk heterojunction. The time evolution of nanoscale morphological changes is followed by combining scanning transmission electron microscopy with low-energy-loss spectroscopic imaging (STEM-SI), solid-state absorption spectroscopy, and two-dimensional grazing incidence X-ray diffraction (2D-GIXRD). Our results show an improvement of the photovoltaic performance that is dependent on the branching point position in the donor oligomer. Optical spacers are utilized to increase light absorption inside the co-oligomer 2-based BHJSCs leading to increased power conversion efficiencies (PCEs) of 8.2% when compared to the corresponding co-oligomer 1-based devices. A STEM-SI analysis of the respective device cross-sections of active layers containing 1 and 2 as donor materials indeed reveals significant differences in their respective active layer morphologies.  
  Address  
  Corporate Author Thesis  
  Publisher RSC Publishing Place of Publication London Editor  
  Language Wos 000406374800013 Publication Date 2017-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-4129 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.955 Times cited (up) 24 Open Access OpenAccess  
  Notes ; We acknowledge financial support by the European Commission under the project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594) and S.B. acknowledges the ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 4.955  
  Call Number UA @ lucian @ c:irua:145176UA @ admin @ c:irua:145176 Serial 4727  
Permanent link to this record
 

 
Author Choukroun, D.; Daems, N.; Kenis, T.; Van Everbroeck, T.; Hereijgers, J.; Altantzis, T.; Bals, S.; Cool, P.; Breugelmans, T. pdf  url
doi  openurl
  Title Bifunctional nickel-nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 124 Pages 1369-1381  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bifunctionality is a key feature of many industrial catalysts, supported metal clusters and particles in particular, and the development of such catalysts for the CO2 reduction reaction (CO2RR) to hydrocarbons and alcohols is gaining traction in light of recent advancements in the field. Carbon-supported Cu nanoparticles are suitable candidates for integration in the state-of-the-art reaction interfaces, and here, we propose, synthesize, and evaluate a bifunctional Ni–N-doped-C-supported Cu electrocatalyst, in which the support possesses active sites for selective CO2 conversion to CO and Cu nanoparticles catalyze either the direct CO2 or CO reduction to hydrocarbons. In this work, we introduce the scientific rationale behind the concept, its applicability, and the challenges with regard to the catalyst. From the practical aspect, the deposition of Cu nanoparticles onto carbon black and Ni–N–C supports via an ammonia-driven deposition precipitation method is reported and explored in more detail using X-ray diffraction, thermogravimetric analysis, and hydrogen temperature-programmed reduction. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDXS) give further evidence of the presence of Cu-containing nanoparticles on the Ni–N–C supports while revealing an additional relationship between the nanoparticle’s composition and the electrode’s electrocatalytic performance. Compared to the benchmark carbon black-supported Cu catalysts, Ni–N–C-supported Cu delivers up to a 2-fold increase in the partial C2H4 current density at −1.05 VRHE (C1/C2 = 0.67) and a concomitant 10-fold increase of the CO partial current density. The enhanced ethylene production metrics, obtained by virtue of the higher intrinsic activity of the Ni–N–C support, point out toward a synergistic action between the two catalytic functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508467700015 Publication Date 2020-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited (up) 24 Open Access OpenAccess  
  Notes ; N.D. acknowledges sponsoring from the research foundation of Flanders (FWO) in the frame of a postdoctoral grant (12Y3919N N.D.). J.H. greatly acknowledges the Research Foundation Flanders (FWO) for support through a postdoctoral fellowship (28761). T.V.E. and P.C. acknowledge financial support from the EU-Partial-PGMs project (H2020NMP-686086). The authors also acknowledge financial support from the university research fund (BOF-GOA PS ID No. 33928). ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:165326 Serial 6286  
Permanent link to this record
 

 
Author Leemans, J.; Singh, S.; Li, C.; Ten Brinck, S.; Bals, S.; Infante, I.; Moreels, I.; Hens, Z. url  doi
openurl 
  Title Near-Edge Ligand Stripping and Robust Radiative Exciton Recombination in CdSe/CdS Core/Crown Nanoplatelets Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 9 Pages 3339-3344  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We address the relation between surface chemistry and optoelectronic properties in semiconductor nanocrystals using core/crown CdSe/CdS nanoplatelets passivated by cadmium oleate (Cd(Ol)2) as model systems. We show that addition of butylamine to a nanoplatelet (NPL) dispersion maximally displaces ∼40% of the original Cd(Ol)2 capping. On the basis of density functional theory simulations, we argue that this behavior reflects the preferential displacement of Cd(Ol)2 from (near)-edge surface sites. Opposite from CdSe core NPLs, core/crown NPL dispersions can retain 45% of their initial photoluminescence efficiency after ligand displacement, while radiative exciton recombination keeps dominating the luminescent decay. Using electron microscopy observations, we assign this robust photoluminescence to NPLs with a complete CdS crown, which prevents charge carrier trapping in the near-edge surface sites created by ligand displacement. We conclude that Z-type ligands such as cadmium carboxylates can provide full electronic passivation of (100) facets yet are prone to displacement from (near)-edge surface sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535177500024 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited (up) 24 Open Access OpenAccess  
  Notes Universiteit Gent, GOA 01G01019 ; Fonds Wetenschappelijk Onderzoek, 17006602 FWO17/PDO/184 ; H2020 European Research Council, 714876 Phocona 815128 Realnano ; SIM-Flanders, SBO-QDOCCO ; Z.H. and S.B. acknowledge support by SIM-Flanders (SBO-QDOCCO). Z.H. acknowledges support by FWO-Vlaanderen (research project 17006602). Z.H. and I.M. acknowledge support by Ghent University (GOA n◦ 01G01019). J.L. acknowledges FWO-vlaanderen for a fellowship (SB PhD fellow at FWO). Sh.S acknowledges FWO postdoctoral funding (FWO17/PDO/184). This project has further received funding from the European Research Counsil under the European Union’s Horizon 2020 research and innovation programme (ERC Consolidator grant no. 815128 REALNANO and starting grant no. 714876 PHOCONA).; sygma Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:173994 Serial 6657  
Permanent link to this record
 

 
Author Wu, L.; Kolmeijer, K.E.; Zhang, Y.; An, H.; Arnouts, S.; Bals, S.; Altantzis, T.; Hofmann, J.P.; Costa Figueiredo, M.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W. url  doi
openurl 
  Title Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO₂ reduction conditions Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 13 Issue 9 Pages 4835-4844  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Nanoparticle modified electrodes constitute an attractive way to tailor-make efficient carbon dioxide (CO2) reduction catalysts. However, the restructuring and sintering processes of nanoparticles under electrochemical reaction conditions not only impedes the widespread application of nanoparticle catalysts, but also misleads the interpretation of the selectivity of the nanocatalysts. Here, we colloidally synthesized metallic copper (Cu) and silver (Ag) nanoparticles with a narrow size distribution (<10%) and utilized them in electrochemical CO2 reduction reactions. Monometallic Cu and Ag nanoparticle electrodes showed severe nanoparticle sintering already at low overpotential of -0.8 V vs. RHE, as evidenced by ex situ SEM investigations, and potential-dependent variations in product selectivity that resemble bulk Cu (14% for ethylene at -1.3 V vs. RHE) and Ag (69% for carbon monoxide at -1.0 V vs. RHE). However, by co-deposition of Cu and Ag nanoparticles, a nanoparticle stabilization effect was observed between Cu and Ag, and the sintering process was greatly suppressed at CO2 reducing potentials (-0.8 V vs. RHE). Furthermore, by varying the Cu/Ag nanoparticle ratio, the CO2 reduction reaction (CO2RR) selectivity towards methane (maximum of 20.6% for dense Cu-2.5-Ag-1 electrodes) and C-2 products (maximum of 15.7% for dense Cu-1-Ag-1 electrodes) can be tuned, which is attributed to a synergistic effect between neighbouring Ag and Cu nanoparticles. We attribute the stabilization of the nanoparticles to the positive enthalpies of Cu-Ag solid solutions, which prevents the dissolution-redeposition induced particle growth under CO2RR conditions. The observed nanoparticle stabilization effect enables the design and fabrication of active CO2 reduction nanocatalysts with high durability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000628024200011 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited (up) 24 Open Access OpenAccess  
  Notes This work is funded by the Strategic UU-TU/e Alliance project ‘Joint Centre for Chemergy Research’ (budget holder B. M. W.). S. B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S. A. and T. A. acknowledge funding from the University of Antwerp Research fund (BOF). We thank Eric Hellebrand (Faculty of Geosciences, Utrecht University) for the assistance in SEM measurements. Dr Ramon Oord (ARC Chemical Building Blocks Consortium, Faculty of Science, Utrecht University) is acknowledged for assisting with the grazing incidence XRD measurements; sygma Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:176723 Serial 6737  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: