toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aierken, Y.; Çakir, D.; Peeters, F.M. pdf  doi
openurl 
  Title Strain enhancement of acoustic phonon limited mobility in monolayer TiS3 Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 14434-14441  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Strain engineering is an effective way to tune the intrinsic properties of a material. Here, we show by using first-principles calculations that both uniaxial and biaxial tensile strain applied to monolayer TiS3 are able to significantly modify its intrinsic mobility. From the elastic modulus and the phonon dispersion relation we determine the tensile strain range where structure dynamical stability of the monolayer is guaranteed. Within this region, we find more than one order of enhancement of the acoustic phonon limited mobility at 300 K (100 K), i.e. from 1.71 x 10(4) (5.13 x 10(4)) cm(2) V-1 s(-1) to 5.53 x 10(6) (1.66 x 10(6)) cm(2) V-1 s(-1). The degree of anisotropy in both mobility and effective mass can be tuned by using tensile strain. Furthermore, we can either increase or decrease the band gap of TiS3 monolayer by applying strain along different crystal directions. This property allows us to use TiS3 not only in electronic but also in optical applications.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000378102700036 Publication Date 2016-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 24 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-V1). Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:134628 Serial 4250  
Permanent link to this record
 

 
Author Lander, L.; Rousse, G.; Abakumov, A.M.; Sougrati, M.; Van Tendeloo, G.; Tarascon, J.-M. url  doi
openurl 
  Title Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 3 Issue 3 Pages 19754-19764  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the quest for sustainable and low-cost positive electrode materials for Li-ion batteries, we discovered, as reported herein, a new low temperature polymorph of KFeSO4F. Contrary to the high temperature phase crystallizing in a KTiOPO4-like structure, this new phase adopts a complex layer-like structure built on FeO4F2 octahedra and SO4 tetrahedra, with potassium cations located in between the layers, as solved using neutron and synchrotron diffraction experiments coupled with electron diffraction. The detailed analysis of the structure reveals an alternation of edge-and corner-shared FeO4F2 octahedra leading to a large monoclinic cell of 1771.774(7) angstrom(3). The potassium atoms are mobile within the structure as deduced by ionic conductivity measurements and confirmed by the bond valence energy landscape approach thus enabling a partial electrochemical removal of K+ and uptake of Li+ at an average potential of 3.7 V vs. Li+/Li-0. Finally, neutron diffraction experiments coupled with SQUID measurements reveal a long range antiferromagnetic ordering of the Fe2+ magnetic moments below 22 K with a possible magnetoelectric behavior.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000362041300018 Publication Date 2015-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 11 Open Access  
  Notes Approved Most recent IF: 8.867; 2015 IF: 7.443  
  Call Number UA @ lucian @ c:irua:132566 Serial 4253  
Permanent link to this record
 

 
Author Charkin, D.O.; Akinfiev, V.S.; Alekseeva, A.M.; Batuk, M.; Abakumov, A.M.; Kazakov, S.M. doi  openurl
  Title Synthesis and cation distribution in the new bismuth oxyhalides with the Sillen-Aurivillius intergrowth structures Type A1 Journal article
  Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 44 Issue 44 Pages 20568-20576  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract About 20 new compounds with the Sillen-Aurivillius intergrowth structure, (MeMeBi3Nb2O11X)-Me-1-Bi-2 (Me-1 = Pb, Sr, Ba; Me-2 = Ca, Sr, Ba; X = Cl, Br, I), have been prepared. They are composed of stacking of [ANb(2)O(7)] perovskite blocks, fluorite-type [M2O2] blocks and halogen sheets. The cation distribution between the fluorite and perovskite layers has been studied for Ba2Bi3Nb2O11I, Ca1.25Sr0.75Bi3Nb2O11Cl, BaCaBi3Nb2O11Br and Sr2Bi3Nb2O11Cl. The smaller Me cations tend to reside in the perovskite block while the larger ones are situated in the fluorite-type block. The distribution of the elements was confirmed for BaCaBi3Nb2O11Br using energy dispersive X-ray analysis combined with scanning transmission electron microscopy (STEM-EDX). An electron diffraction study of this compound reveals a local symmetry lowering caused by weakly correlated rotation of NbO6 octahedra. Based on our findings, we suggest a new stability criterion for mixed-layer structures, which is that net charges of any two consecutive layers do not compensate for each other and only the whole layer sequence is electroneutral.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication London Editor  
  Language Wos 000365411500036 Publication Date 2015-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 5 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:130330 Serial 4256  
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Bobrikov, I.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Tsirlin, A.A.; Abakumov, A.M. pdf  doi
openurl 
  Title Synthesis, structure and magnetic ordering of the mullite-type Bi2Fe4-xCrxO9 solid solutions with a frustrated pentagonal Cairo lattice Type A1 Journal article
  Year 2016 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 45 Issue 45 Pages 1192-1200  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Highly homogeneous mullite-type solid solutions Bi2Fe4-xCrxO9 (x = 0.5, 1, 1.2) were synthesized using a soft chemistry technique followed by a solid-state reaction in Ar. The crystal structure of Bi2Fe3CrO9 was investigated using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy (S.G. Pbam, a = 7.95579(9) angstrom , b = 8.39145(9) angstrom, c = 5.98242(7) angstrom, R-F(X-ray) = 0.022, R-F(neutron) = 0.057). The ab planes in the structure are tessellated with distorted pentagonal loops built up by three tetrahedrally coordinated Fe sites and two octahedrally coordinated Fe/Cr sites, linked together in the ab plane by corner-sharing forming a pentagonal Cairo lattice. Magnetic susceptibility measurements and powder neutron diffraction show that the compounds order antiferromagnetically (AFM) with the Neel temperatures decreasing upon increasing the Cr content from T-N similar to 250 K for x = 0 to T-N similar to 155 K for x = 1.2. The magnetic structure of Bi2Fe3CrO9 at T = 30 K is characterized by a propagation vector k = (1/2,1/2,1/2). The tetrahedrally coordinated Fe cations form singlet pairs within dimers of corner-sharing tetrahedra, but spins on the neighboring dimers are nearly orthogonal. The octahedrally coordinated (Fe, Cr) cations form antiferromagnetic up-up-down-down chains along c, while the spin arrangement in the ab plane is nearly orthogonal between nearest neighbors and collinear between second neighbors. The resulting magnetic structure is remarkably different from the one in pure Bi2Fe4O9 and features several types of spin correlations even on crystallographically equivalent exchange that may be caused by the simultaneous presence of Fe and Cr on the octahedral site.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication London Editor  
  Language Wos 000367614700041 Publication Date 2015-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0300-9246; 1477-9226; 1472-7773 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:131095 Serial 4257  
Permanent link to this record
 

 
Author Retuerto, M.; Skiadopoulou, S.; Li, M.R.; Abakumov, A.M.; Croft, M.; Ignatov, A.; Sarkar, T.; Abbett, B.M.; Pokorný, J.; Savinov, M.; Nuzhnyy, D.; Prokleška, J.; Abeykoon, M.; Stephens, P.W.; Hodges, J.P.; Vaněk, P.; Fennie, C.J.; Rabe, K.M.; Kamba, S.; Greenblatt, M.; pdf  doi
openurl 
  Title Pb2MnTeO6 double perovskite : an antipolar anti-ferromagnet Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 4320-4329  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to similar to 120 K it undergoes a phase transition from I2/m to C2/c structure. This transition is accompanied by a displacement of the Pb atoms from the center of their polyhedra due to the 6s2 lone-pair electrons, together with a surprising off-centering of Mn2+ (d5) magnetic cations. This strong first-order phase transition is also evidenced by specific heat, dielectric, Raman, and infrared spectroscopy measurements. The magnetic characterizations indicate an anti-ferromagnetic (AFM) order below TN approximate to 20 K; analysis of powder neutron diffraction data confirms the magnetic structure with propagation vector k = (0 1 0) and collinear AFM spins. The observed jump in dielectric permittivity near similar to 150 K implies possible anti-ferroelectric behavior; however, the absence of switching suggests that Pb2MnTeO6 can only be antipolar. First-principle calculations confirmed that the crystal and magnetic structures determined are locally stable and that anti-ferroelectric switching is unlikely to be observed in Pb2MnTeO6.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000375519700027 Publication Date 2016-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 9 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:134219 Serial 4258  
Permanent link to this record
 

 
Author Mikita, R.; Aharen, T.; Yamamoto, T.; Takeiri, F.; Ya, T.; Yoshimune, W.; Fujita, K.; Yoshida, S.; Tanaka, K.; Batuk, D.; Abakumov, A.M.; Brown, C.M.; Kobayashi, Y.; Kageyama, H.; pdf  doi
openurl 
  Title Topochemical nitridation with anion vacancy -assisted N3-/O2- exchange Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 3211-3217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present how the introduction of anion vacancies in oxyhydrides enables a route to access new oxynitrides, by conducting ammonolysis of perovskite oxyhydride EuTiO3-xHx (x similar to 0.18). At 400 degrees C, similar to our studies on BaTiO3-xHx, hydride lability enables a low temperature direct ammonolysis of EUTi3.82+O-2.82/H-0.18, leading to the N3-/H--exchanged product EuTi4+O2.82No0.12 square 0.06 center dot When the ammonolysis temperature was increased up to 800 degrees C, we observed a further nitridation involving N3-/O2- exchange, yielding a fully oxidized Eu3+Ti4+O2N with the GdFeO3-type distortion (Pnma) as a metastable phase, instead of pyrochlore structure. Interestingly, the same reactions using the oxide EuTiO3 proceeded through a 1:1 exchange of N3- with O-2 only above 600 degrees C and resulted in incomplete nitridation to EuTi02.25N0.75, indicating that anion vacancies created during the initial nitridation process of EuTiO2.82H0.18 play a crucial role in promoting anion (N3-/O2-) exchange at high temperatures. Hence, by using (hydride-induced) anion-deficient precursors, we should be able to expand the accessible anion composition of perovskite oxynitrides.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000371945800055 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access  
  Notes Approved Most recent IF: 13.858  
  Call Number UA @ lucian @ c:irua:133156 Serial 4266  
Permanent link to this record
 

 
Author Ilin, A.; Martyshov, M.; Forsh, E.; Forsh, P.; Rumyantseva, M.; Abakumov, A.; Gaskov, A.; Kashkarov, P. pdf  doi
openurl 
  Title UV effect on NO2 sensing properties of nanocrystalline In2O3 Type A1 Journal article
  Year 2016 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 231 Issue 231 Pages 491-496  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline indium oxide films with extremely small grains in range of 7-40 nm are prepared by sol-gel method. The influence of grain size on the sensitivity of indium oxide to nitrogen dioxide in low concentration at room temperature is investigated under the UV illumination and without illumination. The sensitivity increases with the decrease of grain sizes when In2O3 is illuminated while in the dark In2O3 with intermediate grain size exhibits the highest response. An explanation of the different behavior of the In2O3 with different grain size sensitivity to NO2 under illumination and in the dark is proposed. We demonstrate that pulsed illumination may be used for NO2 detection at room temperature that significantly reduces the power consumption of sensor. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000374330900055 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 27 Open Access  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ lucian @ c:irua:133630 Serial 4273  
Permanent link to this record
 

 
Author van der Stam, W.; Gradmann, S.; Altantzis, T.; Ke, X.; Baldus, M.; Bals, S.; de Mello Donega, C. pdf  url
doi  openurl
  Title Shape Control of Colloidal Cu2-x S Polyhedral Nanocrystals by Tuning the Nucleation Rates Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 6705-6715  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthesis protocols for colloidal nanocrystals (NCs) with narrow size and shape distributions are of particular interest for the successful implementation of these nanocrystals into devices. Moreover, the preparation of NCs with well-defined crystal phases is of key importance. In this work, we show that Sn(IV)-thiolate complexes formed in situ strongly influence the nucleation and growth rates of colloidal Cu2-x S polyhedral NCs, thereby dictating their final size, shape, and crystal structure. This allowed us to successfully synthesize hexagonal bifrustums and hexagonal bipyramid NCs with low-chalcocite crystal structure, and hexagonal nanoplatelets with various thicknesses and aspect ratios with the djurleite crystal structure, by solely varying the concentration of Sn(IV)-additives (namely, SnBr4) in the reaction medium. Solution and solid-state 119Sn NMR measurements show that SnBr4 is converted in situ to Sn(IV)-thiolate complexes, which increase the Cu2-x S nucleation barrier without affecting the precursor conversion rates. This influences both the nucleation and growth rates in a concentration-dependent fashion and leads to a better separation between nucleation and growth. Our approach of tuning the nucleation and growth rates with in situ-generated Sn-thiolate complexes might have a more general impact due to the availability of various metal-thiolate complexes, possibly resulting in polyhedral NCs of a wide variety of metal-sulfide compositions.  
  Address Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University , P.O. Box 80000, 3508 TA Utrecht, The Netherlands  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Wos 000384399000037 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 27 Open Access OpenAccess  
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. M.B. also gratefully acknowledges NWO for funding the NMR infrastructure (Middle Groot program, grant number 700.58.102). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:135928 Serial 4285  
Permanent link to this record
 

 
Author Perez, A.J.; Batuk, D.; Saubanère, M.; Rousse, G.; Foix, D.; Mc Calla, E.; J. Berg, E.; Dugas, R.; van den Bos, K. H. W.; Doublet, M.-L.; Gonbeau, D.; Abakumov, A.M.; Van Tendeloo, G.; Tarascon, J.-M. pdf  url
doi  openurl
  Title Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3 Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 8278-8288  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The recent revival of the Na-ion battery concept has prompted intense activities in the search for new Na-based layered oxide positive electrodes. The largest capacity to date was obtained for a Na-deficient layered oxide that relies on cationic redox processes only. To go beyond this limit, we decided to chemically manipulate these Na-based layered compounds in a way to trigger the participation of the anionic network. We herein report the electrochemical properties of a Na-rich phase Na2IrO3, which can reversibly cycle 1.5 Na+ per formula unit while not suffering from oxygen release nor cationic migrations. Such large capacities, as deduced by complementary XPS, X-ray/neutron diffraction and transmission electron microscopy measurements, arise from cumulative cationic and anionic redox processes occurring simultaneously at potentials as low as 3.0 V. The inability to remove more than 1.5 Na+ is rooted in the formation of an O1-type phase having highly stabilized Na sites as confirmed by DFT calculations, which could rationalize as well the competing metal/oxygen redox processes in Na2IrO3. This work will help to define the most fertile directions in the search for novel high energy Na-rich materials based on more sustainable elements than Ir.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000388914500021 Publication Date 2016-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 45 Open Access  
  Notes The authors thank Montse Casas-Cabanas and Marine Reynaud for discussions about the FAULTS program, Sandra Van Aert for her great help in guiding us towards the use of the statistical parameter estimation method for establishing the O-O histogram, and Thomas Hansen and Vladimir Pomjakushin for their precious help in neutron diffraction experiments. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland, and at Institut Laue Langevin, Grenoble, France. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the U.S. department of Energy under contract No. DE-AC02-06CH11357 and is greatly acknowledged. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:135994 Serial 4287  
Permanent link to this record
 

 
Author Aghaei, M.; Lindner, H.; Bogaerts, A. pdf  url
doi  openurl
  Title Ion Clouds in the Inductively Coupled Plasma Torch: A Closer Look through Computations Type A1 Journal article
  Year 2016 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 88 Issue 88 Pages 8005-8018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We have computationally investigated the introduction of copper elemental particles in an inductively coupled plasma torch connected to a sampling cone, including for the first time the ionization of the sample. The sample is inserted as liquid particles, which are followed inside the entire torch, i.e., from the injector inlet up to the ionization and reaching the sampler. The spatial position of the ion clouds inside the torch as well as detailed information on the copper species fluxes at the position of the sampler orifice and the exhausts of the torch are provided. The effect of on- and off-axis injection is studied. We clearly show that the ion clouds of on-axis injected material are located closer to the sampler with less radial diffusion. This guarantees a higher transport efficiency through the sampler cone. Moreover, our model reveals the optimum ranges of applied power and flow rates, which ensure the proper position of ion clouds inside the torch, i.e., close enough to the sampler to increase the fraction that can enter the mass spectrometer and with minimum loss of material toward the exhausts as well as a sufficiently high plasma temperature for efficient ionization.  
  Address Research Group PLASMANT, Chemistry Department, University of Antwerp , Universiteitsplein 1, 2610 Antwerp, Belgium  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Wos 000381654800020 Publication Date 2016-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 9 Open Access  
  Notes The authors gratefully acknowledge financial support from the Fonds voor Wetenschappelijk Onderzoek (FWO), Grant Number 6713. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @ c:irua:135644 Serial 4293  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title How Oxygen Vacancies Activate CO2 Dissociation on TiO2 Anatase (001) Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 21659-21669  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption, dissociation, and diffusion of CO2 on the anatase (001) surface was studied using DFT by means of the generalized gradient approximation using the Perdew−Burcke−Ernzerhof (PBE)-functional and applying corrections for long-range dispersion interactions. Different stable adsorption configurations were identified for the fully oxidized surface. The most stable adsorption configuration is the monodentated carbonate-like structure. Small energy barriers were identified for the conversion of a physisorbed to a chemisorbed configuration.

CO2 dissociation is found to be unfeasible on the stoichiometric surface. The introduction of oxygen vacancy defects gives rise to new highly stable adsorption configurations with a stronger activation of the C−O bonds. This leads to the possibility of exothermic dissociation of CO2 with barriers up to 22.2 kcal/mol,

corresponding to chemical lifetimes of less than 4 s at 300 K. These reactions cause a CO molecule to be formed, which will easily desorb, and the reduced surface to become oxidized. It is clear that oxygen vacancy defects play a key role in the catalytic activity of an anatase (001) surface. Oxygen vacancies play an important role in the dissociation of CO2 on the anatase (001) surface, and will play a significant role in complex problems, such as the catalytic conversion of CO2 to value-added chemicals.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000384626800055 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 49 Open Access  
  Notes Stijn Huygh is funded as an aspirant of the Research Foundation Flanders (FWO, project number 11C0115N). This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:136164 Serial 4291  
Permanent link to this record
 

 
Author Mikhailova, D.; Karakulina, O.M.; Batuk, D.; Hadermann, J.; Abakumov, A.M.; Herklotz, M.; Tsirlin, A.A.; Oswald, S.; Giebeler, L.; Schmidt, M.; Eckert, J.; Knapp, M.; Ehrenberg, H. pdf  url
doi  openurl
  Title Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2upon Li Extraction and Insertion Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 7079-7089  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Layered Li(M,Li)O2 (where M is a transition metal) ordered rock-salt-type structures are used in advanced metal-ion batteries as one of the best hosts for the reversible intercalation of Li ions. Besides the conventional redox reaction involving oxidation/reduction of the M cation upon Li extraction/insertion, creating oxygen-located holes because of the partial oxygen oxidation increases capacity while maintaining the oxidized oxygen species in the lattice through high covalency of the M–O bonding. Typical degradation mechanism of the Li(M,Li)O2 electrodes involves partially irreversible M cation migration toward the Li positions, resulting in gradual capacity/voltage fade. Here, using LiRhO2 as a model system (isostructural and isoelectronic to LiCoO2), for the first time, we demonstrate an intimate coupling between the oxygen redox and M cation migration. A formation of the oxidized oxygen species upon electrochemical Li extraction coincides with transformation of the layered Li1–xRhO2 structure into the γ-MnO2-type rutile–ramsdellite intergrowth LiyRh3O6 structure with rutile-like [1 × 1] channels along with bigger ramsdellite-like [2 × 1] tunnels through massive and concerted Rh migration toward the empty positions in the Li layers. The oxidized oxygen dimers with the O–O distances as short as 2.26 Å are stabilized in this structure via the local Rh–O configuration reminiscent to that in the μ-peroxo-μ-hydroxo Rh complexes. The LiyRh3O6 structure is remarkably stable upon electrochemical cycling illustrating that proper structural implementation of the oxidized oxygen species can open a pathway toward deliberate employment of the anion redox chemistry in high-capacity/high-voltage positive electrodes for metal-ion batteries. Upon chemical or electrochemical oxidation, layered LiRhO2 shows a unique structural transformation that involves both cation migration and oxidation of oxygen resulting in a stable tunnel-like rutile−ramsdellite intergrowth LiyRh3O6 structure. This structure demonstrates excellent performance with the steady and reversible capacity of ∼200 mAh/g. The stability of LiyRh3O6 is rooted in the accommodation of partially oxidized oxygen species through the formation of short O−O distances that are compatible with the connectivity of RhO6 octahedra.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000380181400035 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Bundesministerium fur Bildung und Forschung, 03SF0477B ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:140848 Serial 4424  
Permanent link to this record
 

 
Author Berends, A.C.; Rabouw, F.T.; Spoor, F.C.M.; Bladt, E.; Grozema, F.C.; Houtepen, A.J.; Siebbeles, L.D.A.; de Donega, C.M. url  doi
openurl 
  Title Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 7 Issue 7 Pages 3503-3509  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Luminescent copper indium sulfide (CIS) nanocrystals are a potential solution to the toxicity issues associated with Cd- and Pb-based nanocrystals. However, the development of high-quality CIS nanocrystals has been complicated by insufficient knowledge of the electronic structure and of the factors that lead to luminescence quenching. Here we investigate the exciton decay pathways in CIS nanocrystals using time resolved photoluminescence and transient absorption spectroscopy. Core-only CIS nanocrystals with low quantum yield are compared to core/shell nanocrystals (CIS/ZnS and CIS/CdS) with higher quantum yield. Our measurements support the model of photoluminescence by radiative recombination of a conduction band electron with a localized hole. Moreover, we find that photoluminescence quenching in low-quantum-yield nanocrystals involves initially uncoupled decay pathways for the electron and hole. The electron decay pathway determines whether the exciton recombines radiatively or nonradiatively. The development of high-quality CIS nanocrystals should therefore focus on the elimination of electron traps.  
  Address  
  Corporate Author Thesis (up)  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000382603300037 Publication Date 2016-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 67 Open Access  
  Notes Approved Most recent IF: 9.353  
  Call Number UA @ lucian @ c:irua:135715 Serial 4308  
Permanent link to this record
 

 
Author Tang, Y.; Hunter, E.C.; Battle, P.D.; Sena, R.P.; Hadermann, J.; Avdeev, M.; Cadogan, J.M. pdf  url
doi  openurl
  Title Structural chemistry and magnetic properties of the perovskite Sr3Fe2TeO9 Type A1 Journal article
  Year 2016 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 242 Issue 242 Pages 86-95  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of perovskite-like Sr3Fe2TeO9 has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mossbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. The majority of the reaction product is shown to be a trigonal phase with a 2:1 ordered arrangement of Fe3+ and Te6+ cations. However, the sample is prone to nano twinning and tetragonal domains with a different pattern of cation ordering exist within many crystallites. Antiferromagnetic ordering exists in the trigonal phase at 300 K and Sr3Fe2TeO9 is thus the first example of a perovskite with 2:1 trigonal cation ordering to show long-range magnetic order. At 300 K the antiferromagnetic phase coexists with two paramagnetic phases which show spin -glass behaviour below similar to 80 K. (C) 2016 The Authors. Published by Elsevier Inc.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication London Editor  
  Language Wos 000382429600012 Publication Date 2016-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 12 Open Access  
  Notes Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:135682 Serial 4310  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neyts, E.C.; Partoens, B. pdf  doi
openurl 
  Title van der Waals density functionals applied to corundum-type sesquioxides : bulk properties and adsorption of CH3 and C6H6 on (0001) surfaces Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 23139-23146  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract van der Waals (vdW) forces play an important role in the adsorption of molecules on the surface of solids. However, the choice of the most suitable vdW functional for different systems is an essential problem which must be addressed for different systems. The lack of a systematic study on the performance of the vdW functionals in the bulk and adsorption properties of metal-oxides motivated us to examine different vdW approaches and compute the bulk and molecular adsorption properties of alpha-Cr2O3, alpha-Fe2O3, and alpha-Al2O3. For the bulk properties, we compared our results for the heat of formation, cohesive energy, lattice parameters and bond distances between the different vdW functionals and available experimental data. Next we studied the adsorption of benzene and CH3 molecules on top of different oxide surfaces. We employed different approximations to exchange and correlation within DFT, namely, the Perdew-Burke-Ernzerhof (PBE) GGA, (PBE)+U, and vdW density functionals [ DFT(vdW-DF/DF2/optPBE/optB86b/optB88)+U] as well as DFT-D2/D3(+U) methods of Grimme for the bulk calculations and optB86b-vdW(+U) and DFT-D2(+U) for the adsorption energy calculations. Our results highlight the importance of vdW interactions not only in the adsorption of molecules, but importantly also for the bulk properties. Although the vdW contribution in the adsorption of CH3 (as a chemisorption interaction) is less important compared to the adsorption of benzene (as a physisorption interaction), this contribution is not negligible. Also adsorption of benzene on ferryl/chromyl terminated surfaces shows an important chemisorption contribution in which the vdW interactions become less significant.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000382109300040 Publication Date 2016-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 6 Open Access  
  Notes ; This work was supported by the Strategic Initiative Materials in Flanders (SIM). The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:135701 Serial 4311  
Permanent link to this record
 

 
Author Cassidy, S.J.; Batuk, M.; Batuk, D.; Hadermann, J.; Woodruff, D.N.; Thompson, A.L.; Clarke, S.J. pdf  doi
openurl 
  Title Complex Microstructure and Magnetism in Polymorphic CaFeSeO Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 10714-10726  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structural complexity of the antiferromagnetic oxide selenide CaFeSeO is described. The compound contains puckered FeSeO layers composed of FeSe2O2 tetrahedra sharing all their vertexes. Two polymorphs coexist that can be derived from an archetype BaZnSO structure by cooperative tilting of the FeSe2O2 tetrahedra. The polymorphs differ in the relative arrangement of the puckered layers of vertex-linked FeSe2O2 tetrahedra. In a noncentrosymmetric Cmc21 polymorph (a = 3.89684(2) A, b = 13.22054(8) A, c = 5.93625(2) A) the layers are related by the C-centering translation, while in a centrosymmetric Pmcn polymorph, with a similar cell metric (a = 3.89557(6) A, b = 13.2237(6) A, c = 5.9363(3) A), the layers are related by inversion. The compound shows long-range antiferromagnetic order below a Neel temperature of 159(1) K with both polymorphs showing antiferromagnetic coupling via Fe-O-Fe linkages and ferromagnetic coupling via Fe-Se-Fe linkages within the FeSeO layers. The magnetic susceptibility also shows evidence for weak ferromagnetism which is modeled in the refinements of the magnetic structure as arising from an uncompensated spin canting in the noncentrosymmetric polymorph. There is also a spin glass component to the magnetism which likely arises from the disordered regions of the structure evident in the transmission electron microscopy.  
  Address Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QR, United Kingdom  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Wos 000385785700085 Publication Date 2016-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 6 Open Access  
  Notes We acknowledge the financial support of the EPSRC (Grants EP/I017844/1 and EP/M020517/1), the Leverhulme Trust (RPG-2014-221), and the Diamond Light Source (studentship support for S. J. Cassidy). We thank the ESTEEM2 network for enabling the electron microscopy investigations and the ISIS facility and the Diamond Light Source Ltd. for the award of beam time. We thank Dr. P. Manuel for assistance on WISH, Dr. R. I. Smith for assistance on GEM and POLARIS, and Dr. C. Murray and Dr. A. Baker for assistance on I11. Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:136823 Serial 4312  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 25923-25934  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various environmental applications, but the crucial question is whether plasma can be created inside catalyst pores and under which conditions. In practice, various catalytic support materials are used, with various dielectric constants. We investigate here the influence of the dielectric constant on the plasma properties inside catalyst pores and in the sheath in front of the pores, for various pore sizes. The calculations are performed by a two-dimensional fluid model for an atmospheric pressure dielectric barrier discharge in helium. The electron impact ionization rate, electron temperature, electron and ion density, as well as the potential distribution and surface charge density, are analyzed for a better understanding of the discharge behavior inside catalyst pores. The results indicate that, in a 100 μm pore, the electron impact ionization in the pore, which is characteristic for the plasma generation inside the pore, is greatly enhanced for dielectric constants below 300. Smaller pore sizes only yield enhanced ionization for smaller dielectric constants, i.e., up to εr = 200, 150, and 50 for pore sizes of 50, 30, and 10 μm. Thus, the most common catalyst supports, i.e., Al2O3 and SiO2, which have dielectric constants around εr = 8−11 and 4.2, respectively, should allow more easily that microdischarges can be formed inside catalyst pores, even for smaller pore sizes. On the other hand, ferroelectric materials with dielectric constants above 300 never seem to yield plasma enhancement inside catalyst pores, not even for 100 μm pore sizes. Furthermore, it is clear that the dielectric constant of the material has a large effect on the extent of plasma enhancement inside the catalyst pores, especially in the range between εr = 4 and εr = 200. The obtained results are explained in detail based on the surface charge density at the pore walls,

and the potential distribution and electron temperature inside and above the pores. The results obtained with this model are

important for plasma catalysis, as the production plasma species in catalyst pores might affect the catalyst properties, and thus

improve the applications of plasma catalysis.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000388429100029 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 34 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant G.0217.14N), the National Natural Science Foundation of China (Grant 11405019), and the China Postdoctoral Science Foundation (Grant 2015T80244). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:138602 Serial 4319  
Permanent link to this record
 

 
Author Karakulina, O.M.; Khasanova, N.R.; Drozhzhin, O.A.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V.; Abakumov, A.M. pdf  url
doi  openurl
  Title Antisite Disorder and Bond Valence Compensation in Li2FePO4F Cathode for Li-Ion Batteries Type A1 Journal article
  Year 2016 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 7578-7581  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000387518500004 Publication Date 2016-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 10 Open Access  
  Notes Russian Science Foundation, 16-19-00190 ; Fonds Wetenschappelijk Onderzoek, G040116N ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:139170 c:irua:138599 Serial 4320  
Permanent link to this record
 

 
Author Bladt, E.; van Dijk-Moes, R.J.A.; Peters, J.; Montanarella, F.; de Mello Donega, C.; Vanmaekelbergh, D.; Bals, S. url  doi
openurl 
  Title Atomic Structure of Wurtzite CdSe (Core)/CdS (Giant Shell) Nanobullets Related to Epitaxy and Growth Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 14288-14293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hetero-nanocrystals consisting of a CdSe core and a giant CdS shell have shown remarkable optical properties which are promising for applications in opto-electrical devices. Since these properties sensitively depend on the size and shape, a morphological characterization is of high interest. Here, we present a High Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) study of CdSe (core) / CdS (giant shell) hetero-nanocrystals. Electron tomography reveals that the nanocrystals have a bullet shape, either ending in a tip or a small dip, and that the CdSe core is positioned closer to the tip (or dip) than to the hexagonal base. Based on a high resolution HAADF-STEM study, we were able to determine all the surface facets. We present a heuristic model for the different growth stages of the CdS crystal around the CdSe core.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000387095000026 Publication Date 2016-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 28 Open Access OpenAccess  
  Notes S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). D.V. wishes to acknowledge the Dutch Foundation for Fundamental Research on Matter (FOM) in the programme ‘Designing Dirac Carriers in Semiconductor Superstructures’. E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:138251 Serial 4325  
Permanent link to this record
 

 
Author Tong, Y.; Bladt, E.; Aygüler, M.F.; Manzi, A.; Milowska, K.Z.; Hintermayr, V.A.; Docampo, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. pdf  url
doi  openurl
  Title Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication Type A1 Journal article
  Year 2016 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 55 Issue 55 Pages 13887-13892  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000387024200040 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 549 Open Access Not_Open_Access  
  Notes This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T.) and by the Alexander von Humboldt-Stiftung (L.P.). P.D. acknowledges support from the European Union through the award of a Marie Curie Intra-European Fellowship. M.A. acknowledges the Scientific and Technological Research Council of Turkey. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). E.B. gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO Vlaanderen).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @ c:irua:138215 Serial 4327  
Permanent link to this record
 

 
Author Polavarapu, L.; Zanaga, D.; Altantzis, T.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 138 Issue 138 Pages 11453-11456  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core−shell NPs (nanorods and nanocubes) into octahedral nanorattles via roomtemperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000383410700008 Publication Date 2016-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 75 Open Access OpenAccess  
  Notes This work has been funded by the European Research Council (ERC Advanced Grant No. 267867- PLASMAQUO, ERC Starting Grant No. 335078-COLOURATOMS) and Spanish MINECO (Grants MAT2013-45168-R and MAT2013-46101-R); ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:137123 Serial 4329  
Permanent link to this record
 

 
Author Snoeckx, R.; Ozkan, A.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 409-424  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H2O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO2 conversion is plasma technology. To investigate whether it is also promising for this combined conversion, we performed a series of experiments and developed a chemical kinetics plasma chemistry model for a deeper understanding of the process. The main products formed were the syngas components CO and H2, as well as O2 and H2O2, whereas methanol formation was only observed in the parts-per-billion to parts-per-million range. The syngas ratio, on the other hand, could easily be controlled by varying both the water content and/or energy input. On the basis of the model, which was validated with experimental results, a chemical kinetics analysis was performed, which allowed the construction and investigation of the different pathways leading to the observed experimental results and which helped to clarify these results. This approach allowed us to evaluate this technology on the basis of its underlying chemistry and to propose solutions on how to further improve the formation of value-added products by using plasma technology.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000394571900012 Publication Date 2016-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 25 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Inter-university Attraction Pole (IAP; grant number IAP-VII/12, P7/34) program “PSI-Physical Chemistry of Plasma-Surface Interactions”, financially supported by the Belgian Federal Office for Science Policy (BELSPO), as well as the Fund for Scientific Research Flanders (FWO; grant number G.0066.12N). This work was performed in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. We also would like to thank the financial support given by “Fonds David et Alice Van Buuren”. Finally, we are very grateful to M. Kushner for providing the Global kin code, to T. Dufour for his support during the experiments, and to R. Aerts for his support during the model development. Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:139880 Serial 4412  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. url  doi
openurl 
  Title High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning Type A1 Journal article
  Year 2016 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 139 Issue 139 Pages 107-110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show here that thermal treatment of small seeds results in extensive twinning and a subsequent drastic yield improvement (>85%) in the formation of pentatwinned nanoparticles, with pre-selected morphology (nanorods, bipyramids and decahedra) and aspect ratio. The “quality” of the seeds thus defines the yield of the obtained nanoparticles, which in the case of nanorods avoids the need for additives such as Ag+ ions. This modified seeded growth method also improves reproducibility, as the seeds can be stored for extended periods of time without compromising the quality of the final nanoparticles. Additionally, minor modification of the seeds with Pd allows their localization within the final particles, which opens new avenues toward mechanistic studies. All together, these results represent a paradigm shift in anisotropic gold nanoparticle synthesis.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000392036900025 Publication Date 2016-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 267 Open Access OpenAccess  
  Notes Financial support is acknowledged from the European Research Council through ERC Advanced Grant Plasmaquo and the ERC Starting Grant COLOURATOM. T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @ c:irua:139018UA @ admin @ c:irua:139018 Serial 4339  
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Montes-García, V.; Polavarapu, L.; Solís, D.M.; Heidari, H.; La Porta, A.; Angiola, M.; Martucci, A.; Taboada, J.M.; Obelleiro, F.; Bals, S.; Pérez-Juste, J.; Pastoriza-Santos, I. pdf  url
doi  openurl
  Title Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 9169-9180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Palladium nanoparticles (NPs) have received tremendous attention over the years due to their high catalytic activity for various chemical reactions. However, unlike other noble metal nanoparticles such as Au and Ag NPs, they exhibit poor plasmonic properties with broad extinction spectra and less scattering efficiency, and thus limiting their applications in the field of plasmonics. Therefore, it has been challenging to integrate tunable and strong plasmonic properties into catalytic Pd nanoparticles. Here we show that plasmonic Au@Pd nanorods (NRs) with relatively narrow and remarkably tunable optical responses in the NIR region can be obtained by directional growth of Pd on penta-twinned Au NR seeds. We found the presence of bromide ions facilitates the stabilization of facets for the directional growth of Pd shell to obtain Au@Pd nanorods (NR) with controlled length scales. Interestingly, it turns out the Au NR supported Pd NRs exhibit much narrow extinction compared to pure Pd NRs, which makes them suitable for plasmonic sensing applications. Moreover, these nanostructures display, to the best of our knowledge, one of the highest ensemble refractive index sensitivity values reported to date (1067 nm per refractive index unit, RIU). Additionally, we showed the application of such plasmonic Au@Pd NRs for localized surface plasmon resonance (LSPR)-based sensing of hydrogen both in solution as well as on substrate. Finally, we demonstrate the integration of excellent plasmonic properties in catalytic palladium enables the in situ monitoring of a reaction progress by surface-enhanced Raman scattering. We postulate the proposed approach to boost the plasmonic properties of Pd nanoparticles will ignite the design of complex shaped plasmonic Pd NPs to be used in various plasmonic applications such as sensing and in situ monitoring of various chemical reactions.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000391080900036 Publication Date 2016-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 80 Open Access OpenAccess  
  Notes Funding from Spanish Ministerio de Economía y Competitividad (Grants MAT2013-45168-R and MAT2016-77809-R) is gratefully acknowledge. A.L.P. and S.B. acknowledge support by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). L. P. acknowledges the financial support from by the Alexander von Humboldt-Stiftung. V. M.-G. acknowledges the financial support from FPU scholarship from the Spanish MINECO. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @ c:irua:139513 Serial 4344  
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 25210-25224  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The hydrogenation of carbon dioxide in a dielectric barrier discharge plasma is studied with a one-dimensional fluid model. The spatially averaged densities of the most important end products formed in the CO2/H2 mixture are determined as a function of the initial gas mixing ratio. CO and H2O are found to be present at the highest densities and to a lower content also CH4, C2H6, CH2O, CH3OH, O2, and some other higher hydrocarbons and oxygenates. The main underlying reaction

pathways for the conversion of the inlet gases and the formation of CO, CH4, CH2O, and CH3OH are pointed out for various gas mixing ratios. The CO2 conversion and the production of value added products is found to be quite low, also in comparison to a CO2/CH4 mixture, and this can be explained by the model.
 
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Wos 000387737900007 Publication Date 2016-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 16 Open Access  
  Notes Federaal Wetenschapsbeleid; Fonds Wetenschappelijk Onderzoek; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:140082 c:irua:139167 Serial 4414  
Permanent link to this record
 

 
Author Naik, P.V.; Wee, L.H.; Meledina, M.; Turner, S.; Li, Y.; Van Tendeloo, G.; Martens, J.A.; Vankelecom, I.F.J. pdf  doi
openurl 
  Title PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 4 Issue 4 Pages 12790-12798  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The design of functional micro- and mesostructured composite materials is significantly important for separation processes. Mesoporous silica is an attractive material for fast diffusion, while microporous zeolitic imidazolate frameworks (ZIFs) are beneficial for selective adsorption and diffusion. In this work, ZIF-71 and ZIF-8 nanocrystals were grown on the surface of mesoporous silica spheres (MSS) via the seeding and regrowth approach in order to obtain monodispersed MSS-ZIF-71 and MSS-ZIF-8 spheres with a particle size of 2-3 mm. These MSS-ZIF spheres were uniformly dispersed into a polydimethylsiloxane (PDMS) matrix to prepare mixed matrix membranes (MMMs). These MMMs were evaluated for the separation of ethanol from water via pervaporation. The pervaporation results reveal that the MSS-ZIF filled MMMs substantially improve the ethanol recovery in both aspects viz. flux and separation factor. These MMMs outperforms the unfilled PDMS membranes and the conventional carbon and zeolite filled MMMs. As expected, the mesoporous silica core allows very fast flow of the permeating compound, while the hydrophobic ZIF coating enhances the ethanol selectivity through its specific pore structure, hydrophobicity and surface chemistry. It can be seen that ZIF-8 mainly has a positive impact on the selectivity, while ZIF-71 enhances fluxes more significantly.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000382015100012 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 26 Open Access  
  Notes Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:137188 Serial 4395  
Permanent link to this record
 

 
Author Sena, R.P.; Hadermann, J.; Chin, C.-M.; Hunter, E.C.; Battle, P.D. url  doi
openurl 
  Title Structural chemistry and magnetic properties of the perovskite SrLa2Ni2TeO9 Type A1 Journal article
  Year 2016 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 243 Issue 243 Pages 304-311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of SrLa2Ni2TeO9 has been synthesized using a standard ceramic method and characterized by neutron diffraction, magnetometry and electron microscopy. The compound adopts a monoclinic, perovskite-like structure with space group P2(1)/n in and unit cell parameters a=5.6008(1), b = 5.5872(1), c=7.9018(2) angstrom, p=90.021(6)degrees at room temperature. The two crystallographically-distinct B sites are occupied by Ni2+ and Te6+ in ratios of 83:17 and 50:50. Both ac and dc magnetometry suggest that the compound is a spin glass below 35 K but the neutron diffraction data show that some regions of the sample are antiferromagnetic. Electron microscopy revealed twinning on a nanoscale and local variations in composition. These defects are thought to be responsible for the presence of two distinct types of antiferromagnetic ordering. (C) 2016 The Authors. Published by Elsevier Inc.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication London Editor  
  Language Wos 000384874100041 Publication Date 2016-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:137232 Serial 4403  
Permanent link to this record
 

 
Author Li, M.-R.; Deng, Z.; Lapidus, S.H.; Stephens, P.W.; Segre, C.U.; Croft, M.; Sena, R.P.; Hadermann, J.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9: in Search of Jahn-Teller Distorted Cr(II) Oxide Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 10135-10142  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel 6H-type hexagonal perovskite Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 was prepared at high pressure (6 GPa) and temperature (1773 K). Both transmission electron microscopy and synchrotron powder X-ray diffraction data demonstrate that Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 crystallizes in P6(3)/mmc with face-shared (Cr0.97(1)Te0.03(1))O-6 octahedral pairs interconnected with TeO6 octahedra via corner-sharing. Structure analysis shows a mixed Cr2+/Cr3+ valence state with similar to 10% Cr2+. The existence of Cr2+ in Ba-3(Cr0.10(1)2+Cr0.87(1)3+Te0.036+)(2)TeO9 is further evidenced by X-ray absorption near-edge spectroscopy. Magnetic properties measurements show a paramagnetic response down to 4 K and a small glassy-state curvature at low temperature. In this work, the octahedral Cr2+O6 component is stabilized in an oxide material for the first time; the expected Jahn-Teller distortion of high-spin (d(4)) Cr2+ is not found, which is attributed to the small proportion of Cr2+ (similar to 10%) and the face-sharing arrangement of CrO6 octahedral pairs, which structurally disfavor axial distortion.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000385785700026 Publication Date 2016-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:140313 Serial 4440  
Permanent link to this record
 

 
Author Folens, K.; Leus, K.; Nicomel, N.R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. pdf  doi
openurl 
  Title Fe3O4@MIL-101-A selective and regenerable adsorbent for the removal of as species from water Type A1 Journal article
  Year 2016 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2016 Issue 2016 Pages 4395-4401  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The chromium-based metal organic framework MIL-101(Cr) served as a host for the in situ synthesis of Fe3O4 nano particles. This hybrid nanomaterial was tested as an adsorbent for arsenite and arsenate species in groundwater and surface water and showed excellent affinity towards As-III and As-V species. The adsorption capacities of 121.5 and 80.0 mg g(-1) for arsenite and arsenate species, respectively, are unprecedented. The presence of Ca2+, Mg2+, and phosphate ions and natural organic matter does not affect the removal efficiency or the selectivity. The structural integrity of the hybrid nanomaterial was maintained during the adsorption process and even after desorption through phosphate elution. Additionally, no significant leaching of Cr or Fe species was observed.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000386166900019 Publication Date 2016-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 27 Open Access  
  Notes Approved Most recent IF: 2.444  
  Call Number UA @ lucian @ c:irua:139220 Serial 4442  
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K. pdf  doi
openurl 
  Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
  Year 2016 Publication Topics in Current Chemistry Abbreviated Journal Topics Curr Chem  
  Volume 374 Issue 374 Pages 81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Springer international publishing ag Place of Publication Cham Editor  
  Language Wos 000391178900006 Publication Date 2016-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.033 Times cited 50 Open Access  
  Notes ; ; Approved Most recent IF: 4.033  
  Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: