toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mary Joy, R.; Pobedinskas, P.; Bourgeois, E.; Chakraborty, T.; Görlitz, J.; Herrmann, D.; Noël, C.; Heupel, J.; Jannis, D.; Gauquelin, N.; D'Haen, J.; Verbeeck, J.; Popov, C.; Houssiau, L.; Becher, C.; Nesládek, M.; Haenen, K. url  doi
openurl 
  Title Germanium vacancy centre formation in CVD nanocrystalline diamond using a solid dopant source Type A3 Journal article
  Year 2023 Publication Science talks Abbreviated Journal Science Talks  
  Volume 5 Issue Pages 100157  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2772-5693 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:196969 Serial 8791  
Permanent link to this record
 

 
Author Lin, A.; Gromov, M.; Nikiforov, A.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Characterization of Non-Thermal Dielectric Barrier Discharges for Plasma Medicine: From Plastic Well Plates to Skin Surfaces Type A1 Journal Article
  Year 2023 Publication Plasma Chemistry and Plasma Processing Abbreviated Journal Plasma Chem Plasma Process  
  Volume 43 Issue 6 Pages 1587-1612  
  Keywords A1 Journal Article; Non-thermal plasma · Plasma medicine · Dielectric barrier discharge · Plasma diagnostics · Plasma surface interaction · In situ plasma monitoring; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract technologies have been expanding, and one of the most exciting and rapidly growing

applications is in biology and medicine. Most biomedical studies with DBD plasma systems are performed in vitro, which include cells grown on the surface of plastic well plates, or in vivo, which include animal research models (e.g. mice, pigs). Since many DBD systems use the biological target as the secondary electrode for direct plasma generation and treatment, they are sensitive to the surface properties of the target, and thus can be altered based on the in vitro or in vivo system used. This could consequently affect biological response from plasma treatment. Therefore, in this study, we investigated the DBD plasma behavior both in vitro (i.e. 96-well flat bottom plates, 96-well U-bottom plates, and 24-well flat bottom plates), and in vivo (i.e. mouse skin). Intensified charge coupled device (ICCD) imaging was performed and the plasma discharges were visually distinguishable between the different systems. The geometry of the wells did not affect DBD plasma generation for low application distances (≤ 2 mm), but differentially affected plasma uniformity on the bottom of the well at greater distances. Since DBD plasma treatment in vitro is rarely performed in dry wells for plasma medicine experiments, the effect of well wetness was also investigated. In all in vitro cases, the uniformity of the DBD plasma was affected when comparing wet versus dry wells, with the plasma in the wide-bottom wells appearing the most similar to plasma generated on mouse skin. Interestingly, based on quantification of ICCD images, the DBD plasma intensity per surface area demonstrated an exponential one-phase decay with increasing application distance, regardless of the in vitro or in vivo system. This trend is similar to that of the energy per pulse of plasma, which is used to determine the total plasma treatment energy for biological systems. Optical emission spectroscopy performed on the plasma revealed similar trends in radical species generation between the plastic well plates and mouse skin. Therefore, taken together, DBD plasma intensity per surface area may be a valuable parameter to be used as a simple method for in situ monitoring during biological treatment and active plasma treatment control, which can be applied for in vitro and in vivo systems.
 
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 001072607700001 Publication Date 2023-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access Not_Open_Access  
  Notes This work was partially funded by the Research Foundation—Flanders (FWO) and supported by the following Grants: 12S9221N (A. L.), G044420N (A. L. and A. B.), and G033020N (A.B.). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on “Therapeutical applications of Cold Plasmas” (CA20114; PlasTHER). Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number PLASMANT @ plasmant @c:irua:200285 Serial 8970  
Permanent link to this record
 

 
Author Ignatova, K.; Vlasov, E.; Seddon, S.D.; Gauquelin, N.; Verbeeck, J.; Wermeille, D.; Bals, S.; Hase, T.P.A.; Arnalds, U.B. pdf  url
doi  openurl
  Title Phase coexistence induced surface roughness in V2O3/Ni magnetic heterostructures Type A1 Journal Article
  Year 2024 Publication APL Materials Abbreviated Journal  
  Volume 12 Issue 4 Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract We present an investigation of the microstructure changes in V2O3 as it goes through its inherent structural phase transition. Using V2O3 films with a well-defined crystal structure deposited by reactive magnetron sputtering on r-plane Al2O3 substrates, we study the phase coexistence region and its impact on the surface roughness of the films and the magnetic properties of overlying Ni magnetic layers in V2O3/Ni hybrid magnetic heterostructures. The simultaneous presence of two phases in V2O3 during its structural phase transition was identified with high resolution x-ray diffraction and led to an increase in surface roughness observed using x-ray reflectivity. The roughness reaches its maximum at the midpoint of the transition. In V2O3/Ni hybrid heterostructures, we find a concomitant increase in the coercivity of the magnetic layer correlated with the increased roughness of the V2O3 surface. The chemical homogeneity of the V2O3 is confirmed through transmission electron microscopy analysis. High-angle annular dark field imaging and electron energy loss spectroscopy reveal an atomically flat interface between Al2O3 and V2O3, as well as a sharp interface between V2O3 and Ni.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 001202661800003 Publication Date 2024-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access  
  Notes This work was supported by the funding from the University of Iceland Research Fund, the Icelandic Research Fund Grant No. 207111. Instrumentation funding from the Icelandic Infrastructure Fund is acknowledged. This work was based on experiments per- formed at the BM28 (XMaS) beamline at the European Synchrotron Radiation Facility, Grenoble, France. XMaS is a National Research Facility funded by the UK EPSRC and managed by the Universi- ties of Liverpool and Warwick. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717—ESTEEM3. Approved Most recent IF: 6.1; 2024 IF: 4.335  
  Call Number EMAT @ emat @c:irua:205569 Serial 9120  
Permanent link to this record
 

 
Author Ni, S.; Houwman, E.; Gauquelin, N.; Chezganov, D.; Van Aert, S.; Verbeeck, J.; Rijnders, G.; Koster, G. url  doi
openurl 
  Title Stabilizing perovskite Pb(Mg0.33Nb0.67)O3-PbTiO3 thin films by fast deposition and tensile mismatched growth template Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 16 Issue 10 Pages 12744-12753  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Because of its low hysteresis, high dielectric constant, and strong piezoelectric response, Pb(Mg1/3Nb2/3)O-3-PbTiO3 (PMN-PT) thin films have attracted considerable attention for the application in PiezoMEMS, field-effect transistors, and energy harvesting and storage devices. However, it remains a great challenge to fabricate phase-pure, pyrochlore-free PMN-PT thin films. In this study, we demonstrate that a high deposition rate, combined with a tensile mismatched template layer can stabilize the perovskite phase of PMN-PT films and prevent the nucleation of passive pyrochlore phases. We observed that an accelerated deposition rate promoted mixing of the B-site cation and facilitated relaxation of the compressively strained PMN-PT on the SrTiO3 (STO) substrate in the initial growth layer, which apparently suppressed the initial formation of pyrochlore phases. By employing La-doped-BaSnO3 (LBSO) as the tensile mismatched buffer layer, 750 nm thick phase-pure perovskite PMN-PT films were synthesized. The resulting PMN-PT films exhibited excellent crystalline quality close to that of the STO substrate.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 001176343700001 Publication Date 2024-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.5 Times cited Open Access  
  Notes We would like to acknowledge the Netherlands Organization for Scientific Research (NWO) for the financial support of this work. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717-ESTEEM3. Approved Most recent IF: 9.5; 2024 IF: 7.504  
  Call Number UA @ admin @ c:irua:204754 Serial 9174  
Permanent link to this record
 

 
Author Verchenko, V.Y.; Wei, Z.; Tsirlin, A.A.; Callaert, C.; Jesche, A.; Hadermann, J.; Dikarev, E.V.; Shevelkov, A.V. pdf  url
doi  openurl
  Title Crystal growth of the Nowotny chimney ladder phase Fe2Ge3 : exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance Type A1 Journal article
  Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 29 Issue 23 Pages 9954-9963  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.'));  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000418206600013 Publication Date 2017-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access OpenAccess  
  Notes ; The authors thank Dr. Sergey Kazakov and Oleg Tyablikov for their help with the PXRD experiments. V.Y.V. appreciates the help of Dr. Sergey Dorofeev in provision and handling of the Mo(CO)<INF>6</INF> reagent. The work is supported by the Russian Science Foundation, Grant No. 17-13-01033. V.Y.V. appreciates the support from the European Regional Development Fund, Project No. TK134. A.A.T. acknowledges financial support by the Federal Ministry for Education and Research under the Sofia Kovalevskaya Award of the Alexander von Humboldt Foundation. E.V.D. thanks the National Science Foundation, Grant No. CHE-1152441. C.C. acknowledges the support from the University of Antwerp through the BOF Grant No. 31445. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:148531 Serial 4869  
Permanent link to this record
 

 
Author Pokatilov, E.P.; Fomin, V.M.; Balaban, S.N.; Gladilin, V.N.; Klimin, S.N.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Collaert, N.; van Rossum, M.; de Meyer, K. doi  openurl
  Title Distribution of fields and charge carriers in cylindrical nanosize silicon-based metal-oxide-semiconductor structures Type A1 Journal article
  Year 1999 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 85 Issue Pages 6625-6631  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000079871200053 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.068; 1999 IF: 2.275  
  Call Number UA @ lucian @ c:irua:24444 Serial 743  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B. doi  openurl
  Title Quantum transport in a nanosize double-gate metal-oxide-semiconductor field-effect transistor Type A1 Journal article
  Year 2004 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 96 Issue Pages 2305-2310  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000223055100081 Publication Date 2004-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.068; 2004 IF: 2.255  
  Call Number UA @ lucian @ c:irua:49454 Serial 2792  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Magnus, W.; Schoenmaker, W.; Sorée, B. doi  openurl
  Title Quantum transport in a nanosize silicon-on-insulator metal-oxide-semiconductor field effect transistor Type A1 Journal article
  Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 93 Issue Pages 1230-1240  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000180134200069 Publication Date 2003-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 16 Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:40874 Serial 2793  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue Pages 124505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312829400128 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136433 Serial 4510  
Permanent link to this record
 

 
Author Rouvière, J.-L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D. doi  openurl
  Title Improved strain precision with high spatial resolution using nanobeam precession electron diffraction Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue Pages 241913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10−4 is obtained with a probe size approaching 1 nm in diameter.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328706500031 Publication Date 2013-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 53 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136442 Serial 4502  
Permanent link to this record
 

 
Author Gauquelin, N.; Zhang, H.; Zhu, G.; Wei, J.Y.T.; Botton, G.A. url  doi
openurl 
  Title Atomic-scale identification of novel planar defect phases in heteroepitaxial YBa2Cu3O7-\delta thin films Type A1 Journal article
  Year 2018 Publication AIP advances Abbreviated Journal Aip Adv  
  Volume 8 Issue 5 Pages 055022  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We have discovered two novel types of planar defects that appear in heteroepitaxial YBa2Cu3O7-delta(YBCO123) thin films, grown by pulsed-laser deposition (PLD) either with or without a La2/3Ca1/3MnO3 (LCMO) overlayer, using the combination of highangle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and electron energy loss spectroscopy (EELS) mapping for unambiguous identification. These planar lattice defects are based on the intergrowth of either a BaO plane between two CuO chains or multiple Y-O layers between two CuO2 planes, resulting in non-stoichiometric layer sequences that could directly impact the high-Tc superconductivity. (C) 2018 Author(s).  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication Melville, NY Editor  
  Language Wos 000433954000022 Publication Date 2018-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.568 Times cited 1 Open Access OpenAccess  
  Notes ; We are thankful to Julia Huang for FIB TEM sample preparation. This work is supported by NSERC (through Discovery Grants to GAB and JYTW) and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by McMaster University, the Canada Foundation for Innovation and NSERC. N.G. acknowledges H. Idrissi for useful discussions. ; Approved Most recent IF: 1.568  
  Call Number UA @ lucian @ c:irua:152063 Serial 5013  
Permanent link to this record
 

 
Author Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D.G.; Botton, G.A.; Wei, J.Y.T. doi  openurl
  Title Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal  
  Volume 2 Issue 3 Pages 033803  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7-delta grown by pulsed laser deposition are annealed at up to 700 atm O-2 and 900 degrees C, in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15-delta and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9-delta and YBa2Cu6O10-delta phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7-delta powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Physical Society Place of Publication College Park, Md Editor  
  Language Wos 000428244900004 Publication Date 2018-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access Not_Open_Access  
  Notes ; This work is supported by NSERC, CFI-OIT, and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by the Canada Foundation for Innovation under the Major Science Initiative program, McMaster University, and NSERC. The XAS work was performed at the Canadian Light Source, which is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:150829 Serial 4982  
Permanent link to this record
 

 
Author Antipov, E.V.; Putilin, S.N.; Shpanchenko, R.V.; Alyoshin, V.A.; Rozova, M.G.; Abakumov, A.M.; Mikhailova, D.A.; Balagurov, A.M.; Lebedev, O.; Van Tendeloo, G. doi  openurl
  Title Structural features, oxygen and fluorine doping in Cu-based superconductors Type A1 Journal article
  Year 1997 Publication Physica: C : superconductivity T2 – International Conference on Materials and Mechanisms of, Superconductivity – High Temperature Superconductors V, Feb. 28-Mar. 04, 1997, Beijing, Peoples R. China Abbreviated Journal Physica C  
  Volume 282 Issue Part 1 Pages 61-64  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The variation of structures and superconducting properties by changing extra oxygen or fluorine atoms concentration in Hg-based Cu mixed oxides and YBa2Cu3O6+delta was studied. The data obtained by NPD study of Hg-1201 can be considered as an evidence of the conventional oxygen doping mechanism with 2 delta holes per (CuO2) layer. The extra oxygen atom was found to be located in the middle of the Hg mesh only. Different formal charges of oxygen and fluorine inserted into reduced 123 structure results in its distinct variations. The fluorine incorporation into strongly reduced YBa2Cu3O6+delta causes a significant structural rearrangement and the formation of a new compound with a composition close to YBa2Cu3O6F2 (tetragonal alpha = 3.87 Angstrom and c approximate to 13 Angstrom), which structure was deduced from the combined results of X-ray diffraction, electron diffraction and high resolution electron microscopy. Fluorination treatment by XeF2 of nonsuperconducting 123 samples causes an appearance of bulk superconductivity with T-c up to 94K.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Elsevier Science Place of Publication Amsterdam Editor  
  Language Wos A1997XZ90400019 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.404; 1997 IF: 2.199  
  Call Number UA @ lucian @ c:irua:95866 Serial 3237  
Permanent link to this record
 

 
Author Lin, S.-H.; Milošević, M.V.; Covaci, L.; Janko, B.; Peeters, F.M. url  doi
openurl 
  Title Quantum rotor in nanostructured superconductors Type A1 Journal article
  Year 2014 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 4 Issue Pages 4542-4546  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Nature Publishing Group Place of Publication London Editor  
  Language Wos 000333555300007 Publication Date 2014-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 4 Open Access  
  Notes ; The work was supported by the Flemish Science Foundation (FWO-Vl), the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract W-31-109-Eng-38, and the US National Science Foundation via NSF-NIRT ECS-0609249. ; Approved Most recent IF: 4.259; 2014 IF: 5.578  
  Call Number UA @ lucian @ c:irua:116848 Serial 2785  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H. doi  openurl
  Title Electroluminescence spectra of an STM-tip-induced quantum dot Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 21 Issue Pages 270-274  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000220873300024 Publication Date 2004-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:44291 Serial 901  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H. doi  openurl
  Title Influence of the characteristics of the STM-tip on the electroluminescence spectra Type A1 Journal article
  Year 2005 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 27 Issue Pages 13-20  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000227813200003 Publication Date 2004-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 2005 IF: 0.946  
  Call Number UA @ lucian @ c:irua:52793 Serial 1645  
Permanent link to this record
 

 
Author Yang, T.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P.W.; Hamberger, J.; Tsirlin, A.A.; Ramanujachary, K.V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J.; Greenblatt, M. pdf  doi
openurl 
  Title _BiMnFe2O6, a polysynthetically twinned hcp MO structure Type A1 Journal article
  Year 2010 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 1 Issue 6 Pages 751-762  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The most efficient use of spatial volume and the lowest potential energies in the metal oxide structures are based on cubic close packing (ccp) or hexagonal close packing (hcp) of anions with cations occupying the interstices. A promising way to tune the composition of close packed oxides and design new compounds is related to fragmenting the parent structure into modules by periodically spaced planar interfaces, such as twin planes at the unit cell scale. The unique crystal chemistry properties of cations with a lone electron pair, such as Bi3+ or Pb2+, when located at interfaces, enables them to act as chemical scissors, to help relieve configurational strain. With this approach, we synthesized a new oxide, BiMnFe2O6, where fragments of the hypothetical hcp oxygen-based MO structure (the NiAs structure type), for the first time, serve as the building modules in a complex transition metal oxide. Mn3+ and Fe3+ ions are randomly distributed in two crystallographically independent sites (M1 and M2). The structure consists of quasi two-dimensional blocks of the 2H hexagonal close packed MO structure cut along the (114) crystal plane of the hcp lattice and stacked along the c axis. The blocks are related by a mirror operation that allows BiMnFe2O6 to be considered as a polysynthetically twinned 2H hcp MO structure. The transition to an AFM state with an incommensurate spin configuration at [similar] 212 K is established by 57Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat and low temperature powder neutron diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000283939200013 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 12 Open Access  
  Notes Approved Most recent IF: 8.668; 2010 IF: NA  
  Call Number UA @ lucian @ c:irua:85823 Serial 3517  
Permanent link to this record
 

 
Author Hawrylak, P.; Peeters, F.; Ensslin, K. pdf  doi
openurl 
  Title Carbononics : integrating electronics, photonics and spintronics with graphene quantum dots Preface Type Editorial
  Year 2016 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R  
  Volume 10 Issue 10 Pages 11-12  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Wiley-v c h verlag gmbh Place of Publication Weinheim Editor  
  Language Wos 000368814500002 Publication Date 2016-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.032 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.032  
  Call Number UA @ lucian @ c:irua:131600 Serial 4146  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: