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Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has
intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up
classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum
dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a
quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this
nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational
field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling
spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.

T
he classical rotor, a macroscopic particle of mass m confined to a ring, is one of the most studied system in
classical mechanics. In a gravitational field the rotor becomes a pendulum with its stable equilibrium at the
bottom. Counter-intuitively, the pendulum can also be stabilized at the top by subjecting the pivot to an

appropriate drive1, in a state referred to as an inverted pendulum. Further interest in classical rotors arose from
the fact that if one applies periodic kicks to the pendulum, its dynamics becomes chaotic. In contrast to classical
rotors, quantum rotors are harder to realize2. However, with quantum effects coming into play, quantum rotors
furnish even more abundant phenomena than their classical counterparts. For example, the quantum kicked
rotor3 is one of the most featured models of quantum chaos4 and has various applications5–9.

Here we show how a quantum rotor can be obtained in nanostructured superconductors. The idea is to trap
quasiparticle excitations in a ring-shaped confinement, i.e. a Mexican hat potential, where quasiparticles can form
Andreev bound states10. The desired potential can be achieved in e.g. annular S-N-S junction [see Fig. 1(a)], a
superconducting film with a ring-shaped surface etch [‘‘blind’’ ring11; see Fig. 1(b)], or under a perpendicularly
magnetized ferromagnetic disk [Fig. 1(c)] where screening currents suppress the superconducting order para-
meter mostly within a ring right under the edge of the disk12,13. Very recently, it became possible to ‘‘draw’’ the
suppression of superconductivity practically at will by locally applying electric field in a ferroelectric/super-
conductor (FE/SC) bilayer via scanning (AFM) tip [see in Fig. 1(d) and Ref. 14 for details]. On the other hand,
to harbor the Andreev bound states, the ring region should preferably be in the clean limit. As discussed later in
this manuscript, favorable conditions for experimental detection of the rotor states include: (1) a wide enough
ring region, in the order of several coherence lengths, and (2) a sufficiently large ring radius when compared to the
ring width, so that the tunneling through the central potential hill is suppressed. Thus, for conventional super-
conductors such as Pb or Nb, if a ring is fabricated with its width greater than the e-beam lithography resolution
(on the order of several tens of nanometers), the ring radius would be on the order of several hundreds of
nanometers. It would not be trivial to make these conventional superconductors with such long mean free paths,
although recent experiments by the Roditchev lab15 show that several monolayers of Pb, when deposited onto a Si
substrate, become crystalline and exhibit longer mean free paths than bulk Pb. In this respect, graphene-super-
conductor hybrid is ideal for the realization of our proposal16–18. Indeed, superconductor can be nanostructured
with a periodic array of ring perforations (using e.g. e-beam lithography) and covered with a graphene flake[see
Fig. 1(e)], so that graphene harbors proximity-induced superconductivity with normal regions above the rings. In
such a case, the high crystal quality of graphene and therefore the long mean free path (,mm) would guarantee the
appearance of the quantum rotor and facilitate its observation. Notably, this would be the very first realization of a
superconducting quantum rotor in real space, different from the ones realized in Josephson junctions using the
superconducting U(1) phase space19,20.

OPEN

SUBJECT AREAS:
SUPERCONDUCTING

DEVICES

SUPERCONDUCTING PROPERTIES
AND MATERIALS

Received
4 November 2013

Accepted
17 February 2014

Published
1 April 2014

Correspondence and
requests for materials

should be addressed to
B.J. (bjanko@nd.edu)

SCIENTIFIC REPORTS | 4 : 4542 | DOI: 10.1038/srep04542 1



Results
Unusual quasiparticle energy dispersion. In what follows, we focus
on the case of strongly depleted order parameter on the ring, typical
for systems of Fig. 1(a), (d) and (e). Nevertheless, our findings can be
generalized to any other realization of the Mexican hat potential. We
begin our theoretical analysis of those bound states with a simplified
model - a step-wise superconducting order parameter with radial
symmetry D(r), which vanishes between an inner radius Rin and
outer radius Rout, but it is otherwise constant and finite. We solve
the Bogoliubov-de Gennes (BdG) equation in cylindrical coordi-
nates, and separate the rapidly varying degrees of freedom from
the slow ones21 by writing the solutions in the form:
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where ul and vl are BdG wave functions, kF is the Fermi wave vector, r

is the radial coordinate, H 1ð Þ
l is the Hankel function, and fl, gl are

slowly varying envelope functions. Next, we insert the WKB-
approximated asymptotic form of the Hankel function and change
variables22,23 from r to x, defined by r2 5 x2 1 b2. Here b is the WKB
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2{1=4

p .
kF , and l is the angular momentum

quantum number. For large l, the impact parameter is approxi-
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where ~D xð Þ:D r xð Þð Þ. This maps our two dimensional (2D) problem
onto a one dimensional (1D) problem. The 1D order parameter is
given by

D xð Þ
D0 if xj jvxin

0 if xinv xj jvxout

D? if xj jwxout
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where xin~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and xout~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

out{b2
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. In the quasiclassical

picture, the quasiparticles move along a chord in the x̂ direction.
The distance b of the chord from the center of the 2D ring
potential is roughly proportional to the l. This is consistent with
the classical picture that a particle with higher angular momentum
is localized further away from the pivot. Each orbit with different
angular momentum is mapped on a chord of different length. As
shown in Fig. 2(a), the l < 0 state (b < 0) resides in the most narrow
well, with two segments separated by the central hill. As the distance
b and the angular momentum increases, the chord length of the
bound state (or, equivalently, the width of the potential well) also
increases. The bound state energy decreases accordingly as long as
b , Rin. Once b reaches Rin, the two segments of the chord merge into
one wide potential well, causing the energy to drop to a local
minimum e(l0), where l0 < kFRin. As b is increased further, the
length of the chord shrinks and energy increases again. Therefore,
the dispersion e(l) must have a local minimum at a non-zero angular
momentum. This is non-trivial and contradicts classical intuition: for
such a dispersion faster ‘‘rotation’’ does not always correspond to
higher energy. Although very different in origin, such a quantum
effect was found earlier in the roton dispersion in superfluid 4He24–27.

The above reasoning for an unusual dispersion relation is further
verified by both analytic and numerical solutions using BdG equa-
tions. For l , l0 < kFRin and =D0ƒD?, the quasiparticle dispersion
en(l) can be obtained analytically by matching the solutions at x 5

xout, xin, 2 xin, 2 xout, as

n~
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Here q~
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, j is the coherence length, and vF is the Fermi velo-

city. For l . l0, we obtain

n~
vF

2xout
p nz

1
2

� �
: ð5Þ

The energy levels obtained here coincide with Andreev’s result28 for a
normal slab in contact with two superconductors. Note that en

depends on l through xin(l) and xout(l) [see Fig. 2(c)]: it decreases
with l for l , l0 and then increases for l . l0, as in the case of bound
states inside a vortex core22,29. We confirmed this analytic result
numerically by solving BdG with B-splines basis (see Methods)
and direct diagonalization, as shown in Fig. 2(c).

Quantum rotor. In a realistic system [cf. Fig. 1(c)] one likely finds a
smooth suppression of the order parameter. Nevertheless, e(l) still
has a local minimum at non-zero angular momentum, as we show in
Fig. 3(a) [for R ; (Rout 1 Rin)/2 5 12.5j]. The low-lying excitations
around the dispersion minimum can then be approximated by a

quadratic function lð Þ< l{l0ð Þ2

2I
, where l0 is the angular

momentum of the local minimum, and I is the effective inertia.
The magnitude of I is consistent with meR2, i.e. the inertia

Figure 1 | The ‘Mexican hat’ order parameter profile required by a

superconducting rotor state, realizable e.g. in a superconducting (SC) film

with (a) embedded normal-metal ring (annular S-N-S junction),

(b) etched ‘‘blind’’ ring on the surface, (c) a ferromagnetic (FM) dot on top

with out-of-plane magnetization (M), or (d) ferroelectric (FE) film on top

with ring-shaped domain of inverted polarization (P), or (e) graphene

flake placed on top of a SC film with ring-shaped perforation.
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associated to a quasiparticle confined to move along a circular orbit
with radius R. In the present case, the effective inertia obtained for
dashed curve in Fig. 3(a) is I 5 7.3 3 10247 kg ? m2. The effective
quasiclassical equation of motion, derived from the Hamiltonian

H~
l{l0ð Þ2

2I
, is very simple, €h~0 (h being the azimuthal angle).

This equation describes a free rotor - in our case, a quantum rotor.
To validate the quasiclassical and quadratic approximation, the

ring is then required to (1) be equipped with a wide enough width
when compared to the coherence length, so that the energy is low
enough for those low-lying states, and (2) a large enough radius when
compared to the width, in order to suppress tunneling across the
central order parameter hill. Notice that the width of the order para-
meter well in the ferroelectric/superconductor bilayer can be pre-
cisely tuned following the method of Ref. 14. This in turn makes
the shape of e(l) tunable. In other words, one can fine tune externally
the effective inertia of the quantum rotor we propose here.

Numerical verification of the rotor state. To confirm these predic-
tions, we solve numerically the BdG equations on a discrete square
lattice. Note that in order to compare these results with the
quasiclassical limit, we have to consider large systems (e.g. 500 3
500 lattice points). For the size of our nanostructured ring, we take
the radius R 5 100a and width W 5 30a, where a 5 1 is the lattice
constant. Here we chose this particular combination of R and W in
order to have only one peak for l 5 0 and a well defined rotor peak for
l 5 l0. If W is larger, multiple overlapping peaks make the analysis
cumbersome. The value of the superconducting order parameter is
chosen to be D 5 0.1t, where t is the hopping amplitude, giving a
coherence length on the order of the ring width, j , 20a.

We compare in Fig. 3 the local density of states (LDOS) in the
middle of planar and ring S-N-S junctions of same width. As seen
from the graph, the LDOS is modified only within the superconduct-
ing gap due to multiple Andreev reflections at the normal/super-

conducting interface. For both situations there is a main peak
around E/D 5 0.55 which is mainly given by paths of length W
and corresponds to the state with l 5 0. Interestingly, for the ring
geometry an additional peak appears at low energies. This peak is the
low-lying state with l 5 l0 discussed in previous section and is given
by the longest chords in the ring. In other words, this peak corre-
sponds exactly to the rotor state.

Discussion
In this Section, we present further implications of the existence of the
rotor state, and its manifestations in the presence of applied drive.
These effects are interesting in their own right, but also essential for
the experimental verification of the rotor state.

Quantum pendulum. It is well-known that superconducting pro-
perties can be strongly affected by an electric current. An applied dc
current in our system leads to the following effective Hamiltonian for
the low-lying states:

H~
l{l0ð Þ2

2I
zvs

:k, ð6Þ

where k 5 (kF cos h, kF sin h) and vs is the superfluid velocity
corresponding to the applied transport current. The equation of
motion then exhibits nonlinear dynamics:

€h{
kFvs

I
sinh~0: ð7Þ

For our choice of coordinates, this corresponds to an inverted
pendulum. Nevertheless, the ‘‘gravitational’’ force drives the
system away from the h 5 0 (up) unstable equilibrium point. To
analyze the behavior of this quantum pendulum, we use the effective
Hamiltonian in Eq. (6), and show that the thermally averaged zero

energy local density of states, g rð Þ~
ð?

{?

P
n yn rð Þj j2d E{Enð Þ
4T cosh2 E=2Tð Þ

dE,

has a peak at the bottom position, h 5 p [see Fig. 4(c)]. Hence in
the presence of an applied dc current our system becomes the
quantum analogue of a pendulum in a gravitational field.

Numerical results with applied current. We next show the full
numerical solutions of the BdG equations on a discrete lattice in
the presence of an external dc current. A supercurrent is applied to
the system in y-direction by imposing a phase gradient, hw/hy, on the
superconducting order parameter.

Figure 2 | Andreev bound states and their energy dispersion.
(a) Quasiclassical trajectories of the Andreev bound states in the radially

step-like order parameter. The bound states are depicted as electrons (solid

arrow) being Andreev reflected as a hole (dashed arrow). Here b denotes

the distance of the linear reflection path from the center of the 2D

potential. (b) Example of a line profile of the order parameter

corresponding to panel (a). Panel (c) shows the quasiparticle dispersion of

lowest energy states for the step-like potential featured in panel (b).
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Figure 3 | Rotor peak in full BdG calculations. Local density of states

(LDOS) in the middle of a planar S-N-S junction versus one in the middle

of a ring junction of same width. The rotor peak at E/D 5 0.088 is present

only in the ring junction.
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The dashed line in Fig. 5(a) shows the calculated LDOS(E) for the
case without applied current, taken at the bottom position of the ring
(at h 5 p). One notices two main peaks, largest of which corresponds
to the state with l 5 0, whereas the smaller one is the state with l 5 l0.
The solid curve in Fig. 5(a) is calculated at the same place on the ring,
but now in the presence of the current along the y-direction.
According to Fig. 4, a pendulum state is expected. We indeed observe
that the rotor peak is split into pendulum states since there is a phase
difference along the chords which contribute to those states.
However, because the chiral symmetry is not broken, states with
opposite chirality are located at top and bottom locations respect-
ively, as shown in the LDOS map in Fig. 5(b) [for energy correspond-
ing to the lowest energy peak in Fig. 5(a)]. In other words, the two
pendulum states at w 5 p and w 5 0 are degenerate in energy, but the
application of a small perpendicular magnetic field breaks the chiral
symmetry and selects only one of them [as shown in Fig. 5(c)]. The
LDOS maps for all the energies and other field/current configura-
tions can be found in the Supplementary Material.

Inverted pendulum. Finally we return to Eq. (6) to point out that
although the inverted pendulum is unstable, it can be driven to
stability by horizontal or vertical pivot motion (cart-pole or
Kapitza pendulum, respectively30). If the pivot is vibrated with an
amplitude A cos vt, and the frequency v is much higher than the

pendulum’s natural frequency vN, i.e. more precisely v?
R
A

vN ,

where vN~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hkFvs=I

p
, the effect of the fast pivot motion will be

identical to an effective potential30,31 Veff ~
1
4

IR2a2v2 sin2 h. For

such a case, which in a system of Fig. 1(c) [(d)] can be realized by
an ac in-plane magnetic [electric] field, we calculated the local
density of states [see Fig. 6] and indeed observed a peak at the top
position h 5 0 of the pendulum, corresponding to the inverted
pendulum state. Note, however, that the peak at h 5 p for a
regular pendulum state remains, which is different from the
classical case. Quantum mechanics allows the particle to reside in
both potential wells, while classical mechanics forces the particle to
choose either bottom or top localization. Finally we note that while
the inverted pendulum state is stabilized by a high frequency drive,
low-frequency drives are also of interest as they lead to the classically
chaotic regime. Therefore, the quantum rotor proposed here is a
testbed for further studies of quantum chaology32. Applying pulsed
current to our device would transform the superconducting rotor
into a pendulum with pulsed gravity, i.e. another quantum chaotic
system7–9.

In summary, we provided analytical and numerical results for
novel quantum rotor states in nanostructured superconductors.
Besides being a remarkable example of a quantum analogue of a

classical system, the superconducting rotor (i) can be realized in
various superconducting systems, (ii) has a tunable inertia and grav-
itational field, (iii) can be externally manipulated through effective
tilt, pulsed gravity, and pivot oscillations, and (iv) can be converted to
a quantum pendulum, inverted pendulum, or be driven to a chaotic
regime. Hence this quantum rotor has the potential to provide
insights into a variety of phenomena which certainly deserve further
experimental and theoretical investigation.

Methods
The Bogoliubov-de Gennes (BdG) equations are used to calculate the spectrum and
LDOS throughout this work. The BdG equations provide mean field description of
superconductivity and are generalized from the Hartree-Fock equations. We first
applied the quasiclassical approximation, which separates the fast oscillation mode
with length scale 1/kF. It allowed us to discuss physical quantities varying over the
superconducting coherence length, and also provided clear physical picture of the
quasiclassical trajectories. For the quasiclassical limit, the numerical calculations are
done within the B-spline basis33–35, which is very efficient for inhomogeneous pro-
blems such as the one presented here.

We also performed full BdG calculations for a discrete square lattice by using the
Chebyshev-BdG method18,36. This method can extract relevant physical quantities, for
example LDOS, from large systems (here we used a square lattice with 500 3 500 grid
points) and avoid large matrix diagonalization.

In order to describe inhomogeneous s-wave superconductivity we use a real-space
tight-binding formulation. The corresponding Hamiltonian written in Nambu spinor
form is the following:

Figure 4 | Manifestation of the quantum rotor in the local density of states. (a) Parabolic approximation (dotted curve) of the energy dispersion [for

realistically smoothened order parameter profile shown as inset]. The resulting Hamilton equation of motion corresponds to a rotor. (b) The local density

of states (LDOS) calculated for a quantum rotor, for the same parameters as in (a). (c) The calculated LDOS for a quantum pendulum, obtained by

injecting a dc current in the indicated direction (vs 5 1.0 m/s). The finite transport current is effectively equivalent to gravity in the classical pendulum

picture.

Figure 5 | Realization of the quantum pendulum. (a) Full BdG calculation

of the LDOS vs. energy in h 5 p location on the ring (of width W 5 j and

radius R 5 5j), for the quantum rotor (no current) and pendulum state

(with current generated via hw/hy 5 0.0033/a). The 2D LDOS for a

quantum pendulum is shown for E/D 5 20.088 in the absence (b) and

presence (c) of a small perpendicular magnetic field, W/W0 5 0.15.
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H~
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where Ĥij is a 2 3 2 matrix:

Ĥij~
{m Di

D?i m

� �
dijz

{tij 0

0 t?ij

 !
1{dij
	 


, ð9Þ

where the sum Æi, jæ is over nearest and next-nearest neighbours. The superconducting
order parameter, Di, is of s-wave spin-singlet type and is finite outside the ring and
and zero inside it. The hopping parameters for nearest neighbor, t 5 2/3t0, and next
nearest neighbor, t9 5 1/6t0 together with the chemical potential m 5 22t0 are chosen
such that the Fermi surface is circular and therefore there is no anisotropy in the
Fermi velocity. t0 is an arbitrary energy unit which is set to 1.

We considered both the influence of an in-plane current and/or an out-of-plane
magnetic field on the rotor states. The supercurrent is described by a phase gradient
imposed on the superconducting order parameter. The out-of-plane magnetic field is
considered to be weak, the flux through a circle of radius R was typically taken to be W
5 0.15W0, so that Meissner currents are negligible and a self-consistent solution is not
necessary. The magnetic field modifies the hopping parameters in the usual way

through the Peierls phase factors, tij~ tij

�� ��exp i
e
�h

ðj

i

~A~dl

� �
.

For finding the local density of states inside the ring we use the Chebyshev-BdG
method which provides an efficient way of calculating the Gorkov Green function:

�Gij vð Þ~ vach j
ci:

c{j;

 !
Ĝ vð Þ c{j: cj;

� �
vacj i, ð10Þ

where ±Ĝ vzigð Þ~ vzig{H½ �{1, jvacæ is the vacuum and the diagonal(normal)
and off-diagonal(anomalous) components can be expressed as:

�G11
ij vð Þ~ ci:

� ��Ĝ vð Þ c{j:

��� E
, ð11Þ

�G12
ij vð Þ~ c{i;

D ���Ĝ vð Þ c{j:

��� E�
: ð12Þ

Each of these components can be expanded in terms of Chebyshev polynomials
and the moments of the expansion can be efficiently calculated through a recursive
procedure:

�G11 12ð Þ
ij ~vð Þ~ {2iffiffiffiffiffiffiffiffiffiffiffiffiffi

1{~v2
p

X?
n~0

a11 12ð Þ
n i,jð Þe{i n:arccos ~vð Þ, ð13Þ

where the coefficients a11
n i,jð Þ~ ci:

�� vn
� 

and ±a12
n i,jð Þ~ c{i;

��� vn

D E
can be obtained

by an iterative procedure involving repeated applications of the Hamiltonian on
iterative vectors jvnæ:

vnz1j i~2H vnj i{ vn{1j i, ð14Þ

where v0j i~ c{j

��� E and jv21æ 5 0. The local density of states (LDOS) is then:

Ni vð Þ~{
1
p

Im �G11
ii vð Þ

� �
: ð15Þ

We performed the expansions separately for each grid point and further accelerated
our calculations by using graphical processing units (GPUs) to perform the sparse
matrix - vector multiplications.
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Quantum rotor in nanostructured superconductors. Sci. Rep. 4, 4542; DOI:10.1038/
srep04542 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. The images in this article are included in the
article’s Creative Commons license, unless indicated otherwise in the image credit;
if the image is not included under the Creative Commons license, users will need to
obtain permission from the license holder in order to reproduce the image. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4542 | DOI: 10.1038/srep04542 6

http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-sa/3.0/

	Title
	Figure 1 
	Figure 2 Andreev bound states and their energy dispersion.
	Figure 3 Rotor peak in full BdG calculations.
	Figure 4 Manifestation of the quantum rotor in the local density of states.
	Figure 5 Realization of the quantum pendulum.
	References
	Figure 6 Pivot oscillations and the inverted pendulum.

