|
Record |
Links |
|
Author |
Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D.G.; Botton, G.A.; Wei, J.Y.T. |
|
|
Title |
Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Physical review materials |
Abbreviated Journal |
|
|
|
Volume |
2 |
Issue |
3 |
Pages |
033803 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7-delta grown by pulsed laser deposition are annealed at up to 700 atm O-2 and 900 degrees C, in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15-delta and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9-delta and YBa2Cu6O10-delta phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7-delta powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Physical Society |
Place of Publication |
College Park, Md |
Editor |
|
|
|
Language |
|
Wos |
000428244900004 |
Publication Date |
2018-03-26 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2475-9953 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
|
Times cited |
2 |
Open Access |
Not_Open_Access |
|
|
Notes |
; This work is supported by NSERC, CFI-OIT, and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by the Canada Foundation for Innovation under the Major Science Initiative program, McMaster University, and NSERC. The XAS work was performed at the Canadian Light Source, which is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. ; |
Approved |
Most recent IF: NA |
|
|
Call Number |
UA @ lucian @ c:irua:150829 |
Serial |
4982 |
|
Permanent link to this record |