toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Heyne, M.H.; Chiappe, D.; Meersschaut, J.; Nuytten, T.; Conard, T.; Bender, H.; Huyghebaert, C.; Radu, I.P.; Caymax, M.; de Marneffe, J.F.; Neyts, E.C.; De Gendt, S.; doi  openurl
  Title Multilayer MoS2 growth by metal and metal oxide sulfurization Type A1 Journal article
  Year 2016 Publication (up) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 4 Issue 4 Pages 1295-1304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigated the deposition of MoS2 multilayers on large area substrates. The pre-deposition of metal or metal oxide with subsequent sulfurization is a promising technique to achieve layered films. We distinguish a different reaction behavior in metal oxide and metallic films and investigate the effect of the temperature, the H2S/H-2 gas mixture composition, and the role of the underlying substrate on the material quality. The results of the experiments suggest a MoS2 growth mechanism consisting of two subsequent process steps. At first, the reaction of the sulfur precursor with the metal or metal oxide occurs, requiring higher temperatures in the case of metallic film compared to metal oxide. At this stage, the basal planes assemble towards the diffusion direction of the reaction educts and products. After the sulfurization reaction, the material recrystallizes and the basal planes rearrange parallel to the substrate to minimize the surface energy. Therefore, substrates with low roughness show basal plane assembly parallel to the substrate. These results indicate that the substrate character has a significant impact on the assembly of low dimensional MoS2 films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370723300020 Publication Date 2016-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited Open Access  
  Notes Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:132327 Serial 4211  
Permanent link to this record
 

 
Author Bretos, I.; Schneller, T.; Falter, M.; Baecker, M.; Hollmann, E.; Woerdenweber, R.; Molina-Luna, L.; Van Tendeloo, G.; Eibl, O. doi  openurl
  Title Solution-derived YBa2Cu3O7-\delta (YBCO) superconducting films with BaZrO3 (BZO) nanodots based on reverse micelle stabilized nanoparticles Type A1 Journal article
  Year 2015 Publication (up) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 3 Issue 3 Pages 3971-3979  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352870400018 Publication Date 2015-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 19 Open Access  
  Notes This work was supported by the German Federal Ministry of Economics and Technology (BMWi) contract no. 0327433A (project ELSA). L. Molina-Luna and G. Van Tendeloo acknowledge funding from the European Research Council (ERC grant no. 24691-COUNTATOMS). The authors gratefully acknowledge J. Dornseiffer for the support with preparation of the microemulsions for the BZO nanoparticles; G. Wasse for the SEM images; and T. Po¨ssinger for the preparation of the artwork. Eurotape Approved Most recent IF: 5.256; 2015 IF: 4.696  
  Call Number UA @ lucian @ c:irua:132575 Serial 4245  
Permanent link to this record
 

 
Author Heyne, M.H.; de Marneffe, J.-F.; Nuytten, T.; Meersschaut, J.; Conard, T.; Caymax, M.; Radu, I.; Delabie, A.; Neyts, E.C.; De Gendt, S. pdf  url
doi  openurl
  Title The conversion mechanism of amorphous silicon to stoichiometric WS2 Type A1 Journal article
  Year 2018 Publication (up) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 15 Pages 4122-4130  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The deposition of ultra-thin tungsten films and their related 2D chalcogen compounds on large area dielectric substrates by gas phase reactions is challenging. The lack of nucleation sites complicates the adsorption of W-related precursors and subsequent sulfurization usually requires high temperatures. We propose here a technique in which a thin solid amorphous silicon film is used as reductant for the gas phase precursor WF6 leading to the conversion to metallic W. The selectivity of the W conversion towards the underlying dielectric surfaces is demonstrated. The role of the Si surface preparation, the conversion temperature, and Si thickness on the formation process is investigated. Further, the in situ conversion of the metallic tungsten into thin stoichiometric WS2 is achieved by a cyclic approach based on WF6 and H2S pulses at the moderate temperature of 450 1C, which is much lower than usual oxide sulfurization processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430538000036 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 4 Open Access OpenAccess  
  Notes This work was supported throughout a strategic fundamental research grant for M. H. by the agency Flanders innovation & entrepreneurship (VLAIO). Approved Most recent IF: 5.256  
  Call Number PLASMANT @ plasmant @c:irua:150968 Serial 4921  
Permanent link to this record
 

 
Author Iyikanat, F.; Yagmurcukardes, M.; Senger, R.T.; Sahin, H. url  doi
openurl 
  Title Tuning electronic and magnetic properties of monolayer \alpha-RuCl3 by in-plane strain Type A1 Journal article
  Year 2018 Publication (up) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 8 Pages 2019-2025  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By employing density functional theory-based methods, the structural, vibrational, electronic, and magnetic properties of monolayer -RuCl3 were investigated. It was demonstrated that ferromagnetic (FM) and zigzag-antiferromagnetic (ZZ-AFM) spin orders in the material have very close total energies with the latter being the ground state. We found that each Ru atom possesses a magnetic moment of 0.9 (B) and the material exhibits strong magnetic anisotropy. While both phases exhibit indirect gaps, the FM phase is a magnetic semiconductor and the ZZ-AFM phase is a non-magnetic semiconductor. The structural stability of the material was confirmed by phonon calculations. Moreover, dynamical analysis revealed that the magnetic order in the material can be monitored via Raman measurements of the crystal structure. In addition, the magnetic ground state of the material changes from ZZ-AFM to FM upon certain applied strains. Valence and conduction band-edges of the material vary considerably under in-plane strains. Owing to the stable lattice structure and unique and controllable magnetic properties, monolayer -RuCl3 is a promising material in nanoscale device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426483800015 Publication Date 2018-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 16 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. acknowledges financial support from TUBITAK under project number 116C073. H. S. also acknowledges support from Bilim Akademisi-The Science Academy, Turkey, under the BAGEP program. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:149900UA @ admin @ c:irua:149900 Serial 4952  
Permanent link to this record
 

 
Author Volykhov, A.A.; Sanchez-Barriga, J.; Batuk, M.; Callaert, C.; Hadermann, J.; Sirotina, A.P.; Neudachina, V.S.; Belova, A.I.; Vladimirova, N.V.; Tamm, M.E.; Khmelevsky, N.O.; Escudero, C.; Perez-Dieste, V.; Knop-Gericke, A.; Yashina, L.V. pdf  doi
openurl 
  Title Can surface reactivity of mixed crystals be predicted from their counterparts? A case study of (Bi1-xSbx)2Te3 topological insulators Type A1 Journal article
  Year 2018 Publication (up) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 6 Issue 33 Pages 8941-8949  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The behavior of ternary mixed crystals or solid solutions and its correlation with the properties of their binary constituents is of fundamental interest. Due to their unique potential for application in future information technology, mixed crystals of topological insulators with the spin-locked, gapless states on their surfaces attract huge attention of physicists, chemists and material scientists. (Bi1-xSbx)(2)Te-3 solid solutions are among the best candidates for spintronic applications since the bulk carrier concentration can be tuned by varying x to obtain truly bulk-insulating samples, where the topological surface states largely contribute to the transport and the realization of the surface quantum Hall effect. As this ternary compound will be evidently used in the form of thin-film devices its chemical stability is an important practical issue. Based on the atomic resolution HAADF-TEM and EDX data together with the XPS results obtained both ex situ and in situ, we propose an atomistic picture of the mixed crystal reactivity compared to that of its binary constituents. We find that the surface reactivity is determined by the probability of oxygen attack on the Te-Sb bonds, which is directly proportional to the number of Te atoms bonded to at least one Sb atom. The oxidation mechanism includes formation of an amorphous antimony oxide at the very surface due to Sb diffusion from the first two quintuple layers, electron tunneling from the Fermi level of the crystal to oxygen, oxygen ion diffusion to the crystal, and finally, slow Te oxidation to the +4 oxidation state. The oxide layer thickness is limited by the electron transport, and the overall process resembles the Cabrera-Mott mechanism in metals. These observations are critical not only for current understanding of the chemical reactivity of complex crystals, but also to improve the performance of future spintronic devices based on topological materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443279300007 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 3 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support within the bilateral program "Russian-German Laboratory at BESSY II''. We thank Helmholtz-Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and ISISS. Support of ALBA staff during measurements at the CIRCE beamline is gratefully acknowledged. We thank Dr Ivan Bobrikov for support in the XRD measurements and Daria Tsukanova for the participation in crystal preparation and XPS measurements. A. Volykhov thanks RSF (grant 18-73-00248) for financial support. A. I. Belova acknowledges support from the G-RISC Centre of Excellence. The work was supported by Helmholtz Gemeinschaft (Grant No. HRJRG-408) and RFBR (grant 14-03-31518). J. H. and C. C. acknowledge support from the University of Antwerp through the BOF grant 31445. ; Approved Most recent IF: 5.256  
  Call Number UA @ lucian @ c:irua:153647 Serial 5080  
Permanent link to this record
 

 
Author Tan, X.; McCabe, E.E.; Orlandi, F.; Manuel, P.; Batuk, M.; Hadermann, J.; Deng, Z.; Jin, C.; Nowik, I.; Herber, R.; Segre, C.U.; Liu, S.; Croft, M.; Kang, C.-J.; Lapidus, S.; Frank, C.E.; Padmanabhan, H.; Gopalan, V.; Wu, M.; Li, M.-R.; Kotliar, G.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title MnFe0.5Ru0.5O3 : an above-room-temperature antiferromagnetic semiconductor Type A1 Journal article
  Year 2019 Publication (up) Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 7 Issue 3 Pages 509-522  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A transition-metal-only MnFe0.5Ru0.5O3 polycrystalline oxide was prepared by a reaction of starting materials MnO, MnO2, Fe2O3, RuO2 at 6 GPa and 1873 K for 30 minutes. A combination of X-ray and neutron powder diffraction refinements indicated that MnFe0.5Ru0.5O3 adopts the corundum (alpha-Fe2O3) structure type with space group R (3) over barc, in which all metal ions are disordered. The centrosymmetric nature of the MnFe0.5Ru0.5O3 structure is corroborated by transmission electron microscopy, lack of optical second harmonic generation, X-ray absorption near edge spectroscopy, and Mossbauer spectroscopy. X-ray absorption near edge spectroscopy of MnFe0.5Ru0.5O3 showed the oxidation states of Mn, Fe, and Ru to be 2+/3+, 3+, and similar to 4+, respectively. Resistivity measurements revealed that MnFe0.5Ru0.5O3 is a semiconductor. Magnetic measurements and magnetic structure refinements indicated that MnFe0.5Ru0.5O3 orders antiferromagnetically around 400 K, with magnetic moments slightly canted away from the c axis. Fe-57 Mossbauer confirmed the magnetic ordering and Fe3+ (S = 5/2) magnetic hyperfine splitting. First principles calculations are provided to understand the electronic structure more thoroughly. A comparison of synthesis and properties of MnFe0.5Ru0.5O3 and related corundum Mn2BB'O-6 derivatives is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458780300004 Publication Date 2018-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 1 Open Access Not_Open_Access  
  Notes ; M. G. thanks the NSF-DMR-1507252 grant of the United States. X. T. was supported by the “Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy'' under DOE Grant No. DE-FOA-0001276. G. K. and C. J. K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. EEM is grateful to the Leverhulme Trust (RPG-2017-362). M. R. Li and M. X. Wu are supported by the ”One Thousand Youth Talents'' Program of China. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this research used the ISS, 8-ID and TES, 8-BM beamlines at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Without the valuable aid/support of the NSLS-II staff scientists Eli Stavitski, Klaus Attenkofer, and Paul Northrup this phase of the work could not have been performed. The work at IOPCAS was supported by NSF & MOST of China through research projects. H. R. and V. G. acknowledge NSF-MRSEC Center for Nanoscale Science at Penn State through the grant number DMR-1420620. The authors would like to thank Ms Jean Hanley at Lamont-Doherty Earth Observatory in Columbia University for making the high-pressure assemblies. The authors acknowledge the science and technology facility council (STFC) UK for the provision of neutron beam time. The authors would like to thank Daniel Nye for help on the Rigaku SmartLab X-ray diffractometer instrument in the Materials Characterization Laboratory at the ISIS Neutron and Muon Source. ; Approved Most recent IF: 5.256  
  Call Number UA @ admin @ c:irua:157564 Serial 5264  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Distribution pattern of metal atoms in bimetal-doped pyridinic-N₄ pores determines their potential for electrocatalytic N₂ reduction Type A1 Journal article
  Year 2022 Publication (up) Journal Of Physical Chemistry A Abbreviated Journal J Phys Chem A  
  Volume 126 Issue 20 Pages 3080-3089  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Doping two single transition-metal (TM) atoms on a substrate host opens numerous possibilities for catalyst design. However, what if the substrate contains more than one vacancy site? Then, the combination of two TMs along with their distribution patterns becomes a design parameter potentially complementary to the substrate itself and the bimetal composition. In this study, we investigate ammonia synthesis under mild electrocatalytic conditions on a transition-metal-doped porous C24N24 catalyst using density functional theory (DFT). The TMs studied include Ti, Mn, and Cu in a 2:4 dopant ratio (Ti2Mn4@C24N24 and Ti2Cu4@N-24(24)). Our computations show that a single Ti atom in both catalysts exhibits the highest selectivity for N-2 fixation at ambient conditions. This work is a good theoretical model to establish the structure-activity relationship, and the knowledge earned from the metal-N-4 moieties may help studies of related nanomaterials, especially those with curved structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000804119800003 Publication Date 2022-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1089-5639; 1520-5215 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.9  
  Call Number UA @ admin @ c:irua:189023 Serial 7146  
Permanent link to this record
 

 
Author Howard, I.A.; Zutterman, F.; Deroover, G.; Lamoen, D.; van Alsenoy, C. doi  openurl
  Title Approaches to calculation of exciton interaction energies for a molecular dimer Type A1 Journal article
  Year 2004 Publication (up) Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B  
  Volume 108 Issue Pages 19155-19162  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000225695100015 Publication Date 2004-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.177; 2004 IF: 3.834  
  Call Number UA @ lucian @ c:irua:50259 Serial 147  
Permanent link to this record
 

 
Author Kolen'ko, Y.V.; Kovnir, K.A.; Gavrilov, A.I.; Garshev, A.V.; Meskin, P.E.; Churagulov, B.R.; Bouchard, M.; Colbeau-Justin, C.; Lebedev, O.I.; Van Tendeloo, G.; Yoshimura, M. pdf  doi
openurl 
  Title Structural, textural, and electronic properties of a nanosized mesoporous ZnxTi1-xO2-x solid solution prepared by a supercritical drying route Type A1 Journal article
  Year 2005 Publication (up) Journal of physical chemistry B Abbreviated Journal J Phys Chem B  
  Volume 109 Issue 43 Pages 20303-20309  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232959800037 Publication Date 2005-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.177; 2005 IF: 4.033  
  Call Number UA @ lucian @ c:irua:54886 Serial 3264  
Permanent link to this record
 

 
Author Cordeiro, R.M.; Yusupov, M.; Razzokov, J.; Bogaerts, A. pdf  url
doi  openurl
  Title Parametrization and Molecular Dynamics Simulations of Nitrogen Oxyanions and Oxyacids for Applications in Atmospheric and Biomolecular Sciences Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry B Abbreviated Journal J Phys Chem B  
  Volume 124 Issue 6 Pages 1082-1089  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nitrogen oxyanions and oxyacids are important agents in atmospheric chemistry and medical biology. Although their chemical behavior in solution is relatively well understood, they may behave very differently at the water/air interface of atmospheric aerosols or at the membrane/water interface of cells. Here, we developed a fully classical model for molecular dynamics simulations of NO3−, NO2−, HNO3, and HNO2 in the framework of the GROMOS 53A6 and 54A7 force field versions. The model successfully accounted for the poorly structured solvation shell and ion pairing tendency of NO3−. Accurate pure-liquid properties and hydration free energies were obtained for the oxyacids. Simulations at the water/air interface showed a local enrichment of HNO3 and depletion of NO3−. The effect was discussed in light of earlier spectroscopic data and ab initio calculations, suggesting that HNO3 behaves as a weaker acid at the surface of water. Our model will hopefully allow for efficient and accurate simulations of nitrogen oxyanions and oxyacids in solution and at microheterogeneous interface environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512222500015 Publication Date 2020-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access  
  Notes We thank Universidade Federal do ABC for providing the computational resources needed for completion of this work. This study was financed in part by the Coordenaçaõ de Aperfeiçoamento de Pessoal de Nı ́vel Superior – Brasil (CAPES) – Finance Code 001. Approved Most recent IF: 3.3; 2020 IF: 3.177  
  Call Number PLASMANT @ plasmant @c:irua:166488 Serial 6340  
Permanent link to this record
 

 
Author Liang, D.; Follens, L.R.A.; Aerts, A.; Martens, J.A.; Van Tendeloo, G.; Kirschhock, C.E.A. pdf  doi
openurl 
  Title TEM observation of aggregation steps in room-temperature silicalite-1 zeolite formation Type A1 Journal article
  Year 2007 Publication (up) Journal of physical chemistry C Abbreviated Journal J Phys Chem C  
  Volume 111 Issue 39 Pages 14283-14285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000249838300002 Publication Date 2007-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 41 Open Access  
  Notes ESA; IWT – Flanders; FWO Approved Most recent IF: 4.536; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:66617 Serial 3481  
Permanent link to this record
 

 
Author Nourbakhsh, A.; Cantoro, M.; Klekachev, A.; Clemente, F.; Sorée, B.; van der Veen, M.H.; Vosch, T.; Stesmans, A.; Sels, B.; de Gendt, S. doi  openurl
  Title Tuning the Fermi level of SiO2-supported single-layer graphene by thermal annealing Type A1 Journal article
  Year 2010 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 114 Issue 5 Pages 6894-6900  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract The effects of thermal annealing in inert Ar gas atmosphere of SiO2-supported, exfoliated single-layer graphene are investigated in this work. A systematic, reproducible change in the electronic properties of graphene is observed after annealing. The most prominent Raman features in graphene, the G and 2D peaks, change in accord to what is expected in the case of hole doping. The results of electrical characterization performed on annealed, back-gated field-effect graphene devices show that the neutrality point voltage VNP increases monotonically with the annealing temperature, confirming the occurrence of excess hole accumulation. No degradation of the structural properties of graphene is observed after annealing at temperatures as high as 400 °C. Thermal annealing of single-layer graphene in controlled Ar atmosphere can therefore be considered a technique to reproducibly modify the electronic structure of graphene by tuning its Fermi level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000276562500002 Publication Date 2010-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 54 Open Access  
  Notes Approved Most recent IF: 4.536; 2010 IF: 4.524  
  Call Number UA @ lucian @ c:irua:89508 Serial 3757  
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; Bal, K.M.; Neyts, E.C. pdf  url
doi  openurl
  Title High Coke Resistance of a TiO2Anatase (001) Catalyst Surface during Dry Reforming of Methane Type A1 Journal Article
  Year 2018 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 17 Pages 9389-9396  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The resistance of a TiO2 anatase (001) surface to coke formation was studied in the context of dry reforming of methane using density functional theory (DFT) calculations. As carbon atoms act as precursors for coke formation, the resistance to coke formation can be measured by the carbon coverage of the surface. This is related to the stability of different CHx (x = 0−3) species and their rate of hydrogenation and dehydrogenation on the TiO2 surface. Therefore, we studied the reaction mechanisms and their corresponding rates as a function of the temperature for the dehydrogenation of the species on the surface. We found that the stabilities of C and CH are significantly lower than those of CH3 and CH2. The hydrogenation rates of the different species are significantly higher than the dehydrogenation rates in a temperature range of 300−1000 K. Furthermore, we found that dehydrogenation of CH3, CH2, and CH will only occur at appreciable rates starting from 600, 900, and 900 K, respectively. On the basis of these results, it is clear that the anatase (001) surface has a high coke resistance, and it is thus not likely that the surface will become poisoned by coke during dry reforming of methane. As the rate limiting step in dry reforming is the dissociative adsorption of CH4, we studied an alternative approach to thermal catalysis. We found that the temperature threshold for dry reforming is at least 700 K. This threshold temperature may be lowered by the use of plasma-catalysis, where the appreciable rates of adsorption of plasma-generated CHx radicals result in bypassing the rate limiting step of the reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431723700014 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 1 Open Access OpenAccess  
  Notes Federaal Wetenschapsbeleid, IAP/7 ; Fonds Wetenschappelijk Onderzoek, G.0217.14N ; Onderzoeksfonds, Universiteit Antwerpen, 32249 ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:151529c:irua:152816 Serial 5000  
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Supersonic Microwave Plasma: Potential and Limitations for Energy-Efficient CO2Conversion Type A1 Journal Article
  Year 2018 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 45 Pages 25869-25881  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Supersonic flows provide a high thermodynamic

nonequilibrium, which is crucial for energy-efficient conversion of

CO 2 in microwave plasmas and are therefore of great interest.

However, the effect of the flow on the chemical reactions is poorly

understood. In this work, we present a combined flow and plasma

chemical kinetics model of a microwave CO 2 plasma in a Laval

nozzle setup. The effects of the flow field on the different dissociation

and recombination mechanisms, the vibrational distribution, and the

vibrational transfer mechanism are discussed. In addition, the effect

of experimental parameters, like position of power deposition, outlet

pressure, and specific energy input, on the CO 2 conversion and

energy efficiency is examined. The short residence time of the gas in

the plasma region, the shockwave, and the maximum critical heat,

and thus power, that can be added to the flow to avoid thermal

choking are the main obstacles to reaching high energy efficiencies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451101400016 Publication Date 2018-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:155412 Serial 5070  
Permanent link to this record
 

 
Author Van Alphen, S.; Vermeiren, V.; Butterworth, T.; van den Bekerom, D.C.M.; van Rooij, G.J.; Bogaerts, A. pdf  url
doi  openurl
  Title Power Pulsing To Maximize Vibrational Excitation Efficiency in N2Microwave Plasma: A Combined Experimental and Computational Study Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 3 Pages 1765-1779  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma is gaining increasing interest for N2 fixation, being a flexible, electricity-driven alternative for the current conventional fossil fuel-based N2 fixation processes. As the vibrational-induced dissociation of N2 is found to be an energy-efficient pathway to acquire atomic N for the fixation processes, plasmas that are in vibrational nonequilibrium seem promising for this application. However, an important challenge in using nonequilibrium plasmas lies in preventing vibrational−translational (VT) relaxation processes, in which vibrational energy crucial for N2 dissociation is lost to gas heating. We present here both experimental and modeling results for the vibrational and gas temperature in a microsecond-pulsed microwave (MW) N2 plasma, showing how power pulsing can suppress this unfavorable VT relaxation and achieve a maximal vibrational nonequilibrium. By means of our kinetic model, we demonstrate that pulsed plasmas take advantage of the long time scale on which VT processes occur, yielding a very pronounced nonequilibrium over the whole N2 vibrational ladder. Additionally, the effect of pulse parameters like the pulse frequency and pulse width are investigated, demonstrating that the advantage of pulsing to inhibit VT relaxation diminishes for high pulse frequencies (around 7000 kHz) and long power pulses (above 400 μs). Nevertheless, all regimes studied here demonstrate a clear vibrational nonequilibrium while only requiring a limited power-on time, and thus, we may conclude that a pulsed plasma seems very interesting for energyefficient vibrational excitation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000509438600001 Publication Date 2020-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; This research was supported by the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:165586 Serial 5443  
Permanent link to this record
 

 
Author Choukroun, D.; Daems, N.; Kenis, T.; Van Everbroeck, T.; Hereijgers, J.; Altantzis, T.; Bals, S.; Cool, P.; Breugelmans, T. pdf  url
doi  openurl
  Title Bifunctional nickel-nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 124 Pages 1369-1381  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Bifunctionality is a key feature of many industrial catalysts, supported metal clusters and particles in particular, and the development of such catalysts for the CO2 reduction reaction (CO2RR) to hydrocarbons and alcohols is gaining traction in light of recent advancements in the field. Carbon-supported Cu nanoparticles are suitable candidates for integration in the state-of-the-art reaction interfaces, and here, we propose, synthesize, and evaluate a bifunctional Ni–N-doped-C-supported Cu electrocatalyst, in which the support possesses active sites for selective CO2 conversion to CO and Cu nanoparticles catalyze either the direct CO2 or CO reduction to hydrocarbons. In this work, we introduce the scientific rationale behind the concept, its applicability, and the challenges with regard to the catalyst. From the practical aspect, the deposition of Cu nanoparticles onto carbon black and Ni–N–C supports via an ammonia-driven deposition precipitation method is reported and explored in more detail using X-ray diffraction, thermogravimetric analysis, and hydrogen temperature-programmed reduction. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDXS) give further evidence of the presence of Cu-containing nanoparticles on the Ni–N–C supports while revealing an additional relationship between the nanoparticle’s composition and the electrode’s electrocatalytic performance. Compared to the benchmark carbon black-supported Cu catalysts, Ni–N–C-supported Cu delivers up to a 2-fold increase in the partial C2H4 current density at −1.05 VRHE (C1/C2 = 0.67) and a concomitant 10-fold increase of the CO partial current density. The enhanced ethylene production metrics, obtained by virtue of the higher intrinsic activity of the Ni–N–C support, point out toward a synergistic action between the two catalytic functionalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508467700015 Publication Date 2020-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access OpenAccess  
  Notes ; N.D. acknowledges sponsoring from the research foundation of Flanders (FWO) in the frame of a postdoctoral grant (12Y3919N N.D.). J.H. greatly acknowledges the Research Foundation Flanders (FWO) for support through a postdoctoral fellowship (28761). T.V.E. and P.C. acknowledge financial support from the EU-Partial-PGMs project (H2020NMP-686086). The authors also acknowledge financial support from the university research fund (BOF-GOA PS ID No. 33928). ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:165326 Serial 6286  
Permanent link to this record
 

 
Author Heijkers, S.; Aghaei, M.; Bogaerts, A. url  doi
openurl 
  Title Plasma-Based CH4Conversion into Higher Hydrocarbons and H2: Modeling to Reveal the Reaction Mechanisms of Different Plasma Sources Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 13 Pages 7016-7030  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma is gaining interest for CH4 conversion into higher hydrocarbons and H2. However, the performance in terms of conversion and selectivity toward different hydrocarbons is different for different plasma types, and the underlying mechanisms are not yet fully understood. Therefore, we study here these mechanisms in different plasma sources, by means of a chemical kinetics model. The model is first validated by comparing the calculated conversions and hydrocarbon/H2 selectivities with experimental results in these different plasma types and over a wide range of specific energy input (SEI) values. Our model predicts that vibrational−translational nonequilibrium is negligible in all CH4 plasmas investigated, and instead, thermal conversion is important. Higher gas temperatures also lead to a more selective production of unsaturated hydrocarbons (mainly C2H2) due to neutral dissociation of CH4 and subsequent dehydrogenation processes, while three-body recombination reactions into saturated hydrocarbons (mainly C2H6, but also higher hydrocarbons) are dominant in low temperature plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526328500007 Publication Date 2020-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Universiteit Antwerpen; Vlaamse regering; Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; We acknowledge financial support from the Fund for Scientific Research, Flanders (FWO; Grant No. G.0383.16N), the Methusalem Grant, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182 − SCOPE ERC Synergy project). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:168096 Serial 6358  
Permanent link to this record
 

 
Author Jafarzadeh, A.; Bal, K.M.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Activation of CO2on Copper Surfaces: The Synergy between Electric Field, Surface Morphology, and Excess Electrons Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 12 Pages 6747-6755  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, we use density functional theory calculations to study the combined effect of external electric fields, surface morphology, and surface charge on CO2 activation over Cu(111), Cu(211), Cu(110), and Cu(001) surfaces. We observe that the binding energy of the CO2 molecule on Cu surfaces increases significantly upon increasing the applied electric field strength. In addition, rougher surfaces respond more effectively to the presence of the external electric field toward facilitating the formation of a carbonate-like CO2 structure and the transformation of the most stable adsorption mode from physisorption to chemisorption. The presence of surface charges further strengthens the electric field effect and consequently causes an improved bending of the CO2 molecule and C−O bond length elongation. On the other hand, a net charge in the absence of an externally applied electric field shows only a marginal effect on CO2 binding. The chemisorbed CO2 is more stable and further activated when the effects of an external electric field, rough surface, and surface charge are combined. These results can help to elucidate the underlying factors that control CO2 activation in heterogeneous and plasma catalysis, as well as in electrochemical processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526396900030 Publication Date 2020-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Bijzonder Onderzoeksfonds, 32249 ; The financial support from the TOP research project of the Research Fund of the University of Antwerp (grant ID: 32249) is highly acknowledged by the authors. The computational resources used in this study were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:168606 Serial 6361  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6367  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6368  
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Based CO2Conversion: To Quench or Not to Quench? Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 34 Pages 18401-18415  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for CO2 conversion. The gas temperature in (and after) the plasma reactor largely affects the performance. Therefore, we examine the effect of cooling/quenching, during and after the plasma, on the CO2 conversion and energy efficiency, for typical “warm” plasmas, by means of chemical kinetics modeling. For plasmas at low specific energy input (SEI ∼ 0.5 eV/molecule), it is best to quench at the plasma end, while for high-SEI plasmas (SEI ∼ 4 eV/molecule), quenching at maximum conversion is better. For low-SEI plasmas, quenching can even increase the conversion beyond the dissociation in the plasma, known as superideal quenching. To better understand the effects of quenching at different plasma conditions, we study the dissociation and recombination rates, as well as the vibrational distribution functions (VDFs) of CO2, CO, and O2. When a high vibrational−translational (VT) nonequilibrium exists at the moment of quenching, the dissociation and recombination reaction rates both increase. Depending on the conversion degree at the moment of quenching, this can lead to a net increase or decrease of CO2 conversion. In general, however, and certainly for equilibrium plasmas at high temperature, quenching after the plasma helps prevent recombination reactions and clearly enhances the final CO2 conversion. We also investigate the effect of different quenching cooling rates on the CO2 conversion and energy efficiency. Finally, we compare plasma-based conversion to purely thermal conversion. For warm plasmas with typical temperatures of 3000−4000 K, the conversion is roughly thermal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566481000003 Publication Date 2020-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; This research was supported by the FWO project (grant no. G.0383.16N) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:172052 Serial 6407  
Permanent link to this record
 

 
Author van ‘t Veer, K.; Engelmann, Y.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 42 Pages 22871-22883  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley−Rideal and Langmuir−Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000585970300002 Publication Date 2020-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; Fonds De La Recherche Scientifique – FNRS, 30505023 GoF9618n ; H2020 European Research Council, 810182 ;This research was supported by the Excellence of Science FWOFNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182-SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. The authors would also like to thank Järi Van den Hoek and Dr. Yury Gorbanev for providing the experimentally measured electrical characteristics and Dr. Fatme Jardali for creating the TOC graphics. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:173587 Serial 6428  
Permanent link to this record
 

 
Author Michiels, R.; Engelmann, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis for CO2Hydrogenation: Unlocking New Pathways toward CH3OH Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 47 Pages 25859-25872  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract We developed a microkinetic model to reveal the effects of plasma-generated radicals, intermediates, and vibrationally excited species on the catalytic hydrogenation of CO2 to CH3OH on a Cu(111) surface. As a benchmark, we first present the mechanisms of thermal catalytic CH3OH formation. Our model predicts that the reverse water-gas shift reaction followed by CO hydrogenation, together with the formate path, mainly contribute to CH3OH formation in thermal catalysis. Adding plasma-generated radicals and intermediates results in a higher CH3OH turnover frequency (TOF) by six to seven orders of magnitude, showing the potential of plasma-catalytic CO2 hydrogenation into CH3OH, in accordance with the literature. In addition, CO2 vibrational excitation further increases the CH3OH TOF, but the effect is limited due to relatively low vibrational temperatures under typical plasma catalysis conditions. The predicted increase in CH3OH formation by plasma catalysis is mainly attributed to the increased importance of the formate path. In addition, the conversion of plasma-generated CO to HCO* and subsequent HCOO* or H2CO* formation contribute to CH3OH formation. Both pathways bypass the HCOO* formation from CO2, which is the main bottleneck in the process. Hence, our model points toward the important role of CO, but also O, OH, and H radicals, as they influence the reactions that consume CO2 and CO. In addition, our model reveals that the H pressure should not be smaller than ca. half of the O pressure in the plasma as this would cause O* poisoning, which would result in very small product TOFs. Thus, plasma conditions should be targeted with a high CO and H content as this is favorable for CH3OH formation, while the O content should be minimized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595545800023 Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access: Available from 15.07.2021  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1114921N ; H2020 European Research Council, 810182 ; We acknowledge the financial support from the Fund for Scientific Research (FWO-Vlaanderen; grant ID 1114921N) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 − SCOPE ERC Synergy project) as well as from the DOC-PRO3 and the TOPBOF projects of the University of Antwerp. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:173864 Serial 6443  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D. pdf  url
doi  openurl
  Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 39 Pages 21293-21304  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000577151900008 Publication Date 2020-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access  
  Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:172693 Serial 6452  
Permanent link to this record
 

 
Author Mehta, A.N.; Mo, J.; Pourtois, G.; Dabral, A.; Groven, B.; Bender, H.; Favia, P.; Caymax, M.; Vandervorst, W. pdf  doi
openurl 
  Title Grain-boundary-induced strain and distortion in epitaxial bilayer MoS₂ lattice Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 11 Pages 6472-6478  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Grain boundaries between 60 degrees rotated and twinned crystals constitute the dominant type of extended line defects in two-dimensional transition metal dichalcogenides (2D MX2) when grown on a single crystalline template through van der Waals epitaxy. The two most common 60 degrees grain boundaries in MX2 layers, i.e., beta- and gamma-boundaries, introduce distinct distortion and strain into the 2D lattice. They impart a localized tensile or compressive strain on the subsequent layer, respectively, due to van der Waals coupling in bilayer MX2 as determined by combining atomic resolution electron microscopy, geometric phase analysis, and density functional theory. Based on these observations, an alternate route to strain engineering through controlling intrinsic van der Waals forces in homobilayer MX2 is proposed. In contrast to the commonly used external means, this approach enables the localized application of strain to tune the electronic properties of the 2D semiconducting channel in ultra-scaled nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526396000067 Publication Date 2020-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 2 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number UA @ admin @ c:irua:168625 Serial 6528  
Permanent link to this record
 

 
Author Albrecht, W.; Bals, S. url  doi
openurl 
  Title Fast Electron Tomography for Nanomaterials Type A1 Journal article
  Year 2020 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c08939  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) has become a well-established technique to visualize nanomaterials in three dimensions. A vast richness in information can be gained by ET, but the conventional acquisition of a tomography series is an inherently slow process on the order of 1 h. The slow acquisition limits the applicability of ET for monitoring dynamic processes or visualizing nanoparticles, which are sensitive to the electron beam. In this Perspective, we summarize recent work on the development of emerging experimental and computational schemes to enhance the data acquisition process. We particularly focus on the application of these fast ET techniques for beam-sensitive materials and highlight insight into dynamic transformations of nanoparticles under external stimuli, which could be gained by fast in situ ET. Moreover, we discuss challenges and possible solutions for simultaneously increasing the speed and quality of fast ET.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000608876900003 Publication Date 2020-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 26 Open Access OpenAccess  
  Notes H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 815128 ; The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grant No. 815128-REALNANO) and the European Commission (EUSMI). The authors furthermore acknowledge funding from the European Union’s Horizon 2020 research and innovation program, ESTEEM3. The authors also acknowledge contributions from all co-workers that have contributed over the years: J. Batenburg and co-workers, A. Béché, E. Bladt, L. Liz-Marzán and co-workers, H. Pérez Garza and co-workers, A. Skorikov, S. Skrabalak and co-workers, S. Van Aert, A. van Blaaderen and co-workers, H. Vanrompay, and J. Verbeeck.; sygma Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number EMAT @ emat @c:irua:173965 Serial 6656  
Permanent link to this record
 

 
Author Loenders, B.; Engelmann, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Catalytic Partial Oxidation of Methane on Pt(111): A Microkinetic Study on the Role of Different Plasma Species Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 5 Pages 2966-2983  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)  
  Abstract We use microkinetic modeling to examine the potential of plasma-catalytic partial oxidation (POX) of CH4 as a promising new approach to produce oxygenates. We study how different plasma species affect POX of CH4 on the Pt(111) surface, and we discuss the associated kinetic and mechanistic changes. We discuss the effect of vibrationally excited CH4 and O2, as well as plasma-generated radicals and stable intermediates. Our results show that vibrational excitation enhances the turnover frequency (TOF) of catalytic CH4 dissociation and has good potential for improving the selectivities toward CH3OH, HCOOH, and C2 hydrocarbons. Nevertheless, when also considering plasma-generated radicals, we find that these species mainly govern the surface chemistry. Additionally, we find that plasma-generated radicals and stable intermediates enhance the TOFs of COx and oxygenates, increase the selectivity toward oxygenates, and make the formation of HCOOH more significant on Pt(111). We also briefly illustrate the potential impact of Eley−Rideal reactions that involve plasma-generated radicals. Finally, we reveal how various radicals affect the catalyst surface chemistry and we link this to the formation of different products. This allows us to make suggestions on how the plasma composition should be altered to improve the formation of desired products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000619760700017 Publication Date 2021-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, S001619N ; H2020 European Research Council, 810182 ; We thank Tom Butterworth for the interesting discussions regarding the calculation of the vibrational populations of methane and for taking the time to share his thoughts and experiences on the matter. This research is supported by the FWO-SBO project PLASMACATDesign (grant number S001619N). We also acknowledge financial support from the TOP-BOF project of the University of Antwerp and from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and the University of Antwerp. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:175873 Serial 6672  
Permanent link to this record
 

 
Author Renero-Lecuna, C.; Herrero, A.; Jimenez de Aberasturi, D.; Martínez-Flórez, M.; Valiente, R.; Mychinko, M.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Nd3+-Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 36 Pages 19887-19896  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The development of optical nanothermometers operating in the near-infrared (NIR) is of high relevance toward temperature measurements in biological systems. We propose herein the use of Nd3+-doped lanthanum oxychloride nanocrystals as an efficient system with intense photoluminescence under NIR irradiation in the first biological transparency window and emission in the second biological window with excellent emission stability over time under 808 nm excitation, regardless of Nd3+ concentration, which can be considered as a particular strength of our system. Additionally, surface passivation through overgrowth of an inert LaOCl shell around optically active LaOCl/Nd3+ cores was found to further enhance the photoluminescence intensity and also the lifetime of the 1066 nm, 4F3/2 to 4I11/2 transition, without affecting its (ratiometric) sensitivity toward temperature changes. As required for biological applications, we show that the obtained (initially hydrophobic) nanocrystals can be readily transferred into aqueous solvents with high, long-term stability, through either ligand exchange or encapsulation with an amphiphilic polymer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697335100031 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 9 Open Access OpenAccess  
  Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency−Grant MDM-2017−0720. Realnano; sygmaSB Approved Most recent IF: 4.536  
  Call Number EMAT @ emat @c:irua:181671 Serial 6831  
Permanent link to this record
 

 
Author Sanchez-Iglesias, A.; Jenkinson, K.; Bals, S.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Kinetic regulation of the synthesis of pentatwinned gold nanorods below room temperature Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 43 Pages 23937-23944  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of gold nanorods requires the presence of symmetry-breaking and shape-directing additives, among which bromide ions and quaternary ammonium surfactants have been reported as essential. As a result, hexadecyltrimethylammonium bromide (CTAB) has been selected as the most efficient surfactant to direct anisotropic growth. One of the difficulties arising from this selection is the low solubility of CTAB in water at room temperature, and therefore the seeded growth of gold nanorods is usually performed at 25 degrees C or above, which has restricted so far the analysis of kinetic effects derived from lower temperatures. We report a systematic study of the synthesis of gold nanorods from pentatwinned seeds using hexadecyltrimethylammonium chloride (CTAC) as the principal surfactant and a low concentration of bromide as shape-directing agent. Under these conditions, the synthesis can be performed at temperatures as low as 8 degrees C, and the corresponding kinetic effects can be studied, resulting in temperature-controlled aspect ratio tunability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000716453300038 Publication Date 2021-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 6 Open Access OpenAccess  
  Notes realnano; sygmaSB; This work was supported by the National Science Foundation (NSF) under award NSF CHE-1808502 (P.C. and I.J.). This work made use of the EPIC facility of Northwestern University's NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN, and Northwestern's MRSEC program (NSF DMR-1720139). D.A E. and S.B. acknowledge funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 REALNANO and Grant Agreement No. 731019 EUSMI). Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:184104 Serial 6868  
Permanent link to this record
 

 
Author Zhou, X.-G.; Yang, C.-Q.; Sang, X.; Li, W.; Wang, L.; Yin, Z.-W.; Han, J.-R.; Li, Y.; Ke, X.; Hu, Z.-Y.; Cheng, Y.-B.; Van Tendeloo, G. pdf  doi
openurl 
  Title Probing the electron beam-induced structural evolution of halide perovskite thin films by scanning transmission electron microscopy Type A1 Journal article
  Year 2021 Publication (up) Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 19 Pages 10786-10794  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A deep understanding of the fine structure at the atomic scale of halide perovskite materials has been limited by their sensitivity to the electron beam that is widely used for structural characterization. The sensitivity of a gamma-CsPbIBr2 perovskite thin film under electron beam irradiation is revealed by scanning transmission electron microscopy (STEM) through a universal large-range electron dose measurement, which is based on discrete single-electron events in the STEM mode. Our research indicates that the gamma-CsPbIBr2 thin film undergoes structural changes with increasing electron overall dose (e(-).A(-2)) rather than dose rate (e(-).A(-2).s(-1)), which suggests that overall dose is the key operative parameter. The electron beam-induced structural evolution of gamma-CsPbIBr2 is monitored by fine control of the electron beam dose, together with the analysis of high-resolution (S)TEM, diffraction, and energy-dispersive X-ray spectroscopy. Our results show that the gamma-CsPbIBr2 phase first forms an intermediate phase [e.g., CsPb(1-x)(IBr)((3-y))] with a superstructure of ordered vacancies in the pristine unit cell, while a fraction of Pb2+ is reduced to Pb-0. As the electron dose increases, Pb nanoparticles precipitate, while the remaining framework forms the Cs2IBr phase, accompanied by some amorphization. This work provides guidelines to minimize electron beam irradiation artifacts for atomic-resolution imaging on CsPbIBr2 thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000655640900061 Publication Date 2021-05-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179187 Serial 6880  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: