|   | 
Details
   web
Records
Author Bals, S.; Kabius, B.; Haider, M.; Radmilovic, V.; Kisielowski, C.
Title Annular dark field imaging in a TEM Type A1 Journal article
Year 2004 Publication (up) Solid state communications Abbreviated Journal Solid State Commun
Volume 130 Issue 10 Pages 675-680
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Annular objective apertures are fabricated for a CM300 transmission electron microscope using a focused ion beam system. A central beam stop in the back focal plane of the objective lens of the microscope blocks all electrons scattered up to a semi-angle of approximately 20 mrad. In this manner, contributions to the image from Bragg scattering are largely reduced and the image contrast is sensitive to the atomic number Z. Experimentally, we find that single atom scattering cross sections measured with this technique are close to Rutherford scattering values. A comparison between this new method and STEM-HAADF shows that both techniques result in qualitatively similar images although the resolution of ADF-TEM is limited by contrast delocalization caused by the spherical aberration of the objective lens. This problem can be overcome by using an aberration corrected microscope.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000221489300007 Publication Date 2004-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 43 Open Access
Notes Approved Most recent IF: 1.554; 2004 IF: 1.523
Call Number UA @ lucian @ c:irua:87584 Serial 132
Permanent link to this record
 

 
Author Molina, L.; Tan, H.; Biermans, E.; Batenburg, K.J.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
Title Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Type A1 Journal article
Year 2011 Publication (up) Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 6 Pages 065019-065019,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 − δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000290472900021 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 31 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88639UA @ admin @ c:irua:88639 Serial 221
Permanent link to this record
 

 
Author Wang, H.; Picot, T.; Houben, K.; Moorkens, T.; Grigg, J.; Van Haesendonck, C.; Biermans, E.; Bals, S.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J.;
Title The superconducting proximity effect in epitaxial Al/Pb nanocomposites Type A1 Journal article
Year 2014 Publication (up) Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 27 Issue 1 Pages 015008-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have investigated the superconducting properties of Pb nanoparticles with a diameter ranging from 8 to 20 nm, synthesized by Pb+ ion implantation in a crystalline Al matrix. A detailed structural characterization of the nanocomposites reveals the highly epitaxial relation between the Al crystalline matrix and the Pb nanoparticles. The Al/Pb nanocomposites display a single superconducting transition, with the critical temperature T-c increasing with the Pb content. The dependence of T-c on the Pb/Al volume ratio was compared with theoretical models of the superconducting proximity effect based on the bulk properties of Al and Pb. A very good correspondence with the strong-coupling proximity effect model was found, with an electron-phonon coupling constant in the Pb nanoparticles slightly reduced compared to bulk Pb. Our result differs from other studies on Pb nanoparticle based proximity systems where weak-coupling models were found to better describe the T-c dependence. We infer that the high interface quality resulting from the ion implantation synthesis method is a determining factor for the superconducting properties. Critical field and critical current measurements support the high quality of the nanocomposite superconducting films.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000328275000010 Publication Date 2013-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 2 Open Access Not_Open_Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO), the KU Leuven BOF Concerted Research Action programs (GOA/09/006, the KU Leuven BOF CREA/12/015 project, and GOA/14/007) and the EU FP7 program SPIRIT (227012). TP and KH are postdoctoral research fellow and doctoral fellow of the FWO. ; Approved Most recent IF: 2.878; 2014 IF: 2.325
Call Number UA @ lucian @ c:irua:112833 Serial 3599
Permanent link to this record
 

 
Author Cremers, V.; Rampelberg, G.; Barhoum, A.; Walters, P.; Claes, N.; Oliveira, T.M. de; Assche, G.V.; Bals, S.; Dendooven, J.; Detavernier, C.
Title Oxidation barrier of Cu and Fe powder by Atomic Layer Deposition Type A1 Journal article
Year 2018 Publication (up) Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 349 Issue 349 Pages 1032-1041
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Atomic layer deposition (ALD) is a vapor based technique which allows to deposit uniform, conformal films with a thickness control at the atomic scale. In this research, Al 2 O 3 coatings were deposited on micrometer-sized Fe and Cu powder (particles) using the thermal trimethylaluminum (TMA)/ water (H 2 O) process in a rotary pump-type ALD reactor. Rotation of the powder during deposition was required to obtain a pinhole-free ALD coating. The protective nature of the coating was evaluated by quantifying its effectiveness in protecting the metal particles during oxidative annealing treatments. The Al 2 O 3 coated powders were annealed in ambient air while in-situ thermogravimetric analysis (TGA) and in-situ x-ray diffraction (XRD) data were acquired. The thermal stability of a series of Cu and Fe powder with different Al 2 O 3 thicknesses were determined with TGA. In both samples a clear shift in oxidation temperature is visible. For Cu and Fe powder coated with 25 nm Al 2 O 3 , we observed an increase of the oxidation temperature with 300-400°C. For the Cu powder a thin film of only 8 nm is required to obtain an initial increase in oxidation temperature of 200°C. In contrast, for Fe powder a thicker coating of 25 nm is required. In both cases, the oxidation temperature increases with increasing thickness of the Al 2 O 3 coating. These results illustrate that the Al 2 O 3 thin film, deposited by the thermal ALD process (TMA/H 2 O) can be an efficient and pinhole-free barrier layer for micrometer-sized powder particles, provided that the powder is properly agitated during the process to ensure sufficient vapour-solid interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441492600108 Publication Date 2018-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 10 Open Access OpenAccess
Notes The authors acknowledge financial support from the Strategic Initiative Materials in Flanders (SIM, SBO-FUNC project) and the Special Research Fund BOF of Ghent University (GOA 01G01513). J. D. acknowledges the Research Foundation Flanders (FWO-Vlaanderen) for a postdoctoral fellowship. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant 335078-COLOURATOMS). The authors acknowledge S. Goeteyn for the assistance in preliminary depositions. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 2.589
Call Number EMAT @ emat @c:irua:152174UA @ admin @ c:irua:152174 Serial 4994
Permanent link to this record
 

 
Author Daems, N.; De Mot, B.; Choukroun, D.; Van Daele, K.; Li, C.; Hubin, A.; Bals, S.; Hereijgers, J.; Breugelmans, T.
Title Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO2 to CO in a continuous-flow electrolyzer Type A1 Journal article
Year 2019 Publication (up) Sustainable energy & fuels Abbreviated Journal
Volume 4 Issue 4 Pages 1296-1311
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nickel-containing N-doped carbons were synthesized for the electrochemical reduction of CO2 to CO, which is a promising approach to reduce the atmospheric CO2 levels and its negative impact on the environment. Unfortunately, poor performance (activity, selectivity and/or stability) is still a major hurdle for the economical implementation of this type of materials. The electrocatalysts were prepared through an easily up-scalable and easily tunable method based on the pyrolysis of Ni-containing N-doped carbons. Ni–N–AC–B1 synthesized with a high relative amount of nitrogen and nickel with respect to carbon, was identified as the most promising candidate for this reaction based on its partial CO current density (4.2 mA cm−2), its overpotential (0.57 V) and its faradaic efficiency to CO (>99%). This results in unprecedented values for the current density per g active sites (690 A g−1 active sites). Combined with its decent stability and its high performance in an actual electrolyzer setup, this makes it a promising candidate for the electrochemical reduction of CO2 to CO on a larger scale. Finally, the evaluation of this kind of material in a flow-cell setup has been limited and to the best of our knowledge never included an evaluation of several crucial parameters (e.g. electrolyte type, anode composition and membrane type) and is an essential investigation in the move towards up-scaling and ultimately industrial application of this technique. This study resulted in an optimal cell configuration, consisting of Pt as an anode, Fumatech® as the membrane and 1 M KHCO3 and 2 M KOH as catholyte and anolyte, respectively. In conclusion, this research offers a unique combination of electrocatalyst development and reactor optimization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518690900030 Publication Date 2019-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 14 Open Access OpenAccess
Notes ; The authors acknowledge sponsoring from the research foundation of Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). J. Hereijgers was supported through a postdoctoral fellowship (28761) of the Research Foundation Flanders (FWO). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-.nanced by the European Fund for Regional Development in the frame of subsidiary contract nr 2S03-019. This work was further performed in the framework of the Catalisti cluster SBO project CO2PERATE (“All renewable CCU based on formic acid integrated in an industrial microgrid”), with the.nancial support of VLAIO (Flemish Agency for Innovation and Entrepreneurship). This project.nally received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). We thank Karen Leyssens for helping with the N<INF>2</INF> physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. ; sygma Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:165482 Serial 6311
Permanent link to this record
 

 
Author Teunissen, J.L.; Braeckevelt, T.; Skvortsova, I.; Guo, J.; Pradhan, B.; Debroye, E.; Roeffaers, M.B.J.; Hofkens, J.; Van Aert, S.; Bals, S.; Rogge, S.M.J.; Van Speybroeck, V.
Title Additivity of Atomic Strain Fields as a Tool to Strain-Engineering Phase-Stabilized CsPbI3Perovskites Type A1 Journal Article
Year 2023 Publication (up) The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
Volume 127 Issue 48 Pages 23400-23411
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001116862000001 Publication Date 2023-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes This work was supported by iBOF-21-085 PERsist (Special Research Fund of Ghent University, KU Leuven Research Fund, and the Research Fund of the University of Antwerp). S.M.J.R., T.B., and B.P. acknowledge financial support from the Research Foundation-Flanders (FWO) through two postdoctoral fellow- ships [grant nos. 12T3522N (S.M.J.R.) and 1275521N (B.P.)] and an SB-FWO fellowship [grant no. 1SC1319 (T.B.)]. E.D., M.B.J.R., and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grant nos. G.0B39.15, G.0B49.15, G098319N, S002019N, S004322N, and ZW15_09- GOH6316). J.H. acknowledges support from the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as an MPI fellow. S.V.A. and S.B. acknowledge financial support from the Research Foundation-Flanders (FWO, grant no. G0A7723N). S.M.J.R. and V.V.S. acknowledge funding from the Research Board of Ghent University (BOF). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation- Flanders (FWO) and the Flemish Government�department EWI.; KU Leuven, iBOF-21-085 PERsist ; Universiteit Antwerpen, iBOF-21-085 PERsist ; Universiteit Gent, iBOF-21-085 PERsist ; Vlaamse regering, CASAS2, Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, G.0B39.15 G098319N G.0B49.15 1SC1319 12T3522N ZW15 09-GOH6316 G0A7723N 1275521N S004322N S002019N ; Approved Most recent IF: 3.7; 2023 IF: 4.536
Call Number EMAT @ emat @c:irua:202124 Serial 8985
Permanent link to this record
 

 
Author Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M.;
Title Au@Ag nanoparticles : halides stabilize {100} facets Type A1 Journal article
Year 2013 Publication (up) The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 4 Issue 13 Pages 2209-2216
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000321809500018 Publication Date 2013-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 131 Open Access
Notes 267867 Plasmaquo; 246791 COUNTATOMS; 262348 ESMI; FWO Approved Most recent IF: 9.353; 2013 IF: 6.687
Call Number UA @ lucian @ c:irua:109811 Serial 204
Permanent link to this record
 

 
Author Rogolino, A.; Claes, N.; Cizaurre, J.; Marauri, A.; Jumbo-Nogales, A.; Lawera, Z.; Kruse, J.; Sanroman-Iglesias, M.; Zarketa, I.; Calvo, U.; Jimenez-Izal, E.; Rakovich, Y.P.; Bals, S.; Matxain, J.M.; Grzelczak, M.
Title Metal-polymer heterojunction in colloidal-phase plasmonic catalysis Type A1 Journal article
Year 2022 Publication (up) The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 13 Issue 10 Pages 2264-2272
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD+ to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal-polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst. The tight binding of polymer to the gold surface precludes the need for conventional transition-metal surface cocatalysts, which were previously shown to be essential for photocatalytic NAD(+) reduction but are known to hinder the optical properties of plasmonic nanocrystals. Moreover, computational studies indicated that the coating polymer fosters a closer interaction between the sacrificial electron-donor triethanolamine and the nanoparticles, thus enhancing the reactivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000776518000001 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited 1 Open Access OpenAccess
Notes This work was supported by grant PID2019-111772RB-I00 funded by MCIN/AEI/10.13039/501100011033 and grant IT 1254-19 funded by Basque Government. The authors acknowledge the financial support of the European Commission (EUSMI, Grant 731019). S.B. is grateful to the European Research Council (ERC-CoG-2019 815128). The authors acknowledge the contributions by Dr. Adrian Pedrazo Tardajos related to sample support and electron microscopy experiments.; realnano;sygmaSB Approved Most recent IF: 5.7
Call Number UA @ admin @ c:irua:188008 Serial 7062
Permanent link to this record
 

 
Author Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H.
Title New insights into the early stages of nanoparticle electrodeposition Type A1 Journal article
Year 2012 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 3 Pages 2322-2329
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000299584400037 Publication Date 2011-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 104 Open Access
Notes Fwo Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:96225 Serial 2316
Permanent link to this record
 

 
Author Goris, B.; Guzzinati, G.; Fernández-López, C.; Pérez-Juste, J.; Liz-Marzán, L.M.; Trügler, A.; Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
Title Plasmon mapping in Au@Ag nanocube assemblies Type A1 Journal article
Year 2014 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 28 Pages 15356-15362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag coreshell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000339368700031 Publication Date 2014-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 41 Open Access OpenAccess
Notes Fwo; 246791 Countatoms; 278510 Vortex; 335078 Colouratom; 262348 Esmi ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:118099UA @ admin @ c:irua:118099 Serial 2644
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S.
Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
Year 2014 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 118 Issue 36 Pages 21031-21037
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000341619500034 Publication Date 2014-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 9 Open Access OpenAccess
Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
Call Number UA @ lucian @ c:irua:119085 Serial 3416
Permanent link to this record
 

 
Author Serrano-Montes, A.B.; Langer, J.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Sentosun, K.; Bals, S.; Bekdemir, A.; Stellacci, F.; Liz-Marzán, L.M.
Title Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging Type A1 Journal article
Year 2016 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 20860-20868
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hybrid colloidal nanocomposites comprising polystyrene beads and plasmonic gold nanostars are reported as multifunctional optical nanoprobes. Such self-assembled structures are excellent Raman enhancers for bio-applications as they feature plasmon modes in the near infrared “first biological transparency window”. In this proof of concept study, we used 4- mercaptobenzoic acid as a Raman-active molecule to optimize the density of gold nanostars on polystyrene beads, improving SERS performance and thereby allowing in vitro cell culture imaging. Interestingly, intermediate gold nanostar loadings were found to yield higher SERS response, which was confirmed by electromagnetic modeling. These engineered hybrid nanostructures notably improve the possibilities of using gold nanostars as SERS tags. Additionally, when fluorescently labeled polystyrene bead are used as colloidal carriers, the composite particles can be applied as promising tools for multimodal bioimaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384034600045 Publication Date 2016-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 64 Open Access OpenAccess
Notes Funding is acknowledged from the European Commission (Grant #310445-2 SAVVY), the European Research Council (ERC Advanced Grant #267867 Plasmaquo, and ERC Starting Grant #335078 Colouratom) and the Spanish MINECO (Project MAT2013-46101-R). We thank IKERLAT Polymers for the non-fluorescent PS beads and Prof. Juan Mareque, Prof. Soledad Penades and Dr. Sergio Moya (CIC biomagune) for borrowing various cell lines. D.M.S., J.M.T, and F.O. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects MAT2014-58201-C2-1-R, MAT2014- 58201-C2-2-R), from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC), and from the ERDF and the Extremadura Regional Government (Junta de Extremadura) under Project IB13185. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ; ECAS_Sara; Approved Most recent IF: 4.536
Call Number c:irua:133952 Serial 4082
Permanent link to this record
 

 
Author Mernissi Cherigui, E.A.; Sentosun, K.; Bouckenooge, P.; Vanrompay, H.; Bals, S.; Terryn, H.; Ustarroz, J.
Title A Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water Type A1 Journal article
Year 2017 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 9337-9347
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride – urea (1:2 ChCl-U) deep eutectic solvent (DES). By combining electrochemical techniques with ex-situ FE-SEM, XPS, HAADF-STEM and EDX, the electrochemical processes occurring during nickel deposition were better understood. Special attention was given to the interaction between the solvent and the growing nickel nanoparticles. The application of a suffciently negative potential results into the electrocatlytic hydrolisis of residual water in the DES, which leads to the formation of a mixed layer of Ni/Ni(OH)2(ads). In addition, hydrogen bonds between hydroxide species and the DES components could be formed, quenching the growth of the nickel clusters favouring their aggregation. Due to these processes, a highly dense distribution of nickel nanostructures can be obtained within a wide potential range. Understanding the role of residual water and the interactions at the interface during metal electrodeposition from DESs is essential to produce supported nanostructures in a controllable way for a broad range of applications and technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000400881100027 Publication Date 2017-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 66 Open Access OpenAccess
Notes E.A. Mernissi Cherigui acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). H.V. gratefully acknowledges financial support by the Flemish Fund for Scientifi c Research (FWO Vlaanderen). Finally, J. Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 4.536
Call Number EMAT @ emat @ c:irua:142208UA @ admin @ c:irua:142208 Serial 4551
Permanent link to this record
 

 
Author Benetti, G.; Caddeo, C.; Melis, C.; Ferrini, G.; Giannetti, C.; Winckelmans, N.; Bals, S.; J Van Bael, M.; Cavaliere, E.; Gavioli, L.; Banfi, F.
Title Bottom-Up Mechanical Nanometrology of Granular Ag Nanoparticles Thin Films Type A1 Journal article
Year 2017 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 22434-22441
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrathin metal nanoparticles coatings, synthesized by gas-phase deposition, are emerging as go-to materials in a variety of fields ranging from pathogens control, sensing to energy storage. Predicting their morphology and mechanical properties beyond a trial-and-error approach is a crucial issue limiting their exploitation in real-life applications. The morphology and mechanical properties of Ag nanoparticles ultrathin films, synthesized by supersonic cluster beam deposition, are here assessed adopting a bottom-up, multi-technique approach. A virtual film model is proposed merging high resolution scanning transmission electron microscopy, supersonic cluster beam dynamics and molecular dynamics simulations. The model is validated against mechanical nanometrology measurements and is readily extendable to metals other than Ag. The virtual film is shown to be a flexible and reliable predictive tool to access morphology-dependent properties such as mesoscale gas-dynamics and elasticity of ultrathin films synthesized by gas-phase deposition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413131700072 Publication Date 2017-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 30 Open Access OpenAccess
Notes ; All authors thank Prof. Dr. Luciano Colombo for enlightening discussions. C.C. and F.B. acknowledge financial support from the MIUR Futuro in ricerca 2013 Grant in the frame of the ULTRANANO Project (Project No. RBFR13NEA4). F.B., G.F., and C.G. acknowledge support from Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants. F.B. acknowledges financial support from Fondazione E.U.L.O. The authors acknowledge financial support from the European Union through the seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). ; Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:145828UA @ admin @ c:irua:145828 Serial 4706
Permanent link to this record
 

 
Author Kus, M.; Altantzis, T.; Vercauteren, S.; Caretti, I.; Leenaerts, O.; Batenburg, K.J.; Mertens, M.; Meynen, V.; Partoens, B.; Van Doorslaer, S.; Bals, S.; Cool, P.
Title Mechanistic Insight into the Photocatalytic Working of Fluorinated Anatase {001} Nanosheets Type A1 Journal article
Year 2017 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 26275-26286
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Laboratory of adsorption and catalysis (LADCA)
Abstract Anatase nanosheets with exposed {001} facets

have gained increasing interest for photocatalytic applications. To

fully understand the structure-to-activity relation, combined

experimental and computational methods have been exploited.

Anatase nanosheets were prepared under hydrothermal conditions

in the presence of fluorine ions. High resolution scanning

transmission electron microscopy was used to fully characterize

the synthesized material, confirming the TiO2 nanosheet

morphology. Moreover, the surface structure and composition

of a single nanosheet could be determined by annular bright-field

scanning transmission electron microscopy (ABF-STEM) and

STEM electron energy loss spectroscopy (STEM-EELS). The photocatalytic activity was tested for the decomposition of organic

dyes rhodamine 6G and methyl orange and compared to a reference TiO2 anatase sample. The anatase nanosheets with exposed

{001} facets revealed a significantly lower photocatalytic activity compared to the reference. In order to understand the

mechanism for the catalytic performance, and to investigate the role of the presence of F−, light-induced electron paramagnetic

resonance (EPR) experiments were performed. The EPR results are in agreement with TEM, proving the presence of Ti3+

species close to the surface of the sample and allowing the analysis of the photoinduced formation of paramagnetic species.

Further, ab initio calculations of the anisotropic effective mass of electrons and electron holes in anatase show a very high effective

mass of electrons in the [001] direction, having a negative impact on the mobility of electrons toward the {001} surface and thus

the photocatalysis. Finally, motivated by the experimental results that indicate the presence of fluorine atoms at the surface, we

performed ab initio calculations to determine the position of the band edges in anatase slabs with different terminations of the

{001} surface. The presence of fluorine atoms near the surface is shown to strongly shift down the band edges, which indicates

another reason why it can be expected that the prepared samples with a large amount of {001} surface, but with fluorine atoms

near the surface, show only a low photocatalytic activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000417228500017 Publication Date 2017-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access OpenAccess
Notes The authors acknowledge the University of Antwerp for financial support in the frame of a GOA project. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.V.D. and V.M. acknowledge funding from the Fund for Scientific Research-Flanders (G.0687.13). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:147240UA @ admin @ c:irua:147240 Serial 4771
Permanent link to this record
 

 
Author Winckelmans, N.; Altantzis, T.; Grzelczak, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S.
Title Multimode Electron Tomography as a Tool to Characterize the Internal Structure and Morphology of Gold Nanoparticles Type A1 Journal article
Year 2018 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 13522-13528
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Three dimensional (3D) characterization of structural defects in nanoparticles by transmission electron microscopy is far from straightforward. We propose the use of a dose-efficient approach, so-called multimode tomography, during which tilt series of low and high angle annular dark field scanning transmission electron microscopy projection images are acquired simultaneously. In this manner, not only reliable information can be obtained concerning the shape of the nanoparticles, but also the twin planes can be clearly visualized in 3D. As an example, we demonstrate the application of this approach to identify the position of the seeds with respect to the twinning planes in anisotropic gold nanoparticles synthesized using a seed mediated growth approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000437811500036 Publication Date 2018-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 23 Open Access OpenAccess
Notes S.B. and N.W. acknowledge funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.B. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0369.15N and G.0218.14N) and a postdoctoral research grant to T.A. L.M.L.-M. and M.G. acknowledge funding from the Spanish Ministerio de Economía y Competitividad (grant MAT2013-46101-R). L.M.L.-M. and S.B. acknowledge funding from the European Commission (grant EUSMI 731019). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:148164UA @ admin @ c:irua:148164 Serial 4807
Permanent link to this record
 

 
Author Yang, Z.; Altantzis, T.; Bals, S.; Tendeloo, G.V.; Pileni, M.-P.
Title Do Binary Supracrystals Enhance the Crystal Stability? Type A1 Journal article
Year 2018 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 13515-13521
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We study the oxygen thermal stability of two binary

systems. The larger particles are magnetic amorphous Co (7.2 nm) or

Fe3O4 (7.5 nm) nanocrystals, whereas the smaller ones (3.7 nm) are

Au nanocrystals. The nanocrystal ordering as well as the choice of the

magnetic nanoparticles very much influence the stability of the binary

system. A perfect crystalline structure is obtained with the Fe3O4/Au

binary supracrystals. For the Co/Au binary system, oxidation of Co

results in the chemical transformation from Co to CoO, where the size

of the amorphous Co nanoparticles increases from 7.2 to 9.8 nm in

diameter. During the volume expansion of the Co nanoparticles, Au

nanoparticles within the binary assemblies coalesce and are at the

origin of the instability of the binary nanoparticle supracrystals. On the

other hand, for the Fe3O4/Au binary system, the oxidation of Fe3O4 to

γ-Fe2O3 does not lead to a size change of the nanoparticles, which

maintains the stability of the binary nanoparticle supracrystals. A similar behavior is observed for an AlB2-type Co−Ag binary

system: The crystalline structure is maintained, whereas in disordered assemblies, coalescence of Ag nanocrystals is observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000437811500035 Publication Date 2018-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access OpenAccess
Notes The research leading to these results has been supported by an Advanced Grant of the European Research Council under Grant 267129. The authors appreciate financial support by the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference No. 262348 ESMI). S.B. acknowledges funding from ERC Starting Grant COLOURATOMS (335078). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO, Belgium). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:149388UA @ admin @ c:irua:149388 Serial 4812
Permanent link to this record
 

 
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J.
Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
Year 2018 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 23129-23142
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000447471700038 Publication Date 2018-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 27 Open Access OpenAccess
Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:154731 Serial 5121
Permanent link to this record
 

 
Author van der Burgt, J.S.; Geuchies, J.J.; van der Meer, B.; Vanrompay, H.; Zanaga, D.; Zhang, Y.; Albrecht, W.; Petukhov, A.V.; Filion, L.; Bals, S.; Swart, I.; Vanmaekelbergh, D.
Title Cuboidal supraparticles self-assembled from cubic CsPbBr3 perovskite nanocrystals Type A1 Journal article
Year 2018 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 15706-15712
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Colloidal CsPbBr3 nanocrystals (NCs) have emerged as promising candidates for various opto-electronic applications, such as light-emitting diodes, photodetectors, and solar cells. Here, we report on the self-assembly of cubic NCs from an organic suspension into ordered cuboidal supraparticles (SPs) and their structural and optical properties. Upon increasing the NC concentration or by addition of a nonsolvent, the formation of the SPs occurs homogeneously in the suspension, as monitored by in situ X-ray scattering measurements. The three-dimensional structure of the SPs was resolved through high-angle annular dark-field scanning transmission electron microscopy and electron tomography. The NCs are atomically aligned but not connected. We characterize NC vacancies on superlattice positions both in the bulk and on the surface of the SPs. The occurrence of localized atomic-type NC vacancies-instead of delocalized ones-indicates that NC-NC attractions are important in the assembly, as we verify with Monte Carlo simulations. Even when assembled in SPs, the NCs show bright emission, with a red shift of about 30 meV compared to NCs in suspension.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000439003600071 Publication Date 2018-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 60 Open Access OpenAccess
Notes ; The authors thank Dr. Rajeev Dattani and Jacques Gorini from the ID02 beamline of the ESRF for their excellent assistance during the X-ray scattering experiments. We also thank Carlo van Overbeek, P. Tim Prins, and Federico Montanarella for their support during the synchrotron experiments. The authors gratefully acknowledge Prof. Dr. Alfons van Blaaderen for fruitful discussions. D.V. acknowledges funding from NWO-CW TOPPUNT “Superficial superstructures.” J.J.G. acknowledges the joint Debye and ESRF graduate programs for the financial support. H.V. gratefully acknowledges the financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617NN). S.B. acknowledges the financial support from the European Research Council (ERC Starting grant # 335078-COLOURATOMS). Y.Z. acknowledges the financial support from the European Union's Horizon 2020 research and innovation program, under the Marie Sklodowska-Curie grant agreement #665501 through a FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship (12U4917N). W.A. acknowledges the financial support from the European Research Council under the European Unions Seventh Framework Program (FP-2007-2013)/ERC Advanced grant agreement 291667 HierarSACol. ; ecas_Sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:153161UA @ admin @ c:irua:153161 Serial 5087
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Wit, J. de; Li, C.; Arenas-Esteban, D.; Bals, S.; Meijerink, A.; Vanmaekelbergh, D.
Title Two-Dimensional CdSe-PbSe Heterostructures and PbSe Nanoplatelets: Formation, Atomic Structure, and Optical Properties Type A1 Journal article
Year 2022 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 126 Issue 3 Pages 1513-1522
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000744909200001 Publication Date 2022-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 12 Open Access OpenAccess
Notes H. Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. T. Prins is kindly acknowledged for useful discussions. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO Grant No. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced Grant 692691 “First Step”. J.W. and A.M. acknowledge financial support from the project CHEMIE.PGT.2019.004 of TKI/ Topsector Chemie, which is partly financed by the Dutch NWO. S.B, C.L., and D.A.E. acknowledge financial support from the European ERC Council, ERC Consolidator Grant realnano No. 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant No. 731019 (EUSMI). sygmaSB Approved Most recent IF: 3.7
Call Number EMAT @ emat @c:irua:185454 Serial 6953
Permanent link to this record
 

 
Author dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M.
Title Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging Type A1 Journal article
Year 2022 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 126 Issue 45 Pages 19519-19531
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000883021700001 Publication Date 2022-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 10 Open Access Not_Open_Access
Notes The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) . Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:192104 Serial 7311
Permanent link to this record
 

 
Author Kavak, S.; Kadu, A.A.; Claes, N.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Batenburg, K.J.; Bals, S.
Title Quantitative 3D Investigation of Nanoparticle Assemblies by Volumetric Segmentation of Electron Tomography Data Sets Type A1 Journal article
Year 2023 Publication (up) The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal
Volume 127 Issue 20 Pages 9725-9734
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Morphological characterization of nanoparticle assemblies and hybrid nanomaterials is critical in determining their structure-property relationships as well as in the development of structures with desired properties. Electron tomography has become a widely utilized technique for the three-dimensional characterization of nanoparticle assemblies. However, the extraction of quantitative morphological parameters from the reconstructed volume can be a complex and labor-intensive task. In this study, we aim to overcome this challenge by automating the volumetric segmentation process applied to three-dimensional reconstructions of nanoparticle assemblies. The key to enabling automated characterization is to assess the performance of different volumetric segmentation methods in accurately extracting predefined quantitative descriptors for morphological characterization. In our methodology, we compare the quantitative descriptors obtained through manual segmentation with those obtained through automated segmentation methods, to evaluate their accuracy and effectiveness. To show generality, our study focuses on the characterization of assemblies of CdSe/CdS quantum dots, gold nanospheres and CdSe/CdS encapsulated in polymeric micelles, and silica-coated gold nanorods decorated with both CdSe/CdS or PbS quantum dots. We use two unsupervised segmentation algorithms: the watershed transform and the spherical Hough transform. Our results demonstrate that the choice of automated segmentation method is crucial for accurately extracting the predefined quantitative descriptors. Specifically, the spherical Hough transform exhibits superior performance in accurately extracting quantitative descriptors, such as particle size and interparticle distance, thereby allowing for an objective, efficient, and reliable volumetric segmentation of complex nanoparticle assemblies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000991752700001 Publication Date 2023-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 2 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 1181122N ; Horizon 2020 Framework Programme, 861950 ; H2020 European Research Council, 815128 ; Approved Most recent IF: 3.7; 2023 IF: 4.536
Call Number EMAT @ emat @c:irua:196971 Serial 8793
Permanent link to this record
 

 
Author Bai, J.; Wang, J.T.-W.; Rubio, N.; Protti, A.; Heidari, H.; Elgogary, R.; Southern, P.; Al-Jamal, W.' T.; Sosabowski, J.; Shah, A.M.; Bals, S.; Pankhurst, Q.A.; Al-Jamal, K.T.
Title Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid TumoursIn Vivo Type A1 Journal article
Year 2016 Publication (up) Theranostics Abbreviated Journal Theranostics
Volume 6 Issue 6 Pages 342-356
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Triple-modal imaging magnetic nanocapsules, encapsulating hydrophobic superparamagnetic iron oxide nanoparticles, are formulated and used to magnetically target solid tumours after intravenous administration in tumour-bearing mice. The engineered magnetic polymeric nanocapsules m-NCs are ~200 nm in size with negative Zeta potential and shown to be spherical in shape. The loading efficiency of superparamagnetic iron oxide nanoparticles in the m-NC was ~100%. Up to ~3- and ~2.2-fold increase in tumour uptake at 1 and 24 h was achieved, when a static magnetic field was applied to the tumour for 1 hour. m-NCs, with multiple imaging probes (e.g. indocyanine green, superparamagnetic iron oxide nanoparticles and indium-111), were capable of triple-modal imaging (fluorescence/magnetic resonance/nuclear imaging) in vivo. Using triple-modal imaging is to overcome the intrinsic limitations of single modality imaging and provides complementary information on the spatial distribution of the nanocarrier within the tumour. The significant findings of this study could open up new research perspectives in using novel magnetically-responsive nanomaterials in magnetic-drug targeting combined with multi-modal imaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377797200005 Publication Date 2015-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1838-7640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.712 Times cited 54 Open Access OpenAccess
Notes The authors would like to thank Prof Robert Hider (King's College London) for useful discussion on the chemical functionalization of the polymers, Mr William Luckhurst (King's College London) on the technical help of AFM measurements and Mr Andrew Cakebread (King's College London) on his technical help of ICP-MS measurements. J.B. acknowledges funding from King's-China Scholarship Council (CSC). J.W. and N.R. acknowledge funding from Biotechnology and Biological Sciences Research Council (BB/J008656/1) and Associated International Cancer Research (12-1054). K.T.AJ. acknowledges funding from EU FP7-ITN Marie-Curie Network programme RADDEL (290023). S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 8.712
Call Number c:irua:130058 Serial 3995
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Sijbers, J.; Kübel, C.; Midgley, P.A.; Hernandez, J.C.; Kaiser, U.; Encina, E.R.; Coronado, E.A.; Van Tendeloo, G.
Title 3D imaging of nanomaterials by discrete tomography Type A1 Journal article
Year 2009 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 6 Pages 730-740
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi2 nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000265816400005 Publication Date 2009-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 220 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:74665 c:irua:74665 Serial 12
Permanent link to this record
 

 
Author Roelandts, T.; Batenburg, K.J.; Biermans, E.; Kübel, C.; Bals, S.; Sijbers, J.
Title Accurate segmentation of dense nanoparticles by partially discrete electron tomography Type A1 Journal article
Year 2012 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 114 Issue Pages 96-105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense nanoparticles of constant composition. The particles are segmented directly by the reconstruction algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As no properties are assumed for the other compositions of the sample, the technique can be applied to any sample where dense nanoparticles must be segmented, regardless of the surrounding compositions. For both experimental and simulated data, it is shown that PDART yields significantly more accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000301954300011 Publication Date 2012-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 34 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:97710 Serial 52
Permanent link to this record
 

 
Author Goris, B.; Roelandts, T.; Batenburg, K.J.; Heidari Mezerji, H.; Bals, S.
Title Advanced reconstruction algorithms for electron tomography : from comparison to combination Type A1 Journal article
Year 2013 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 127 Issue Pages 40-47
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this work, the simultaneous iterative reconstruction technique (SIRT), the total variation minimization (TVM) reconstruction technique and the discrete algebraic reconstruction technique (DART) for electron tomography are compared and the advantages and disadvantages are discussed. Furthermore, we describe how the result of a three dimensional (3D) reconstruction based on TVM can provide objective information that is needed as the input for a DART reconstruction. This approach results in a tomographic reconstruction of which the segmentation is carried out in an objective manner.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000316659100007 Publication Date 2012-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 63 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2013 IF: 2.745
Call Number UA @ lucian @ c:irua:101217 Serial 72
Permanent link to this record
 

 
Author van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D.
Title Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
Year 2012 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 116 Issue Pages 8-12
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000304473700002 Publication Date 2012-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 67 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:96558 Serial 518
Permanent link to this record
 

 
Author Van Aert, S.; Chang, L.Y.; Bals, S.; Kirkland, A.I.; Van Tendeloo, G.
Title Effect of amorphous layers on the interpretation of restored exit waves Type A1 Journal article
Year 2009 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 3 Pages 237-246
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effects of amorphous layers on the quality of exit wave restorations have been investigated. Two independently developed software implementations for exit wave restoration have been used to simulated focal series of images of SrTiO3 with amorphous carbon layers incorporated. The restored exit waves have been compared both qualitatively and quantitatively. We have shown that amorphous layers have a strong impact on the quantitative measurements of atomic column positions, however, the error in the position measurements is still in the picometer range.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000264280200005 Publication Date 2008-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 10 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:76421 Serial 796
Permanent link to this record
 

 
Author Croitoru, M.D.; van Dyck, D.; Van Aert, S.; Bals, S.; Verbeeck, J.
Title An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images Type A1 Journal article
Year 2006 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 10 Pages 933-940
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract We propose an improved image simulation procedure for atomic-resolution annular dark-field scanning transmission electron microscopy (STEM) based on the multislice formulation, which takes thermal diffuse scattering fully into account. The improvement with regard to the classical frozen phonon approach is realized by separating the lattice configuration statistics from the dynamical scattering so as to avoid repetitive calculations. As an example, the influence of phonon scattering on the image contrast is calculated and investigated. STEM image simulation of crystals can be applied with reasonable computing times to problems involving a large number of atoms and thick or large supercells.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000240397200006 Publication Date 2006-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 18 Open Access
Notes Fwo; Fwo-V Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:87604UA @ admin @ c:irua:87604 Serial 876
Permanent link to this record
 

 
Author Goris, B.; van den Broek, W.; Batenburg, K.J.; Heidari Mezerji, H.; Bals, S.
Title Electron tomography based on a total variation minimization reconstruction technique Type A1 Journal article
Year 2012 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 113 Issue Pages 120-130
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The 3D reconstruction of a tilt series for electron tomography is mostly carried out using the weighted backprojection (WBP) algorithm or using one of the iterative algorithms such as the simultaneous iterative reconstruction technique (SIRT). However, it is known that these reconstruction algorithms cannot compensate for the missing wedge. Here, we apply a new reconstruction algorithm for electron tomography, which is based on compressive sensing. This is a field in image processing specialized in finding a sparse solution or a solution with a sparse gradient to a set of ill-posed linear equations. Therefore, it can be applied to electron tomography where the reconstructed objects often have a sparse gradient at the nanoscale. Using a combination of different simulated and experimental datasets, it is shown that missing wedge artefacts are reduced in the final reconstruction. Moreover, it seems that the reconstructed datasets have a higher fidelity and are easier to segment in comparison to reconstructions obtained by more conventional iterative algorithms.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300554400006 Publication Date 2011-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 171 Open Access
Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470
Call Number UA @ lucian @ c:irua:93637 Serial 987
Permanent link to this record