toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sathiyamoorthy, S.; Girijakumari, G.; Kannan, P.; Venugopal, K.; Thiruvottriyur Shanmugam, S.; Veluswamy, P.; De Wael, K.; Ikeda, H. pdf  url
doi  openurl
  Title Tailoring the functional properties of polyurethane foam with dispersions of carbon nanofiber for power generator applications Type A1 Journal article
  Year 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 449 Issue 449 Pages 507-513  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract To produce effective thermoelectric nanocomposites, carbon nanofibers (CNF) incorporated polyurethane (PU) foams with nanocomposites are prepared via in-situ polymerization method to create a synergy that would produce a high thermopower. The formation mechanism of foams, the reaction kinetics, and the physical properties such as density and water absorption studied before and after CNF incorporation. The microscopy images showed a uniform dispersion of CNF in the PU matrix of the prepared foams. Spectroscopic studies such as X-ray photoelectron and laser Raman spectroscopy suggested the existence of a tight intermolecular binding interaction between the carbon nanofibers and the PU matrix in the prepared composite foams. It found that the thermopower is directly dependent on the concentration of carbon nanofiber since, with rising concentration of 1%3%, the coefficient values increased from 1.2 μV/K to 11.9 μV/K respectively, a value higher than that of earlier report. This unique nanocomposite offers a new opportunity to recycle waste heat in portable/wearable electronics and other applications, which will broaden the development of low weight and mechanical flexibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438025400064 Publication Date (up) 2018-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:151287 Serial 5868  
Permanent link to this record
 

 
Author Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A. pdf  url
doi  openurl
  Title Ti surface doping of LiNi0.5Mn1.5O4−δpositive electrodes for lithium ion batteries Type A1 Journal article
  Year 2018 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 8 Issue 13 Pages 7287-7300  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425508900064 Publication Date (up) 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 9 Open Access OpenAccess  
  Notes This research is supported by the Research Foundation Flanders (FWO Vlaanderen, grant number G040116N). This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg (project 936). Greet Cuyvers and Gilles Bonneux (UHasselt) are acknowledged for the ICP-AES sample preparation and measurements. Vera Meynen and Karen Leyssens (Antwerp University, Belgium) are acknowledged for the BET measurements. Special thanks to Bart Ruttens (UHasselt) for XRD measurements and discussions on the refinements. Approved Most recent IF: 3.108  
  Call Number EMAT @ emat @c:irua:149513 Serial 4905  
Permanent link to this record
 

 
Author Lu, Y.; Cheng, X.; Tian, G.; Zhao, H.; He, L.; Hu, J.; Wu, S.-M.; Dong, Y.; Chang, G.-G.; Lenaerts, S.; Siffert, S.; Van Tendeloo, G.; Li, Z.-F.; Xu, L.-L.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchical CdS/m-TiO 2 /G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability Type A1 Journal article
  Year 2018 Publication Nano energy Abbreviated Journal Nano Energy  
  Volume 47 Issue Pages 8-17  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchical semiconductors are the most important photocatalysts, especially for visible light-induced hydrogen production from water splitting. We demonstrate herein a hierarchical electrostatic assembly approach to hierarchical CdS/m-TiO2/G ternary photocatalyst, which exhibits high photoactivity and excellent photostability (more than twice the activity of pure CdS while 82% of initial photoactivity remained after 15 recycles during 80 h irradiation). The ternary nanojunction effect of the photocatalyst has been investigated from orbitals hybrid, bonding energy to atom-stress distortion and nano-interface fusion. And a coherent separation mechanism of charge carriers in the ternary system has been proposed at an atomic/nanoscale. This work offers a promising way to inhibit the photocorrosion of CdS and, more importantly, provide new insights for the design of ternary nanostructured photocatalysts with an ideal heterojunction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430057000002 Publication Date (up) 2018-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited 58 Open Access Not_Open_Access  
  Notes This work supported by National Key R&D Program of China (2017YFC1103800), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), National Natural Science Foundation of China (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166, 51602236, 21706199), International Science & Technology Cooperation Program of China (2015DFE52870), Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), Open 22 Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007) CNPC Research Institute of Safety and Environmental Technology., China Postdoctoral Science Foundation (2016M592400), Fundamental Research Funds for the Central Universities (WUT: 2017IVB012). Approved Most recent IF: 12.343  
  Call Number EMAT @ lucian @c:irua:150720 Serial 4925  
Permanent link to this record
 

 
Author Yuan, H.; Debroye, E.; Bladt, E.; Lu, G.; Keshavarz, M.; Janssen, K.P.F.; Roeffaers, M.B.J.; Bals, S.; Sargent, E.H.; Hofkens, J. pdf  url
doi  openurl
  Title Imaging heterogeneously distributed photo-active traps in perovskite single crystals Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue 30 Pages 1705494  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organic-inorganic halide perovskites (OIHPs) have demonstrated outstanding energy conversion efficiency in solar cells and light-emitting devices. In spite of intensive developments in both materials and devices, electronic traps and defects that significantly affect their device properties remain under-investigated. Particularly, it remains challenging to identify and to resolve traps individually at the nanoscopic scale. Here, photo-active traps (PATs) are mapped over OIHP nanocrystal morphology of different crystallinity by means of correlative optical differential super-resolution localization microscopy (Delta-SRLM) and electron microscopy. Stochastic and monolithic photoluminescence intermittency due to individual PATs is observed on monocrystalline and polycrystalline OIHP nanocrystals. Delta-SRLM reveals a heterogeneous PAT distribution across nanocrystals and determines the PAT density to be 1.3 x 10(14) and 8 x 10(13) cm(-3) for polycrystalline and for monocrystalline nanocrystals, respectively. The higher PAT density in polycrystalline nanocrystals is likely related to an increased defect density. Moreover, monocrystalline nanocrystals that are prepared in an oxygen and moisture-free environment show a similar PAT density as that prepared at ambient conditions, excluding oxygen or moisture as chief causes of PATs. Hence, it is conduded that the PATs come from inherent structural defects in the material, which suggests that the PAT density can be reduced by improving crystalline quality of the material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000428793600009 Publication Date (up) 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 29 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation-Flanders (FWO, grant G.0197.11, G.0962.13, G0B39.15, ZW1509 GOH6316N, postdoctoral fellowships to H.Y., E.D., and K.P.F.J., doctoral fellowship to E.B.), KU Leuven Research Fund (C14/15/053), the Flemish government through long term structural funding Methusalem (CASAS2, Meth/15/04), the Hercules foundation (HER/11/14), the Belgian Federal Science Policy Office (IAP-PH05), the EC through the Marie Curie ITN project iSwitch (GA-642196), and the ERC project LIGHT (GA-307523). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). G.L. acknowledges Key University Science Research Project of Jiangsu Province (No. 17KJA150005). E.H.S. acknowledges support from the Ontario Research Fund – Research Excellence Program. ; ecassara Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:150826UA @ admin @ c:irua:150826 Serial 4970  
Permanent link to this record
 

 
Author Belov, I.; Vermeiren, V.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations Type A1 Journal article
  Year 2018 Publication Journal of CO2 utilization Abbreviated Journal J Co2 Util  
  Volume 24 Issue Pages 386-397  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Microwave (MW) plasmas represent a promising solution for efficient CO2 dissociation. MW discharges are also very versatile and can be sustained at various pressure and gas flow regimes. To identify the most favorable conditions for the further scale-up of the CO2 decomposition reaction, a MW plasma reactor operating in pure CO2 in a wide pressure range (200 mbar–1 bar) is studied. Three different gas flow configurations are explored: a direct, reverse and a vortex regime. The CO2 conversion and energy efficiency drop almost linearly with increasing pressure, regardless of the gas flow regime. The results obtained in the direct flow configuration underline the importance of post-discharge cooling, as the exhaust of the MW plasma reactor in this regime expanded into the vacuum chamber without additional quenching. As a result, this system yields exhaust temperatures of up to 1000 K, which explains the lowest conversion (∼3.5% at 200 mbar and 2% at 1 bar). A post-discharge cooling step is introduced for the reverse gas inlet regime and allows the highest conversion to be achieved (∼38% at 200 mbar and 6.2% at 1 bar, with energy efficiencies of 23% and 3.7%). Finally, a tangential gas inlet is utilized in the vortex configuration to generate a swirl flow pattern. This results in the generation of a stable discharge in a broader range of CO2 flows (15–30 SLM) and the highest energy efficiencies obtained in this study (∼25% at 300 mbar and ∼13% at 1 bar, at conversions of 21% and 12%). The experimental results are complemented with computational fluid dynamics simulations and with the analysis of the latest literature to identify the further research directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000428234500045 Publication Date (up) 2018-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 8 Open Access Not_Open_Access: Available from 16.03.2020  
  Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013- ITN) under Grant Agreement№606889 (R Approved Most recent IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:150874 Serial 4955  
Permanent link to this record
 

 
Author Alexander, C.T.; Abakumov, A.M.; Forslund, R.P.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution Type A1 Journal article
  Year 2018 Publication ACS applied energy materials Abbreviated Journal  
  Volume 1 Issue 4 Pages 1549-1558  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-air batteries and fuel cells show a great deal of promise in advancing low-cost, high-energy-density charge storage solutions for sustainable energy applications. To improve the activities and stabilities of electrocatalysts for the critical oxygen reduction and evolution reactions (ORR and OER, respectively), a greater understanding is needed of the catalyst/carbon interactions and carbon stability. Herein, we report how LaNiO3 (LNO) supported on nitrogen-doped carbon nanotubes (N-CNT) made from a high-yield synthesis lowers the overpotential for both the OER and ORR markedly to enable a low bifunctional window of 0.81 V at only a 51 mu g cm(-2) mass loading. Furthermore, the addition of LNO to the N-CNTs improves the galvanostatic stability for the OER by almost 2 orders of magnitude. The nanoscale geometries of the perovskites and the CNTs enhance the number of metal-support and charge transfer interactions and thus the activity. We use rotating ring disk electrodes (RRDEs) combined with Tafel slope analysis and ICP-OES to quantitatively separate current contributions from the OER, carbon oxidation, and even anodic iron leaching from carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458705400020 Publication Date (up) 2018-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157642 Serial 8487  
Permanent link to this record
 

 
Author Korneychuk, S.; Partoens, B.; Guzzinati, G.; Ramaneti, R.; Derluyn, J.; Haenen, K.; Verbeeck, J. pdf  url
doi  openurl
  Title Exploring possibilities of band gap measurement with off-axis EELS in TEM Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 189 Issue 189 Pages 76-84  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A technique to measure the band gap of dielectric materials with high refractive index by means of energy electron loss spectroscopy (EELS) is presented. The technique relies on the use of a circular (Bessel) aperture and suppresses Cherenkov losses and surface-guided light modes by enforcing a momentum transfer selection. The technique also strongly suppresses the elastic zero loss peak, making the acquisition, interpretation and signal to noise ratio of low loss spectra considerably better, especially for excitations in the first few eV of the EELS spectrum. Simulations of the low loss inelastic electron scattering probabilities demonstrate the beneficial influence of the Bessel aperture in this setup even for high accelerating voltages. The importance of selecting the optimal experimental convergence and collection angles is highlighted. The effect of the created off-axis acquisition conditions on the selection of the transitions from valence to conduction bands is discussed in detail on a simplified isotropic two band model. This opens the opportunity for deliberately selecting certain transitions by carefully tuning the microscope parameters. The suggested approach is experimentally demonstrated and provides good signal to noise ratio and interpretable band gap signals on reference samples of diamond, GaN and AlN while offering spatial resolution in the nm range. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000432868500008 Publication Date (up) 2018-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access OpenAccess  
  Notes ; S.K., B.P. and J.V. acknowledge funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. S.K. and J.V. also acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N 'Charge ordering'. Financial support via the Methusalem “NANO” network is acknowledged. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO). ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:151472UA @ admin @ c:irua:151472 Serial 5026  
Permanent link to this record
 

 
Author Hofman, J.; Samson, R.; Joosen, S.; Blust, R.; Lenaerts, S. pdf  url
doi  openurl
  Title Cyclist exposure to black carbon, ultrafine particles and heavy metals : an experimental study along two commuting routes near Antwerp, Belgium Type A1 Journal article
  Year 2018 Publication Environmental research Abbreviated Journal  
  Volume 164 Issue 164 Pages 530-538  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urban environments typically exhibit large atmospheric pollution variation, in both space and time. In contrast to traditional monitoring networks suffering from a limited spatial coverage, mobile platforms enable personalized high-resolution monitoring, providing valuable insights into personal atmospheric pollution exposure, and the identification of potential pollution hotspots. This study evaluated personal cyclist exposure to UFPs, BC and heavy metals whilst commuting near Antwerp, Belgium, by performing mobile measurements with wearable black carbon (BC) and ultrafine particle (UFP) instruments. Loaded micro-aethalometer filterstrips were chemically analysed and the inhaled pollutant dose determined from the exhibited heart rate. Considerable spatial pollutant variation was observed along the travelled routes, with distinct contributions from spatial factors (e.g. traffic intersections, urban park and market) and temporary events. On average 300% higher BC, 20% higher UFP and changing elemental concentrations are observed along the road traffic route (RT), when compared to the bicycle highway route (BH). Although the overall background pollution determines a large portion of the experienced personal exposure (in this case 53% for BC and 40% for UFP), cyclists can influence their personal atmospheric pollution exposure, by selecting less exposed commuting routes. Our results, hereby, strengthen the body of evidence in favour of further policy investments in isolated bicycle infrastructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431387100063 Publication Date (up) 2018-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access  
  Notes ; The authors would like to acknowledge the Flanders Environment Agency (VMM) for granting access to the 42R817 monitoring station and provision of telemetric pollutant and meteorological data. The corresponding author acknowledges the Research Foundation Flanders (FWO) for his postdoctoral research grant (12I4816N). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:150540 Serial 5939  
Permanent link to this record
 

 
Author Dong, Y.; Chen, S.-Y.; Lu, Y.; Xiao, Y.-X.; Hu, J.; Wu, S.-M.; Deng, Z.; Tian, G.; Chang, G.-G.; Li, J.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchical MoS2@TiO2 heterojunctions for enhanced photocatalytic performance and electrocatalytic hydrogen evolution Type A1 Journal article
  Year 2018 Publication Chemistry: an Asian journal Abbreviated Journal Chem-Asian J  
  Volume 13 Issue 12 Pages 1609-1615  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchical MoS2@TiO2 heterojunctions were synthesized through a one-step hydrothermal method by using protonic titanate nanosheets as the precursor. The TiO2 nanosheets prevent the aggregation of MoS2 and promote the carrier transfer efficiency, and thus enhance the photocatalytic and electrocatalytic activity of the nanostructured MoS2. The obtained MoS2@TiO2 has significantly enhanced photocatalytic activity in the degradation of rhodamineB (over 5.2times compared with pure MoS2) and acetone (over 2.8times compared with pure MoS2). MoS2@TiO2 is also beneficial for electrocatalytic hydrogen evolution (26times compared with pure MoS2, based on the cathodic current density). This work offers a promising way to prevent the self-aggregation of MoS2 and provides a new insight for the design of heterojunctions for materials with lattice mismatches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000435773300011 Publication Date (up) 2018-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1861-4728; 1861-471x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.083 Times cited 22 Open Access  
  Notes ; This work was supported by the National Key R&D Program of China (2017YFC1103800), PCSIRT (IRT15R52), NSFC (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), ISTCP (2015DFE52870), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 4.083  
  Call Number UA @ admin @ c:irua:151971 Serial 5956  
Permanent link to this record
 

 
Author Verbeeck, J.; Béché, A.; Müller-Caspary, K.; Guzzinati, G.; Luong, M.A.; Den Hertog, M. pdf  url
doi  openurl
  Title Demonstration of a 2 × 2 programmable phase plate for electrons Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 190 Issue Pages 58-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract First results on the experimental realisation of a 2 × 2 programmable phase plate for electrons are presented. The design consists of an array of electrostatic elements that influence the phase of electron waves passing through 4 separately controllable aperture holes. This functionality is demonstrated in a conventional transmission electron microscope operating at 300 kV and results are in very close agreement with theoretical predictions. The dynamic creation of a set of electron probes with different phase symmetry is demonstrated, thereby bringing adaptive optics in TEM one step closer to reality. The limitations of the current design and how to overcome these in the future are discussed. Simulations show how further evolved versions of the current proof of concept might open new and exciting application prospects for beam shaping and aberration correction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432868800007 Publication Date (up) 2018-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 73 Open Access Not_Open_Access: Available from 19.04.2020  
  Notes J.V. and A.B. acknowledge funding from the Fund for Scientific Research Flanders FWO project G093417N and the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX and ERC proof of concept project DLV-789598 ADAPTEM. The Qu-Ant-EM microscope used in this work was partly funded by the Hercules fund from the Flemish Government. MdH acknowledges financial support from the ANRCOSMOS (ANR-12-JS10-0002). MdH and ML acknowledge funding from the Laboratoire d’excellence LANEF in Grenoble (ANR-10-LABX-51-01). Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @c:irua:150459UA @ admin @ c:irua:150459 Serial 4920  
Permanent link to this record
 

 
Author Hu, L.; Amini, M.N.; Wu, Y.; Jin, Z.; Yuan, J.; Lin, R.; Wu, J.; Dai, Y.; He, H.; Lu, Y.; Lu, J.; Ye, Z.; Han, S.-T.; Ye, J.; Partoens, B.; Zeng, Y.-J.; Ruan, S. pdf  doi
openurl 
  Title Charge transfer doping modulated raman scattering and enhanced stability of black phosphorus quantum dots on a ZnO nanorod Type A1 Journal article
  Year 2018 Publication Advanced Optical Materials Abbreviated Journal Adv Opt Mater  
  Volume 6 Issue 15 Pages 1800440  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Black phosphorus (BP) has recently triggered an unprecedented interest in the 2D community. However, many of its unique properties are not exploited and the well-known environmental vulnerability is not conquered. Herein, a type-I mixed-dimensional (0D-1D) van der Waals heterojunction is developed, where three-atomic-layer BP quantum dots (QDs) are assembled on a single ZnO nanorod (NR). By adjusting the indium (In) content in ZnO NRs, the degree and even the direction of surface charge transfer doping within the heterojunction can be tuned, which result in selective Raman scattering enhancements between ZnO and BP. The maximal enhancement factor is determined as 4340 for BP QDs with sub-ppm level. Furthermore, an unexpected long-term ambient stability (more than six months) of BP QDs is revealed, which is ascribed to the electron doping from ZnO:In NRs. The first demonstration of selective Raman enhancements between two inorganic semiconductors as well as the improved stability of BP shed light on this emerging 2D material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440815200023 Publication Date (up) 2018-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.875 Times cited 37 Open Access Not_Open_Access  
  Notes ; L. Hu and M. N. Amini contributed equally to this work. This work was supported by the National Natural Science Foundation of China under Grant Nos. 51502178, 81571763 and 81622026, the Shenzhen Science and Technology Project under Grant Nos. JCYJ20150324141711644, JCYJ20170412105400428, KQJSCX20170727101208249 and JCYJ20170302153853962. Parts of the computational calculations were carried out using the HPC infrastructure at University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the FWO-Vlaanderen and the Flemish Government (EWI Department). L. H. acknowledges the PhD Start-up Fund of Natural Science Foundation of Guangdong Province under Grand No. 2017A030310072. J. Y. acknowledges the funding of Shanghai Jiao Tong University (Nos. YG2016MS51 and YG2017MS54). ; Approved Most recent IF: 6.875  
  Call Number UA @ lucian @ c:irua:153112UA @ admin @ c:irua:153112 Serial 5082  
Permanent link to this record
 

 
Author Bottari, F.; Blust, R.; De Wael, K. pdf  doi
openurl 
  Title Bio(inspired) strategies for the electro-sensing of β-lactam antibiotics Type A1 Journal article
  Year 2018 Publication Current opinion in electrochemistry Abbreviated Journal  
  Volume 10 Issue 10 Pages 143-148  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The dire previsions of the WHO on the so-called “post-antibiotic era” and the continuous and global rise of anti-microbial resistance, spurs our research community to find better ways to fight these threats. In light of this severe threat to human health many attempts have been made to develop efficient methods to detect antibiotic residues in different streams. The use of electrochemistry seems an inviting approach for on-site and fast monitoring. In this critical review, recent developments in the field of (bio) electro-sensing of 19-lactam antibiotics will be presented, with a focus on aptamers and molecularly imprinted polymers, the two main promises of a new generation of biosensors, yet to be fulfilled.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000442800000022 Publication Date (up) 2018-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access  
  Notes ; This work was financially supported by the University of Antwerp (BOF) and the Research Foundation – Flanders (FWO). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:153744 Serial 5488  
Permanent link to this record
 

 
Author Dabral, A.; Pourtois, G.; Sankaran, K.; Magnus, W.; Yu, H.; de de Meux, A.J.; Lu, A.K.A.; Clima, S.; Stokbro, K.; Schaekers, M.; Collaert, N.; Horiguchi, N.; Houssa, M. doi  openurl
  Title Study of the intrinsic limitations of the contact resistance of metal/semiconductor interfaces through atomistic simulations Type A1 Journal article
  Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc  
  Volume 7 Issue 6 Pages N73-N80  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this contribution, we report a fundamental study of the factors that set the contact resistivity between metals and highly doped n-type 2D and 3D semiconductors. We investigate the case of n-type doped Si contacted with amorphous TiSi combining first principles calculations with Non-Equilibrium Green functions transport simulations. The evolution of the intrinsic contact resistivity with the doping concentration is found to saturate at similar to 2 x 10(-10) Omega.cm(2) for the case of TiSi and imposes an intrinsic limit to the ultimate contact resistance achievable for n-doped Silamorphous-TiSi (aTiSi). The limit arises from the intrinsic properties of the semiconductors and of the metals such as their electron effective masses and Fermi energies. We illustrate that, in this regime, contacting heavy electron effective mass metals with semiconductor helps reducing the interface intrinsic contact resistivity. This observation seems to hold true regardless of the 3D character of the semiconductor, as illustrated for the case of three 2D semiconducting materials, namely MoS2, ZrS2 and HfS2. (C) The Author(s) 2018. Published by ECS.  
  Address  
  Corporate Author Thesis  
  Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor  
  Language Wos 000440836000004 Publication Date (up) 2018-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.787 Times cited 2 Open Access Not_Open_Access  
  Notes ; The authors thank the imec core CMOS program members, the European Commission, its TAKEMI5 ECSEL research project and the local authorities for their support. ; Approved Most recent IF: 1.787  
  Call Number UA @ lucian @ c:irua:153205UA @ admin @ c:irua:153205 Serial 5130  
Permanent link to this record
 

 
Author Xiao, S.; Lu, Y.; Xiao, B.-Y.; Wu, L.; Song, J.-P.; Xiao, Y.-X.; Wu, S.-M.; Hu, J.; Wang, Y.; Chang, G.-G.; Tian, G.; Lenaerts, S.; Janiak, C.; Yang, X.-Y.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchically dual-mesoporous TiO2 microspheres for enhanced photocatalytic properties and lithium storage Type A1 Journal article
  Year 2018 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 24 Issue 50 Pages 13246-13252  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hierarchically dual‐mesoporous TiO2 microspheres have been synthesized via a solvothermal process in the presence of 1‐butyl‐3‐methylmidazolium tetrafluoroborate ([BMIm][BF4]) and diethylenetriamine (DETA) as co‐templates. Secondary mesostructured defects in the hierarchical TiO2 microspheres produce the oxygen vacancies, which not only significantly enhance the photocatalytic activity on degrading methyl blue (over 1.7 times to P25) and acetone (over 2.9 times of P25), but which also are beneficial for lithium storage. Moreover, we propose a mechanism to obtain a better understanding of the role of dual mesoporosity of TiO2 microspheres for enhancing the molecular diffusion, ion transportation and electron transformation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443804100025 Publication Date (up) 2018-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 6 Open Access  
  Notes ; This work is supported by the National Key R&D Program of China (2017YFC1103800), the Program for Changjiang Scholars and Innovative Research Team in University (IRT 15R52), the National Natural Science Foundation of China (U1662134, U1663225, 51472190, 51611530672, 51503166, 21706199, 21711530705), the International Science & Technology Cooperation Program of China (2015DFE52870), the Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), the Open Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007), and the CNPC Research Institute of Safety and Environmental Technology. ; Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:151812 Serial 5957  
Permanent link to this record
 

 
Author Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; Zhao, H.; Chang, G.-G.; Van Tendeloo, G.; Wang, L.-Y.; Yang, X.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Homojunction of oxygen and titanium vacancies and its interfacial n-p effect Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue 32 Pages 1802173  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H-1 TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new homojunction of oxygen and titanium vacancies concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000440813300022 Publication Date (up) 2018-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 39 Open Access Not_Open_Access  
  Notes ; This work was supported by National Key R&D Program of China (2017YFC1103800), National SFC (U1662134, U1663225, 51472190, 51611530672, 21711530705, 51503166, 21706199), ISTCP (2015DFE52870), PCSIRT (IRT_15R52), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:153106 Serial 5105  
Permanent link to this record
 

 
Author Kocabas, T.; Ozden, A.; Demiroglu, I.; Cakir, D.; Sevik, C. doi  openurl
  Title Determination of Dynamically Stable Electrenes toward Ultrafast Charging Battery Applications Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 9 Issue 15 Pages 4267-4274  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Electrenes, an atomically thin form of layered electrides, are very recent members of the 2D materials family. In this work, we employed first principle calculations to determine stable, exfoliatable, and application-promising 2D electrene materials among possible M2X compounds, where M is a group II-A metal and X is a nonmetal element (C, N, P, As, and Sb). The promise of stable electrene compounds for battery applications is assessed via their exfoliation energy, adsorption properties, and migration energy barriers toward relevant Li, Na, K, and Ca atoms. Our calculations revealed five new stable electrene candidates in addition to previously known Ca2N and Sr2N. Among these seven dynamically stable electrenes, Ba2As, Ba2P, Ba2Sb, Ca2N, Sr2N, and Sr2P are found to be very promising for either K or Na ion batteries due to their extremely low migration energy barriers (5-16 meV), which roughly demonstrates 105 times higher mobility than graphene and two to four times higher mobility than other promising 2D materials such as MXene (Mo2C).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440956500020 Publication Date (up) 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193765 Serial 7779  
Permanent link to this record
 

 
Author Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; Li, H.; Chen, P.; Bladt, E.; Quintero-Bermudez, R.; Sham, T.-K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E.H. pdf  url
doi  openurl
  Title Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons Type A1 Journal article
  Year 2018 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 10 Issue 10 Pages 974-980  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C-2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C-2 products. Here, we use boron to tune the ratio of Cu delta+ to Cu-0 active sites and improve both stability and C-2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C-2 products. We report experimentally a C-2 Faradaic efficiency of 79 +/- 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of similar to 40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000442395200013 Publication Date (up) 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 700 Open Access OpenAccess  
  Notes ; This work was supported financially by funding from TOTAL S.A., the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council of Canada, the CIFAR Bio-Inspired Solar Energy programme, a University of Toronto Connaught grant, the Ministry of Science, Natural Science Foundation of China (21471040, 21271055 and 21501035), the Innovation-Driven Plan in Central South University project (2017CX003), a project from State Key Laboratory of Powder Metallurgy in Central South University, the Thousand Youth Talents Plan of China and Hundred Youth Talents Program of Hunan and the China Scholarship Council programme. This work benefited from the soft X-ray microcharacterization beamline at CLS, sector 20BM at the APS and the Ontario Centre for the Characterisation of Advanced Materials at the University of Toronto. H.Y. acknowledges financial support from the Research Foundation-Flanders (FWO postdoctoral fellowship). C.Z. acknowledges support from the International Academic Exchange Fund for Joint PhD Students from Tianjin University. P.D.L. acknowledges financial support from the Natural Sciences and Engineering Research Council in the form of the Canada Graduate Scholarship-Doctoral award. S.B. and E.B. acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). The authors thank B. Zhang, N. Wang, C. T. Dinh, T. Zhuang, J. Li and Y. Zhao for fruitful discussions, as well as Y. Hu and Q. Xiao from CLS, and Z. Finfrock and M. Ward from APS for their help during the course of study. Computations were performed on the SOSCIP Consortium's Blue Gene/Q computing platform. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. ; ecas_sara Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:153693UA @ admin @ c:irua:153693 Serial 5091  
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S. url  doi
openurl 
  Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
  Year 2018 Publication Materials Abbreviated Journal Materials  
  Volume 11 Issue 11 Pages 1304  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444112800041 Publication Date (up) 2018-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited 15 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654  
  Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064  
Permanent link to this record
 

 
Author Ren, Z.; Wu, M.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J.; Xie, Y.; Mai, J.; Li, X.; Lu, X.; Lu, Y.; Zhang, H.; Van Tendeloo, G.; Zhang, Z.; Han, G. pdf  doi
openurl 
  Title Electrostatic force-driven oxide heteroepitaxy for interface control Type A1 Journal article
  Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 30 Issue 38 Pages 1707017  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxide heterostructure interfaces create a platform to induce intriguing electric and magnetic functionalities for possible future devices. A general approach to control growth and interface structure of oxide heterostructures will offer a great opportunity for understanding and manipulating the functionalities. Here, it is reported that an electrostatic force, originating from a polar ferroelectric surface, can be used to drive oxide heteroepitaxy, giving rise to an atomically sharp and coherent interface by using a low-temperature solution method. These heterostructures adopt a fascinating selective growth, and show a saturation thickness and the reconstructed interface with concentrated charges accumulation. The ferroelectric polarization screening, developing from a solid-liquid interface to the heterostructure interface, is decisive for the specific growth. At the interface, a charge transfer and accumulation take place for electrical compensation. The facile approach presented here can be extremely useful for controlling oxide heteroepitaxy and producing intriguing interface functionality via electrostatic engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000444671900002 Publication Date (up) 2018-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 4 Open Access Not_Open_Access  
  Notes ; Z.H.R., M.J.W., and X.C. contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51232006, 51472218, 11474249, 61574123, 11374009, and 11234011), the National 973 Program of China (Grant No. 2015CB654901), National Young 1000 Talents Program of China, the Fundamental Research Funds for the Central Universities (Grant No. 2017FZA4008), and the 111 Project under Grant No. B16042. J.M. and X.L. gratefully thank the beam time and technical supports provided by 23A SWAXS beamline at NSRRC, Hsinchu. ; Approved Most recent IF: 19.791  
  Call Number UA @ lucian @ c:irua:153628 Serial 5098  
Permanent link to this record
 

 
Author Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis Type A1 Journal article
  Year 2019 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 12 Issue 1 Pages 33-39  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Natural organisms contain rich elements and naturally optimized smart structures, both of which have inspired various innovative concepts and designs in human society. In particular, several natural organisms have been used as element sources to synthesize low-cost and environmentally friendly electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries, which are clean energy devices. However, to date, no naturally optimized smart structures have been employed in the synthesis of ORR catalysts, including graphene-based materials. Here, we demonstrate a novel strategy to synthesize graphene-graphite films (GGFs) by heating butterfly wings coated with FeCl3 in N-2, in which the full power of natural organisms is utilized. The wings work not only as an element source for GGF generation but also as a porous supporting structure for effective nitrogen doping, two-dimensional spreading, and double-face exposure of the GGFs. These GGFs exhibit a half-wave potential of 0.942 V and a H2O2 yield of < 0.07% for ORR electrocatalysis; these values are comparable to those for the best commercial Pt/C and all previously reported ORR catalysts in alkaline media. This two-in-one strategy is also successful with cicada and dragonfly wings, indicating that it is a universal, green, and cost-effective method for developing high-performance graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453629900004 Publication Date (up) 2018-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited 7 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Drs Qiang Wang and Wenjuan Yuan for useful discussions. This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21601136 and 11404016), the National Program for Thousand Young Talents of China, Tianjin Municipal Education Commission, Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology. This work also made use of the resources of the National Center for Electron Microscopy in Beijing. ; Approved Most recent IF: 7.354  
  Call Number UA @ admin @ c:irua:156210 Serial 5265  
Permanent link to this record
 

 
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J. url  doi
openurl 
  Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 23129-23142  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000447471700038 Publication Date (up) 2018-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 27 Open Access OpenAccess  
  Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:154731 Serial 5121  
Permanent link to this record
 

 
Author Krehl, J.; Guzzinati, G.; Schultz, J.; Potapov, P.; Pohl, D.; Martin, J.; Verbeeck, J.; Fery, A.; Büchner, B.; Lubk, A. url  doi
openurl 
  Title Spectral field mapping in plasmonic nanostructures with nanometer resolution Type A1 Journal article
  Year 2018 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 9 Issue 1 Pages 4207  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Plasmonic nanostructures and -devices are rapidly transforming light manipulation technology by allowing to modify and enhance optical fields on sub-wavelength scales. Advances in this field rely heavily on the development of new characterization methods for the fundamental nanoscale interactions. However, the direct and quantitative mapping of transient electric and magnetic fields characterizing the plasmonic coupling has been proven elusive to date. Here we demonstrate how to directly measure the inelastic momentum transfer of surface plasmon modes via the energy-loss filtered deflection of a focused electron beam in a transmission electron microscope. By scanning the beam over the sample we obtain a spatially and spectrally resolved deflection map and we further show how this deflection is related quantitatively to the spectral component of the induced electric and magnetic fields pertaining to the mode. In some regards this technique is an extension to the established differential phase contrast into the dynamic regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447074200005 Publication Date (up) 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 15 Open Access OpenAccess  
  Notes G.G. acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoke-Vlaanderen (FWO). A.L. and J.K. have received funding from the European Research Council (ERC) under the Horizon 2020 research and innovation program of the European Union (grant agreement no. 715620). Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:154355 Serial 5058  
Permanent link to this record
 

 
Author Susi, T.; Madsen, J.; Ludacka, U.; Mortensen, J.J.; Pennycook, T.J.; Lee, Z.; Kotakoski, J.; Kaiser, U.; Meyer, J.C. doi  openurl
  Title Efficient first principles simulation of electron scattering factors for transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 197 Issue 197 Pages 16-22  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron scattering. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456311700003 Publication Date (up) 2018-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165938 Serial 6296  
Permanent link to this record
 

 
Author Lak, A.; Cassani, M.; Mai, B.T.; Winckelmans, N.; Cabrera, D.; Sadrollahi, E.; Marras, S.; Remmer, H.; Fiorito, S.; Cremades-Jimeno, L.; Litterst, F.J.; Ludwig, F.; Manna, L.; Teran, F.J.; Bals, S.; Pellegrino, T. pdf  url
doi  openurl
  Title Fe2+Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue 18 Pages 6856-6866  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+ deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO sub-domains as well as structural defects. This phase transformation causes a tenfold increase in the magnetic losses of the nanocubes, which remains exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of the particles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under cellular and intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance under cellular and intracellular conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451102100028 Publication Date (up) 2018-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access OpenAccess  
  Notes This work is partially funded by the European Research Council (starting grant ICARO, Contract No. 678109 and COLOURATOM-335078), Spanish Ministry of Economy and Competitiveness (MAT2016-81955-REDT, SEV-2016-0686, MAT2017-85617-R) Comunidad de Madrid (NANOFRONTMAG-CM, S2013/MIT-2850), the European COST Action TD1402 (RADIOMAG), and Ramon y Cajal subprogram (RYC-2011-09617). Financial support from the Deutsche Forschungsgemeinschaft, DFG Priority Program 1681 (LU800/4-3). S.B. and N.W. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project funding G038116N. A.L. acknowledges the Alexander von Humboldt Foundation for the Postdoctoral Research Fellow funding. Mr Emilio J. Artés from the Advanced Instrumentation Unit (iMdea Nanociencia) is acknowledged for his technical assistance. L. M acknowledges the predoctoral fellowship funded from Comunidad de Madrid (PEJD-2017-PRE/IND-4189). Authors thank Tiziano Catelani and Doriana Debellis for the preparation of TEM cell samples (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_Sara Approved Most recent IF: 12.712  
  Call Number EMAT @ emat @c:irua:155439UA @ admin @ c:irua:155439 Serial 5072  
Permanent link to this record
 

 
Author Gröger, S.; Ramakers, M.; Hamme, M.; Medrano, J.A.; Bibinov, N.; Gallucci, F.; Bogaerts, A.; Awakowicz, P. pdf  url
doi  openurl
  Title Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera Type A1 Journal article
  Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 52 Issue 6 Pages 065201  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A gliding arc plasmatron (GAP), which is very promising for purification and gas conversion,

is characterized in nitrogen using optical emission spectroscopy and high-speed photography,

because the cross sections of electron impact excitation of N 2 are well known. The gas

temperature (of about 5500 K), the electron density (up to 1.5 × 10 15 cm −3 ) and the reduced

electric field (of about 37 Td) are determined using an absolutely calibrated intensified charge-

coupled device (ICCD) camera, equipped with an in-house made optical arrangement for

simultaneous two-wavelength diagnostics, adapted to the transient behavior of a GA channel

in turbulent gas flow. The intensities of nitrogen molecular emission bands, N 2 (C–B,0–0) as

well as N +

2 (B–X,0–0), are measured simultaneously. The electron density and the reduced

electric field are determined at a spatial resolution of 30 µm, using numerical simulation and

measured emission intensities, applying the Abel inversion of the ICCD images. The temporal

behavior of the GA plasma channel and the formation of plasma plumes are studied using a

high-speed camera. Based on the determined plasma parameters, we suggest that the plasma

plume formation is due to the magnetization of electrons in the plasma channel of the GAP by

an axial magnetic field in the plasma vortex.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451745900001 Publication Date (up) 2018-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 7 Open Access Not_Open_Access: Available from 30.11.2019  
  Notes The authors are very grateful to Professor Kurt Behringer for the development of the program code for simulation of emis- sion spectra of nitrogen. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:155974 Serial 5141  
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Aguilera, I.; Yashina, L., V; Tsukanova, D.Y.; Freyse, F.; Chaika, A.N.; Callaert, C.; Abakumov, A.M.; Hadermann, J.; Varykhalov, A.; Rienks, E.D.L.; Bihlmayer, G.; Blugel, S.; Rader, O. url  doi
openurl 
  Title Anomalous behavior of the electronic structure of (Bi1-xInx)2Se3across the quantum phase transition from topological to trivial insulator Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal  
  Volume 98 Issue 23 Pages 235110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using spin- and angle-resolved photoemission spectroscopy and relativistic many-body calculations, we investigate the evolution of the electronic structure of (Bi1-xInx)(2)Se-3)(2)Se-3 bulk single crystals around the critical point of the trivial to topological insulator quantum-phase transition. By increasing x, we observe how a surface gap opens at the Dirac point of the initially gapless topological surface state of Bi2Se3, leading to the existence of massive fermions. The surface gap monotonically increases for a wide range of x values across the topological and trivial sides of the quantum-phase transition. By means of photon-energy-dependent measurements, we demonstrate that the gapped surface state survives the inversion of the bulk bands which occurs at a critical point near x = 0.055. The surface state exhibits a nonzero in-plane spin polarization which decays exponentially with increasing x, and which persists in both the topological and trivial insulator phases. Our calculations reveal qualitative agreement with the experimental results all across the quantum-phase transition upon the systematic variation of the spin-orbit coupling strength. A non-time-reversal symmetry-breaking mechanism of bulk-mediated scattering processes that increase with decreasing spin-orbit coupling strength is proposed as explanation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452322800003 Publication Date (up) 2018-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156240 Serial 7462  
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H. pdf  doi
openurl 
  Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
  Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469200401163 Publication Date (up) 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160468 Serial 5365  
Permanent link to this record
 

 
Author Lumbeeck, G.; Idrissi, H.; Amin-Ahmadi, B.; Favache, A.; Delmelle, R.; Samaee, V.; Proost, J.; Pardoen, T.; Schryvers, D. pdf  url
doi  openurl
  Title Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films Type A1 Journal Article
  Year 2018 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 22 Pages 225105  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Nanoindentation tests performed on nanocrystalline palladium films subjected to hydriding/dehydriding cycles demonstrate a significant softening when compared to the as-received material. The origin of this softening is unraveled by combining in situ TEM nanomechanical testing with automated crystal orientation mapping in TEM and high resolution TEM. The softening is attributed to the presence of a high density of stacking faults and of Shockley partial dislocations after hydrogen loading. The hydrogen induced defects affect the elementary plasticity mechanisms and the mechanical response by acting as preferential sites for twinning/detwinning during deformation. These results are analyzed and compared to previous experimental and simulation works in the literature. This study provides new insights into the effect of hydrogen on the atomistic deformation and cracking mechanisms as well as on the mechanical properties of nanocrystalline thin films and membranes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453254000025 Publication Date (up) 2018-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access Not_Open_Access  
  Notes This work was supported by the Hercules Foundation under Grant No. AUHA13009, the Flemish Research Fund (FWO) under Grant No. G.0365.15N, and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Dr. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). We would like to thank Dr. Hadi Pirgazi from UGent for his technical support to process the ACOM data in the OIM Analysis software. Approved Most recent IF: 2.068  
  Call Number EMAT @ emat @c:irua:155742 Serial 5135  
Permanent link to this record
 

 
Author Dabral, A.; Lu, A.K.A.; Chiappe, D.; Houssa, M.; Pourtois, G. pdf  doi
openurl 
  Title A systematic study of various 2D materials in the light of defect formation and oxidation Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 3 Pages 1089-1099  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The thermodynamic aspects of various 2D materials are explored using Density Functional Theory (DFT). Various metal chalcogenides (MX2, M = metal, chalcogen X = S, Se, Te) are investigated with respect to their interaction and stability under different ambient conditions met in the integration process of a transistor device. Their interaction with high- dielectrics is also addressed, in order to assess their possible integration in Complementary Metal Oxide Semiconductor (CMOS) field effect transistors. 2D materials show promise for high performance nanoelectronic devices, but the presence of defects (vacancies, grain boundaries,...) can significantly impact their electronic properties. To assess the impact of defects, their enthalpies of formation and their signature levels in the density of states have been studied. We find, consistently with literature reports, that chalcogen vacancies are the most likely source of defects. It is shown that while pristine 2D materials are in general stable whenever set in contact with different ambient atmospheres, the presence of defective sites affects the electronic properties of the 2D materials to varying degrees. We observe that all the 2D materials studied in the present work show strong reactivity towards radical oxygen plasma treatments while reactivity towards other common gas phase chemical such as O-2 and H2O and groups present at the high- surface varies significantly between species. While energy band-gaps, effective masses and contact resistivities are key criteria in selection of 2D materials for scaled CMOS and tunneling based devices, the phase and ambient stabilities might also play a very important role in the development of reliable nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456147000009 Publication Date (up) 2018-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:156715 Serial 5267  
Permanent link to this record
 

 
Author Kuo, C.-T.; Lin, S.-C.; Ghiringhelli, G.; Peng, Y.; De Luca, G.M.; Di Castro, D.; Betto, D.; Gehlmann, M.; Wijnands, T.; Huijben, M.; Meyer-Ilse, J.; Gullikson, E.; Kortright, J.B.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Gerber, T.; Balestrino, G.; Brookes, N.B.; Braicovich, L.; Fadley, C.S. url  doi
openurl 
  Title Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 23 Pages 235146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454160800004 Publication Date (up) 2018-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes J.V. and N.G. acknowledge ˝ funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:156784 Serial 5363  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: