toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, J.; Ji, M.; Schwarz, T.; Ke, X.; Van Tendeloo, G.; Yuan, J.; Pereira, P.J.; Huang, Y.; Zhang, G.; Feng, H.L.; Yuan, Y.H.; Hatano, T.; Kleiner, R.; Koelle, D.; Chibotaru, L.F.; Yamaura, K.; Wang, H.B.; Wu, P.H.; Takayama-Muromachi, E.; Vanacken, J.; Moshchalkov, V.V.; pdf  url
doi  openurl
  Title Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 6 Issue 6 Pages 7614  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional Swiss cheese-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000358857000007 Publication Date 2015-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 12 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number c:irua:126677 Serial 1827  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM Type A1 Journal article
  Year 2013 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 4 Issue Pages 77-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000314499700001 Publication Date 2013-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 12 Open Access  
  Notes 262348 ESMI; 246791 COUNTATOMS; FWO G002410N; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 3.127; 2013 IF: 2.332  
  Call Number UA @ lucian @ c:irua:106187 Serial 1848  
Permanent link to this record
 

 
Author Nishio, K.; Lu, A.K.A.; Pourtois, G. url  doi
openurl 
  Title Low-strain Si/O superlattices with tunable electronic properties : ab initio calculations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 165303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose that low-strain Si/O superlattices can be constructed by connecting reconstructed Si{001} surfaces by Si-O-Si bridges. Ab initio calculations show that our models are energetically more favorable than all the models proposed so far. The part of our Si/O superlattice model is experimentally accessible just by oxidizing a Si( 001) substrate. To complete our Si/O superlattice model, we propose a three-step method. We also explore the potential of our Si/O superlattice models for new materials used in future Si electronics. We find that the location of the channel where the carriers travel can be controlled between the interfaces and the Si layers by the insertion of O atoms into the Si-Si dimers. By revealing the origins of the interface electron and hole states, we find that similar interface states should be easily achieved for Si slabs and Si substrates. Interestingly, the interface electrons and holes have small effective masses in the direction parallel to the channel and large effective masses in the direction normal to the channel, which makes the Si/O superlattices attractive to be used for channel materials. We also find that the valley splitting of Si is enhanced by the formation of the Si/O/Si interfaces, which is ideal for developing Si-based qubits. Our findings open new perspectives to design and control the electronic properties of Si.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000352986700002 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:125998 Serial 1852  
Permanent link to this record
 

 
Author Tsvyashchenko, A.V.; Nikolaev, A.V.; Velichkov, A.I.; Salamatin, A.V.; Fomicheva, L.N.; Ryasny, G.K.; Sorokin, A.A.; Kochetov, O.I.; Budzynski, M.; Michel, K.H. doi  openurl
  Title Lowering of the spatial symmetry at the gamma ->alpha phase transition in cerium Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 9 Pages 1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using time-differential perturbed angular correlation spectroscopy we have measured the electric field gradient (EFG) at 111Cd probe nuclei in solid Ce in a pressure range up to 8 GPa. Covering various allotropic phases of Ce, we find that the value of the EFG in the cubic α phase is almost four times larger than in the cubic γ phase and close to values in the noncubic phases α′ and α″. These results together with the differences in time modulation of the spectra are interpreted as evidence for quadrupolar electronic charge-density ordering and symmetry lowering at the γ→α transition while the lattice remains face-centered cubic  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000282004400001 Publication Date 2010-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work is supported by the Program of the Presidium of the Russian Academy of Sciences “Physics of Strongly Compressed Matter.” We are grateful to S. M. Stishov, B. Verberck, A. N. Grum-Grzhimailo, V. B. Brudanin and G. Heger for support of this work and discussion of the results. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85464 Serial 1854  
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Vosch, T.; Fron, E.; Rodríguez, V.D.; Velázquez, J.J.; Kirilenko, D.; Van Tendeloo, G.; Hofkens, J.; Van der Auweraer, M.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Luminescence of oxyfluoride glasses co-doped with Ag nanoclusters and Yb3+ ions Type A1 Journal article
  Year 2012 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 2 Issue 4 Pages 1496-1501  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Bulk oxyfluoride glasses co-doped with Ag nanoclusters and Yb3+ ions have been prepared by a melt quenching technique. When excited in the absorption band of the Ag nanoclusters between 300 to 500 nm, these glasses emit a broad band characteristic of the Ag nanoclusters between 400 to 750 nm as well as an emission band between 900 to 1100 nm, originating from Yb3+ ions. The intensity ratio of the Yb3+/Ag emission bands increases with the Ag doping level at a fixed concentration of Yb3+, indicating the presence of energy transfer mechanism from the Ag nanoclusters to the Yb3+ ions. Comparison of time-resolved decay kinetics of the luminescence in the respectively Ag nanocluster-Yb3+ co-doped and single Ag nanocluster doped glasses, hints towards an energy transfer from the red and infrared emitting Ag nanoclusters to the Yb3+ ions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000299695300038 Publication Date 2011-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 46 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 3.108; 2012 IF: 2.562  
  Call Number UA @ lucian @ c:irua:96239 Serial 1856  
Permanent link to this record
 

 
Author Walter, A.L.; Sahin, H.; Jeon, K.J.; Bostwick, A.; Horzum, S.; Koch, R.; Speck, F.; Ostler, M.; Nagel, P.; Merz, M.; Schupler, S.; Moreschini, L.; Chang, Y.J.; Seyller, T.; Peeters, F.M.; Horn, K.; Rotenberg, E.; doi  openurl
  Title Luminescence, patterned metallic regions, and photon-mediated electronic changes in single-sided fluorinated graphene sheets Type A1 Journal article
  Year 2014 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 8 Issue 8 Pages 7801-7808  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Single-sided fluorination has been predicted to open an electronic band gap in graphene and to exhibit unique electronic and magnetic properties; however, this has not been substantiated by experimental reports. Our comprehensive experimental and theoretical study of this material on a SiC(0001) substrate shows that single-sided fluorographene exhibits two phases, a stable one with a band gap of similar to 6 eV and a metastable one, induced by UV irradiation, with a band gap of similar to 2.5 eV. The metastable structure, which reverts to the stable “ground-state” phase upon annealing under emission of blue light, in our view is induced by defect states, based on the observation of a nondispersive electronic state at the top of the valence band, not unlike that found in organic molecular layers. Our structural data show that the stable C2F ground state has a “boat” structure, in agreement with our X-ray magnetic circular dichroism data, which show the absence of an ordered magnetic phase. A high flux of UV or X-ray photons removes the fluorine atoms, demonstrating the possibility of lithographically patterning conducting regions into an otherwise semiconducting 2D material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000340992300025 Publication Date 2014-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 23 Open Access  
  Notes Approved Most recent IF: 13.942; 2014 IF: 12.881  
  Call Number UA @ lucian @ c:irua:119263 Serial 1857  
Permanent link to this record
 

 
Author Misko, V.R.; Nori, F. url  doi
openurl 
  Title Magnetic flux pinning in superconductors with hyperbolic-tesselation arrays of pinning sites Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 18 Pages 184506-184506,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study magnetic flux interacting with arrays of pinning sites (APSs) placed on vertices of hyperbolic tesselations (HTs). We show that, due to the gradient in the density of pinning sites, HT APSs are capable of trapping vortices for a broad range of applied magnetic fluxes. Thus, the penetration of magnetic field in HT APSs is essentially different from the usual scenario predicted by the Bean model. We demonstrate that, due to the enhanced asymmetry of the surface barrier for vortex entry and exit, this HT APS could be used as a “capacitor” to store magnetic flux.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000303653600005 Publication Date 2012-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes ; V.R.M. acknowledges support from the “Odysseus” Program of the Flemish Government & FWO-Vl, and the IAP. F.N. is partially supported by the ARO, NSF Grant No. 0726909, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98224 Serial 1880  
Permanent link to this record
 

 
Author Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J. url  doi
openurl 
  Title Magnetic monopole field exposed by electrons Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 10 Issue 1 Pages 26-29  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000328940100012 Publication Date 2013-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 131 Open Access  
  Notes Vortex; Countatoms; Fwo ECASJO_; Approved Most recent IF: 22.806; 2014 IF: 20.147  
  Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885  
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Magneto-optical transport properties of monolayer phosphorene Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 045420  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic properties of monolayer phosphorene are exotic due to its puckered structure and large intrinsic direct band gap. We derive and discuss its band structure in the presence of a perpendicular magnetic field. Further, we evaluate the magneto-optical Hall and longitudinal optical conductivities as functions of temperature, magnetic field, and Fermi energy, and show that they are strongly influenced by the magnetic field. The imaginary part of the former and the real part of the latter exhibit regular interband oscillations as functions of the frequency omega in the range (h) over bar omega similar to 1.5-2 eV. Strong intraband responses in the latter and weak ones in the former occur at much lower frequencies. The magneto-optical response can be tuned in the microwave-to-terahertz and visible frequency ranges in contrast with a conventional two-dimensional electron gas or graphene in which the response is limited to the terahertz regime. This ability to isolate carriers in an anisotropic structure may make phosphorene a promising candidate for new optical devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000358373600003 Publication Date 2015-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 68 Open Access  
  Notes ; This work was supported by the the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:127192 Serial 1903  
Permanent link to this record
 

 
Author Kálmán, O.; Földi, P.; Benedict, M.G.; Peeters, F.M. url  doi
openurl 
  Title Magnetoconductance of rectangular arrays of quantum rings Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 78 Issue 12 Pages 125306-125306,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electron transport through multiterminal rectangular arrays of quantum rings is studied in the presence of Rashba-type spin-orbit interaction (SOI) and of a perpendicular magnetic field. Using the analytic expressions for the transmission and reflection coefficients for single rings we obtain the conductance through such arrays as a function of the SOI strength, of the magnetic flux, and of the wave vector k of the incident electron. Due to destructive or constructive spin interferences caused by the SOI, the array can be totally opaque for certain ranges of k, while there are parameter values where it is completely transparent. Spin resolved transmission probabilities show nontrivial spin transformations at the outputs of the arrays. When pointlike random scattering centers are placed between the rings, the Aharonov-Bohm peaks split, and an oscillatory behavior of the conductance emerges as a function of the SOI strength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000259691500047 Publication Date 2008-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:94598 Serial 1913  
Permanent link to this record
 

 
Author Veljkovic, D.; Tadić, M.; Peeters, F.M. openurl 
  Title Magnetoexcitons in type-II self-assembled quantum dots and quantum-dot superlattices Type A1 Journal article
  Year 2006 Publication Recent developments in advanced materials and processes Abbreviated Journal  
  Volume 518 Issue Pages 51-56  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:60841 Serial 1918  
Permanent link to this record
 

 
Author Çakir, D.; Otalvaro, D.M.; Brocks, G. url  doi
openurl 
  Title Magnetoresistance in multilayer fullerene spin valves: A first-principles study Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 24 Pages 245404  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Carbon-based molecular semiconductors are explored for application in spintronics because their small spinorbit coupling promises long spin lifetimes. We calculate the electronic transport from first principles through spin valves comprising bi-and tri-layers of the fullerene molecules C-60 and C-70, sandwiched between two Fe electrodes. The spin polarization of the current, and the magnetoresistance depend sensitively on the interactions at the interfaces between the molecules and the metal surfaces. They are much less affected by the thickness of the molecular layers. A high current polarization (CP > 90%) and magnetoresistance (MR > 100%) at small bias can be attained using C-70 layers. In contrast, the current polarization and the magnetoresistance at small bias are vanishingly small for C-60 layers. Exploiting a generalized Julliere model we can trace the differences in spin-dependent transport between C-60 and C-70 layers to differences between the molecule-metal interface states. These states also allow one to interpret the current polarization and the magnetoresistance as a function of the applied bias voltage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000345875200005 Publication Date 2014-12-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122177 Serial 1928  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Chao, X.H.; Peeters, F.M.; Wang, H.B.; Moshchalkov, V.V.; Zhu, B.Y. url  doi
openurl 
  Title Magnetoresistance oscillations in superconducting strips : a Ginzburg-Landau study Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 22 Pages 224504-224508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within the time-dependent Ginzburg-Landau theory we study the dynamic properties of current-carrying superconducting strips in the presence of a perpendicular magnetic field. We found pronounced voltage peaks as a function of the magnetic field, the amplitude of which depends both on sample dimensions and external parameters. These voltage oscillations are a consequence of moving vortices, which undergo alternating static and dynamic phases. At higher fields or for high currents, the continuous motion of vortices is responsible for the monotonic background on which the resistance oscillations due to the entry of additional vortices are superimposed. Mechanisms for such vortex-assisted resistance oscillations are discussed. Qualitative changes in the magnetoresistance curves are observed in the presence of random defects, which affect the dynamics of vortices in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000312064300004 Publication Date 2012-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF-NES program. G. R. B. acknowledges support from FWO-Vl. B.Y.Z. acknowledges the support from the MOST 973 Projects No. 2011CBA00110 and No. 2009CB930803, and the National Natural Science Foundation of China. V. V. M. acknowledges support from the Methusalem Funding by the Flemish Government. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:105969 Serial 1930  
Permanent link to this record
 

 
Author van der Burgt, M.; Karavolas, V.C.; Peeters, F.M.; Singleton, J.; Nicholas, R.J.; Herlach, F.; Harris, J.J.; Van Hove, M.; Borghs, G. url  doi
openurl 
  Title Magnetotransport in a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure with a Si \delta-doping layer Type A1 Journal article
  Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 52 Issue 16 Pages 12218-12231  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetotransport properties of a pseudomorphic GsAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure are investigated in pulsed magnetic fields up to 50 T and at temperatures of T = 1.4 and 4.2 K. The structure studied consists of a Si delta layer parallel to a Ga0.8In0.2As quantum well (QW). The dark electron density of the structure is n(c) = 1.67 x 10(16) m(-2). By illumination the density can be increased up to a factor of 4; this way the second subband in the Ga0.08In0.2As QW can become populated as well as the Si delta layer. The presence of electrons in the delta layer results in drastic changes in the transport data, especially at magnetic fields beyond 30 T. The phenomena observed are interpreted as (i) magnetic freeze-out of carriers in the delta layer when a low density of electrons is present in the delta layer, and (ii) quantization of the electron motion in the two-dimensional electron gases in both the Ga0.8In0.2As QW and the Si delta layer in the case of high densities. These conclusions are corroborated by the numerical results of our theoretical model. We obtain satisfactory agreement between model and experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos A1995TB96600102 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 43 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:99708 Serial 1933  
Permanent link to this record
 

 
Author Zarenia, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Magnetotransport in periodically modulated bilayer graphene Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 24 Pages 245426-245426,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetotransport in bilayer graphene in the presence of a weak and periodic potential is investigated in the presence of a perpendicular magnetic field B. The modulation broadens the Landau levels into bands and for weak magnetic fields leads to the well-known Weiss oscillations in their bandwidth and their transport coefficients at very low B and to the Shubnikov-de Haas oscillations at larger B. The amplitude of the Weiss oscillations is severely reduced if the periodic potentials applied to the two layers oscillate out of phase. We also contrast some results with those corresponding to single-layer graphene. Relative to them the flat-band condition and the oscillation amplitude differ substantially, due to the interlayer coupling, and agree only when this coupling is extremely weak. We further show that the Hall conductivity exhibits the well-known steps at half-integer and integer multiples of 4e(2)/h in single-layer and bilayer graphene, respectively, even for very weak magnetic fields. The results are pertinent to weak and periodic corrugations when the potential modulation dominates the strain-induced magnetic modulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000305253600012 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CON-GRAN), and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99077 Serial 1934  
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Majorana fermion states and fractional flux periodicity in mesoscopic d-wave superconducting loops with spin-orbit interaction Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 1 Pages 014522  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We numerically investigate the spin-orbit (SO) coupling effect on the magnetic flux evolution of energy and supercurrent in mesoscopic d-wave superconducting loops by solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. It is found that the energy spectrum splits when the SO interaction is involved and the Majorana zero mode can be realized in the [100] edges of square systems for an appropriate SO coupling strength. Superconducting phase transitions appear when the energy gap closes, accompanied by energy jumps between different energy parabolas in the ground state, which provides a possible mechanism to support fractional flux periodicity of supercurrent. Moreover, in the case of rectangular loops with SO coupling, the jumps of the ground-state energy gradually disappear by increasing the ratio of length to height of the sample, and a paramagnetic response with opposite direction of the screening current around zero flux value can occur in such systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000341233800010 Publication Date 2014-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:119266 Serial 1938  
Permanent link to this record
 

 
Author Felten, A.; Gillon, X.; Gulas, M.; Pireaux, J.-J.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.; Najafi, E.; Hitchcock, A.P. pdf  doi
openurl 
  Title Measuring point defect density in individual carbon nanotubes using polarization-dependent X-ray microscopy Type A1 Journal article
  Year 2010 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 4 Issue 8 Pages 4431-4436  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The presence of defects in carbon nanotubes strongly modifies their electrical, mechanical, and chemical properties. It was long thought undesirable, but recent experiments have shown that introduction of structural defects using ion or electron irradiation can lead to novel nanodevices. We demonstrate a method for detecting and quantifying point defect density in individual carbon nanotubes (CNTs) based on measuring the polarization dependence (linear dichroism) of the C 1s → π* transition at specific locations along individual CNTs with a scanning transmission X-ray microscope (STXM). We show that STXM can be used to probe defect density in individual CNTs with high spatial resolution. The quantitative relationship between ion dose, nanotube diameter, and defect density was explored by purposely irradiating selected sections of nanotubes with kiloelectronvolt (keV) Ga+ ions. Our results establish polarization-dependent X-ray microscopy as a new and very powerful characterization technique for carbon nanotubes and other anisotropic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000281052700014 Publication Date 2010-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 26 Open Access  
  Notes Approved Most recent IF: 13.942; 2010 IF: 9.865  
  Call Number UA @ lucian @ c:irua:84734 Serial 1966  
Permanent link to this record
 

 
Author Schryvers, D.; Tirry, W.; Yang, Z.Q.; pdf  doi
openurl 
  Title Measuring strain fields and concentration gradients around Ni4Ti3 precipitates Type A1 Journal article
  Year 2006 Publication Materials science and engineering A: structural materials properties microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 438 Issue Pages 485-488  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000242900900105 Publication Date 2006-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 35 Open Access  
  Notes Goa Approved Most recent IF: 3.094; 2006 IF: 1.490  
  Call Number UA @ lucian @ c:irua:62329 Serial 1969  
Permanent link to this record
 

 
Author Kirilenko, D.A.; Dideykin, A.T.; Van Tendeloo, G. url  doi
openurl 
  Title Measuring the corrugation amplitude of suspended and supported graphene Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 23 Pages 235417-235417,5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale corrugation is a fundamental property of graphene arising from its low-dimensional nature. It places a fundamental limit to the conductivity of graphene and influences its properties. However the degree of the influence of the corrugation has not been well established because of the little knowledge about its spectrum in suspended graphene. We present a transmission electron microscopy technique that enables us to measure the average corrugation height and length. We applied the technique also to measure the temperature dependence of the corrugation. The difference in corrugation between suspended and supported graphene has been illustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000297764700003 Publication Date 2011-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93629 Serial 1971  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Melting of graphene clusters Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134103-134109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nanoclusters C-N with N = 2-55. The minimum-energy configurations for different clusters are used as starting configurations for the study of the temperature effects on the bond breaking and rotation in carbon lines (N < 6), carbon rings (5 < N < 19), and graphene nanoflakes. The larger the rings (graphene nanoflakes) the higher the transition temperature (melting point) with ring-to-line (perfect-to-defective) transition structures. The melting point was obtained by using the bond energy, the Lindemann criteria, and the specific heat. We found that hydrogen-passivated graphene nanoflakes (CNHM) have a larger melting temperature with a much smaller dependence on size. The edges in the graphene nanoflakes exhibit several different metastable configurations (isomers) during heating before melting occurs. DOI: 10.1103/PhysRevB.87.134103  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000317390700001 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF Postdoctoral Fellowship No. 299855 (for M.N.-A.), the ESF-EuroGRAPHENE Project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108467 Serial 1987  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Qi, D.; Thibado, P.M.; Nyakiti, L.O.; Wheeler, V.D.; Myers-Ward, R.L.; Eddy, C.R.; Gaskill, D.K.; Peeters, F.M. url  doi
openurl 
  Title Membrane amplitude and triaxial stress in twisted bilayer graphene deciphered using first-principles directed elasticity theory and scanning tunneling microscopy Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 6 Pages 064101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Twisted graphene layers produce a moire pattern (MP) structure with a predetermined wavelength for a given twist angle. However, predicting the membrane corrugation amplitude for any angle other than pure AB-stacked or AA-stacked graphene is impossible using first-principles density functional theory (DFT) due to the large supercell. Here, within elasticity theory, we define the MP structure as the minimum-energy configuration, thereby leaving the height amplitude as the only unknown parameter. The latter is determined from DFT calculations for AB-and AA-stacked bilayer graphene in order to eliminate all fitting parameters. Excellent agreement with scanning tunneling microscopy results across multiple substrates is reported as a function of twist angle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000339995800001 Publication Date 2014-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. was supported by the EU-Marie Curie IIF postdoctoral Fellowship No. 299855. P.M.T. is thankful for the financial support of the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. L.O.N. acknowledges the support of the American Society for Engineering Education and Naval Research Laboratory Postdoctoral Fellow Program. Work at the US Naval Research Laboratory is supported by the Office of Naval Research. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:118774 Serial 1991  
Permanent link to this record
 

 
Author Stevens, W.J.J.; Meynen, V.; Bruijn, E.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. pdf  doi
openurl 
  Title Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates Type A1 Journal article
  Year 2008 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 110 Issue 1 Pages 77-85  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000254056200010 Publication Date 2007-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 21 Open Access  
  Notes Fwo; Crp; Inside-Pores Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:68229 Serial 1998  
Permanent link to this record
 

 
Author Maignan, A.; Lebedev, O.I.; Van Tendeloo, G.; Martin, C.; Hebert, S. url  doi
openurl 
  Title Metal to insulator transition in the n-type hollandite vanadate Pb1.6V8O16 Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 3 Pages 035122, 1-035122,5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The transport and magnetic measurements of polycrystalline Pb1.6V8O16 hollandite reveal a concomitant metal to insulator and antiferromagnetic transition at TMI≈140 K. A clear localization is found below TMI, evidenced by a rapid increase in the absolute value of the negative Seebeck coefficient. The structural study by x-ray and transmission electron microscopy confirms the hollandite structure and shows that no structural transition occurs at TMI, ruling out a possible charge orbital ordering. The negative Seebeck coefficient observed from 50 K up to 900 K, with values reaching S=−38 μV K−1 at 900 K, is explained by the electron doping of ∼1.4e− in the V empty t2g orbitals responsible for the bad metal resistivity (ρ900 K∼2 mΩ cm). As this S value is close to that obtained by considering only the spin and orbital degeneracies, it is expected that |S| for such vanadates will not be sensitive at high temperature to the t2g band filling  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000280366300002 Publication Date 2010-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84065 Serial 2009  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Metallic nanograins : spatially nonuniform pairing induced by quantum confinement Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214509-214509,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It is well known that the formation of discrete electron levels strongly influences the pairing in metallic nanograins. Here, we focus on another effect of quantum confinement in superconducting grains that was not studied previously, i.e., spatially nonuniform pairing. This effect is very significant when single-electron levels form bunches and/or a kind of shell structure. We find that, in highly symmetric grains, the order parameter can exhibit variations with position by an order of magnitude. Nonuniform pairing is closely related to a quantum-confinement-induced modification of the pairing-interaction matrix elements and size-dependent pinning of the chemical potential to groups of degenerate or nearly degenerate levels. For illustrative purposes, we consider spherical metallic nanograins and also rectangular shapes. We show that the relevant matrix elements are, as a rule, enhanced in the presence of quantum confinement, which favors spatial variations of the order parameter, compensating the corresponding energy cost. The size-dependent pinning of the chemical potential further increases the spatial variation of the pair condensate. The role of nonuniform pairing is smaller in less symmetric confining geometries and/or in the presence of disorder. However, it always remains of importance when the energy spacing between discrete electron levels δ is approaching the scale of the bulk gap ΔB, i.e., δ>0.10.2 ΔB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000291310000006 Publication Date 2011-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Alexander von Humboldt Foundation, the Flemish Science Foundation (FWO-VI), and the Belgian Science Policy (IAP). M. D. C. acknowledges support of the European Community under a Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90081 Serial 2010  
Permanent link to this record
 

 
Author Malard, B.; Pilch, J.; Sittner, P.; Gartnerova, V.; Delville, R.; Schryvers, D.; Curfs, C. pdf  doi
openurl 
  Title Microstructure and functional property changes in thin Ni-Ti wires heat teated by electric current: high energy X-ray and TEM investigations Type A1 Journal article
  Year 2009 Publication Functional materials letters Abbreviated Journal Funct Mater Lett  
  Volume 2 Issue 2 Pages 45-54  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High energy synchrotron X-ray diffraction, transmission electron microscopy and mechanical testing were employed to investigate the evolution of microstructure, texture and functional superelastic properties of 0.1 mm thin as drawn NiTi wires subjected to a nonconventional heat treatment by controlled electric current (FTMT-EC method). As drawn NiTi wires were prestrained in tension and exposed to a sequence of short DC power pulses in the millisecond range. The annealing time in the FTMT-EC processing can be very short but the temperature and force could be very high compared to the conventional heat treatment of SMAs. It is shown that the heavily strained, partially amorphous microstructure of the as drawn NiTi wire transforms under the effect of the DC pulse and tensile stress into a wide range of annealed nanosized microstructures depending on the pulse time. The functional superelastic properties and microstructures of the FTMT-EC treated NiTi wire are comparable to those observed in straight annealed wires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000271077000001 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-6047;1793-7213; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.234 Times cited 21 Open Access  
  Notes Multimat Approved Most recent IF: 1.234; 2009 IF: 2.561  
  Call Number UA @ lucian @ c:irua:77656 Serial 2052  
Permanent link to this record
 

 
Author Boullay, P.; David, A.; Sheets, W.C.; Lüders, U.; Prellier, W.; Tan, H.; Verbeeck, J.; Van Tendeloo, G.; Gatel, C.; Vincze, G.; Radi, Z. url  doi
openurl 
  Title Microstructure and interface studies of LaVO3/SrVO3 superlattices Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 12 Pages 125403-125403,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure and interface characteristics of (LaVO3)6m(SrVO3)m superlattices deposited on a (100)-SrTiO3 substrate were studied using transmission electron microscopy (TEM). Cross-section TEM studies revealed that both LaVO3 (LVO) and SrVO3 (SVO) layers are good single-crystal quality and epitaxially grown with respect to the substrate. It is evidenced that LVO layers are made of two orientational variants of a distorted perovskite compatible with bulk LaVO3, while SVO layers suffers from a tetragonal distortion due to the substrate-induced stain. Electron energy loss spectroscopy investigations indicate changes in the fine structure of the V L23 edge, related to a valence change between the LaVO3 and the SrVO3 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000288160300006 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88648UA @ admin @ c:irua:88648 Serial 2054  
Permanent link to this record
 

 
Author Santamarta, R.; Schryvers, D. pdf  doi
openurl 
  Title Microstructure of a partially crystallised Ti50Ni25Cu25 melt-spun ribbon Type A1 Journal article
  Year 2003 Publication Materials transactions Abbreviated Journal Mater Trans  
  Volume 44 Issue 9 Pages 1760-1767  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000186013100023 Publication Date 2005-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.713 Times cited 23 Open Access  
  Notes Approved Most recent IF: 0.713; 2003 IF: 1.159  
  Call Number UA @ lucian @ c:irua:48773 Serial 2064  
Permanent link to this record
 

 
Author Lebedev, O.I.; Bals, S.; Van Tendeloo, G.; Snoeck, G.E.; Retoux, R.; Boudin, S.; Hervieu, M. pdf  doi
openurl 
  Title Mixed (Sr1-xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques Type A1 Journal article
  Year 2006 Publication International journal of materials research Abbreviated Journal Int J Mater Res  
  Volume 97 Issue 7 Pages 978-984  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (Sr1-xCax)(33)Bi-24,partial derivative Al48O141+3 partial derivative/2 fullerenoid solid solutions have been synthesized and the effect of partial substitution of Sr by Ca has been characterized by (scanning) transmission electron microscopy, applying different imaging methods. Most of the defects commonly observed in face centered cubic compounds, have also been observed in (Sr1-xCax)(33)Bi24-partial derivative Al48O141+3 partial derivative/2. Based on purely geometrical and topological models, structural presentations for the coherent twin boundaries and stacking faults have been constructed on the basis of complex spherical “Al84O210” units. The results are compared to defects observed in the crystallite fullerite C-60.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000239916700017 Publication Date 2013-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-5282;2195-8556; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.681 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.681; 2006 IF: NA  
  Call Number UA @ lucian @ c:irua:60966 Serial 2091  
Permanent link to this record
 

 
Author Verbeeck, J.; Bertoni, G. pdf  doi
openurl 
  Title Model-based quantification of EELS: is standardless quantification possible? Type A1 Journal article
  Year 2008 Publication Microchimica acta Abbreviated Journal Microchim Acta  
  Volume 161 Issue 3/4 Pages 439-443  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron energy loss spectroscopy (EELS) is an ideal tool to obtain chemical information from nanoscale volumes. Quantification of the experimental spectra however has prevented for a long time access to the available information in a reliable and reproducible way. We present recent advances in model-based quantification of EELS spectra and show that we obtain the best possible precision for a given dataset, as well as remarkably good accuracies when applied to three different materials. The results are shown to be far superior over conventional quantification techniques and could hold a promise for standardless quantification of EELS spectra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000256175600024 Publication Date 2008-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-3672;1436-5073; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.58 Times cited 5 Open Access  
  Notes Esteem 026019; Fwo; G.0425.05; Iap V; Goa 2005 Approved Most recent IF: 4.58; 2008 IF: 1.910  
  Call Number UA @ lucian @ c:irua:69292UA @ admin @ c:irua:69292 Serial 2100  
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling adatom surface processes during crystal growth: a new implementation of the Metropolis Monte Carlo algorithm Type A1 Journal article
  Year 2009 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 11 Issue 8 Pages 1597-1608  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, a new implementation of the Metropolis Monte Carlo (MMC) algorithm is presented. When combining the MMC model with a molecular dynamics (MD) code, crystal growth by plasma-enhanced chemical vapor deposition can be simulated. As the MD part simulates impacts of growth species onto the surface on a time scale of picoseconds, the MMC algorithm simulates the slower adatom surface processes. The implementation includes a criterion for the selection of atoms that are allowed to be displaced during the simulation, and a criterion of after how many MMC cycles the simulation is stopped. We performed combined MD-MMC simulations for hydrocarbon species that are important for the growth of ultrananocrystalline diamond (UNCD) films at partially hydrogenated diamond surfaces, since this implementation is part of a study of the growth mechanisms of (ultra)nanocrystalline diamond films. Exemplary for adatom arrangements during the growth of UNCD, the adatom surface behavior of C and C2H2 at diamond (111)1 × 1, C and C4H2 at diamond (111)1 × 1 and C3 at diamond (100)2 × 1 has been investigated. For all cases, the diamond crystal structure is pursued under the influence of MMC simulation. Additional longer time-scale MD simulations put forward very similar structures, verifying the MMC algorithm. Nevertheless, the MMC simulation time is typically one order of magnitude shorter than the MD simulation time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Wos 000268184300021 Publication Date 2009-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.474; 2009 IF: 4.183  
  Call Number UA @ lucian @ c:irua:77374 Serial 2106  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: