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by non-magnetic impurities in mesoscopic
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The determination of the pairing symmetry is one of the most crucial issues for the

iron-based superconductors, for which various scenarios are discussed controversially.

Non-magnetic impurity substitution is one of the most promising approaches to address the

issue, because the pair-breaking mechanism from the non-magnetic impurities should be

different for various models. Previous substitution experiments demonstrated that the

non-magnetic zinc can suppress the superconductivity of various iron-based super-

conductors. Here we demonstrate the local destruction of superconductivity by non-magnetic

zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic

structure with 119� 102 nm2 cross-section. The impurities suppress superconductivity in a

three-dimensional ‘Swiss cheese’-like pattern with in-plane and out-of-plane characteristic

lengths slightly below B1.34 nm. This causes the superconducting order parameter to vary

along abundant narrow channels with effective cross-section of a few square nanometres.

The local destruction of superconductivity can be related to Cooper pair breaking by

non-magnetic impurities.
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F
or the newly discovered high-Tc Fe-based superconductors1,
it is essential to elucidate the pairing symmetry of
the superconducting wave function2, for which the

multi-gapped s-wave is generally acceptable. Possible candidates
include the unconventional s±-wave with sign-reversal3 and
the conventional sþ þ -wave without sign-reversal4. According to
Anderson’s theorem5–8, a few at% of non-magnetic impurities
can act as strong scattering centres and dramatically suppress
superconductivity by pair breaking in the case of an anisotropic
gap, for example, in a d-wave9 or s± wave2,3 superconductor.
Our previous experiments demonstrated that non-magnetic
Zn impurities can suppress the transition temperature Tc of the
122-type Fe-based superconductors10, while the magnitude of the
Tc suppression is lower than expected for the s±-wave
scenario4,11. On the basis of these results, recent theoretical
studies proposed that the suppression of superconductivity
could be attributed to various effects apart from pair breaking,
such as localization12 or disorder13,14. Furthermore, orbital
fluctuations, as the possible origin of the sþ þ state, could be
suppressed by lifting the orbital degeneracy near impurity
atoms15, which would also lead to a reduction in Tc. Therefore,
the corresponding theoretical calculation of Tc suppression10,11

cannot support the pair breaking by non-magnetic impurities as
the responsible mechanism directly, which requires further
understanding on the role of Zn.

The impurity ions of Zn2þ behave as spinless centres, which
may have induced moments of s¼ 2 on the Fe sites (the
‘Kondo-hole problem’). Nuclear magnetic resonance (NMR) can
probe nuclei coupled to the superconducting Fe2X2 planes to yield
information on the local magnetic structure. Kitagawa et al.16

studied the Zn-substituted LaFeAsO0.85 polycrystal using 75As
and 139La NMR and nuclear quadrupole resonance, and found
that the suppression of superconductivity by Zn is not due to
the change of the normal-state properties, but due to a strong
non-magnetic pair-breaking effect on superconductivity. On a
local-scale of suppression, the Zn ions can exclude the
supercurrent of an unconventionally gapped superconductor
within an area of px2

ab, which results in a two-dimensional (2D)
‘Swiss cheese’-like supercurrent distribution; here xab is the
in-plane coherence length of the superconductor. This model was
proposed based on the in-plane Zn-doping studies of cuprate
superconductors by scanning tunnelling spectroscopy (STM)17

and muon spin relaxation experiments18,19, while such
experiments on the iron pnictides are still in progress20. Since
the Fe-based 122 compounds possess nearly isotropic
properties21, the superconducting order parameter c can also
fluctuate along the c axis. Therefore, it is essential to study both
the in-plane and out-of-plane effects of Zn ions on local
superconductivity, which can hardly be observed by STM or
muon spin relaxation.

Local destruction of superconductivity by Zn impurities will
result in a considerable suppression of the superconducting
volume fraction. Thus, it is promising to study this behaviour in
mesoscopic samples, in which local effects should be more
pronounced22. For a one-dimensional (1D) superconducting
system, it has been proposed that c may be spatially or
temporally modulated along its length at finite temperature
T. In this case, resistive behaviour is induced by thermally
activated events, which cause c to shrink to zero and slip its
phase by 2p. Such a process is denoted as thermally activated
phase-slip23–30. Strictly speaking, it is hard to obtain a 1D
superconductor experimentally with a diameter less than the
characteristic length x. A quasi-1D system with corresponding
dimensions being smaller than

ffiffiffi
2
p

px, is more feasible25–28. For
low-Tc superconductors with coherence lengths x(T) up to a few
micrometres, the 1D regime has been reached experimentally via

micro- and/or nanopatterning techniques, and phase-slip
processes have been observed31–34. However, this approach
seems to be rather challenging for the high-Tc superconductors
where x is extremely small (B2 nm or less) and comparable
to the size of just one unit cell for both cuprates and the
Fe-based superconductors1,10. Surprisingly, recent measurements
on a YBaCu3O7� d (YBCO) nanobridges (50� 100 nm2 in
cross-section) demonstrated a pronounced thermal phase-slip
behaviour35. Since cuprate nanostructures are quite susceptible to
degradation induced by chemical and thermal instability during
nanopatterning, the observed phase-slip behaviour may have
been dominated by inhomogeneities in the YBCO nanobridges.
In contrast to this, for the Ba0.5K0.5Fe2As2 (BK) system, one can
hardly observe any degradation by the patterning process36.
This makes the system quite promising for studies of the impact
of impurities on the superconducting properties in BK
nanostructures.

Here we present an approach to study the effects of local
destruction of superconductivity by introducing non-magnetic
Zn impurities into iron arsenide Ba0.5K0.5Fe1.94Zn0.06As2 (BKZn)
mesoscopic superconducting structures. Phase-slip behaviour
was observed in nanobridges of width W and thickness h with
cross-section areas A¼W� h down to 119� 102 nm2.
We propose that Zn suppresses superconductivity in a
three-dimensional (3D) ‘Swiss cheese’-like fashion, where c
fluctuates along abundant narrow channels, which are supposed
to be a few nanometres wide, close to the size of x.

Results
Transport properties. Figure 1a shows a scanning electron
microscopy image of the nanobridge BKZn-N1 (width W¼ 119
nm, thickness h¼ 102 nm). The resistance R versus T curves of
nanobridges BKZn-N1 and BKZn-N2 (W¼ 290 nm, h¼ 315 nm),
and of the microbridge BKZn-M1 (W¼ 2000 nm, h¼ 373 nm)
are given in Fig. 1b. The microbridge BKZn-M1 exhibits a sharp
superconducting transition, indicating bulk behaviour. On the
other hand, the R(T) curves of the nanobridges show several
steps, which are particularly pronounced for BKZn-N1 with the
smallest cross-section A. The transition width DTcB11 K of
BKZn-N1 is also larger than that of the other bridges (for
example, DTcB3 K for BKZn-N2). Similar steps and a broadened
DTc in the R(T) curves were frequently observed in low-Tc

nanowires 31–34 and high-Tc YBCO nanobridges35, and were
explained by thermally activated phase-slips.

Figure 2a shows the current–voltage characteristics (IVCs) of
the Zn-doped nanobridge BKZn-N1 taken at T¼ 2–25 K. On
increasing the bias current from zero, the sample switches to an
intermediate resistive state (for example, at a critical current
Ic¼ 0.64 mA at T¼ 2 K). By further increasing I, a second jump
to the normal state appears. When the current is swept down,
the sample retraps from the normal to the intermediate resistive
regime at a retrapping current Ir and finally to the
superconducting state after one or two intermediate states. The
steps in the IVCs and the R(T) curves exhibit characteristics
typical for phase-slips. The pronounced hysteresis on the IVCs
can be attributed to Joule heating. The instantaneous dissipation
affects the local temperature of the mesoscopic system and results
in an increased probability for thermal activation27,37. According
to Tinkham’s theory24, the phase-slips can move in a
homogeneous wire system (like vortices in a clean crystal), and
the phase-slip occurs at a relatively higher current due to the
larger critical current, where more heat will be generated to
switch the wire into the normal state immediately after the
occurrence of a single phase-slip. For inhomogeneous wires,
however, a phase-slip can occur and it can be pinned at a weak
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link. Such a phase-slip would be acting at a lower current and
thus can exist without overheating the whole wire. For the
undoped BK nanobridges, however, IVCs demonstrated
switching from the superconducting to the voltage state with
absence of any intermediate state (Supplementary Fig. 2).

Figure 2b shows an enlarged view of the sweep-up IVC at 5 K.
Once extrapolating each successive branch linearly, all branches
intersect at V¼ 0, representing a typical phase-slip behaviour as
described by Tinkham24. Each step in the IVC indicates the
appearance (somewhere along the nanobridge) of an additional
similar localized resistance centre, where the time-average
pair chemical potential �mp suffers a discontinuous step-like
increment, D�mp. Such a centre is usually considered as a phase-
slip centre. We also simulated a IVC by applying time-dependent
Ginzburg–Landau theory on a 1D system (see Supplementary Note
2 and Supplementary Fig. 9). Comparing the theoretical study with
the experimental curves, we conclude that the hysteretic and stair-
like behaviour presented in the experimental IVC curves are
watermark indications for phase-slip centres.

In Fig. 3, we show the differential resistance dV/dI(I, T) for the
nanobridge BKZn-N1; Fig. 3a shows data taken by sweeping up
the bias current and Fig. 3b shows data for the sweep-down
branches of the IVCs. The red points indicate the largest values

for dV/dI, corresponding to the switching currents. For the
sweep-up data, we detect at T¼ 2 K two intermediate resistive
states, which correspond to two avalanche processes of phase-slip.
For T42 K, more intermediate resistive states are observed,
indicating several phase-slip entrances. For the sweep-down
branches, we find two major switching steps, as indicated by the
two distinct red lines in Fig. 3b.

Coherence length. Considering the general condition for the
appearance of phase-slips, the cross-sectional area should be
compared with

ffiffiffi
2
p

px. x(T) can be evaluated from the
upper critical field Hc2 as xab Tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0=2pHc

c2 Tð Þ
p

and
xc Tð Þ ¼ F0

�
2pHab

c2 Tð Þxab Tð Þ (ref. 21). We measured Hc
c2 by

using static fields up to m0H¼ 8 T and pulsed fields up to 52 T,
applied in the c direction; the results are shown in Fig. 1c together
with the corresponding xab. We also extrapolated x to T¼ 0 by
using the Ginzburg–Landau expression x Tð Þ ¼ x0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�T=Tcð Þ

p
.

This yields xab(0)¼ 2.05 nm and xc(0)¼ 1.20 nm, where the latter
was determined from d.c. field measurements (Supplementary
Figs 3 and 4). The values for xab(0) and xc(0) are two orders of
magnitude smaller than either the width or the thickness of our
nanobridges; this suggests that the dimensions of the nanobridges
are too large to allow for the generation of any phase-slips.
However, since Zn induces a local destruction of super-
conductivity, the effective superconducting regions are likely to be
shrunk into narrow channels having a relatively small effective
cross-section A* within the nanobridges.

To access A*, we fit the R(T) curves by using the thermally
activated phase-slip theory proposed by Little23. We treat the
nanobridge as a quasi-1D system, where a phase-slip passes over a
free-energy barrier DF proportional to the cross-sectional area,
RPS Tð Þ ¼ Rn exp �DF=kBTð Þ (refs 31–34). Here Rn is the normal

resistance, and DF is given by DF ¼ 0:83kBTc
RqA�

rx0
1� T

Tc

� �3=2
,

where, Rq¼ 6.45 kO is the superconducting quantum resistance
and r0 is the resistivity (we take the residual resistivity
r0¼ 49.98 mO cm from results of BKZn-M1). The fitting of
RPS(T) to the R(T) curves is shown in Fig. 1b. From these fits, we
obtain A*¼ 8.26 and 455.27 nm2 for BKZn-N1 and BKZn-N2,
respectively. For BKZn-N1, the obtained A* is three orders of
magnitude smaller than the geometric cross-section A of the
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Figure 2 | current-voltage characteristics (IVCs) of nanobridge BKZn-N1.

(a) current-voltage characteristics (IVCs) of nanobridge BKZn-N1

measured at different T in zero magnetic field. Arrows indicate bias current

sweep directions. (b) Enlarged view for sweep-up IVC at 5 K. Once

extrapolating each successive branch linearly, all branches intersect at

V¼0, representing a phase-slip centre as described by Tinkham24.
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Figure 1 | Image of the nanobridge and transport properties. (a) Scanning electron microscopy image of nanobridge BKZn-N1. Scale bar, 500 nm.

(b) R(T) curves measured in zero magnetic field for nanobridges BKZn-N1, BKZn-N2 and microbridge BKZn-M1, which reveal different cross-sectional area

(see, for example, Table 1). The bias current for each sample was 10mA. Open symbols are experimental data, and solid lines are fitting results from the

thermal activated phase-slip model proposed by Little23. (c) m0H2
c2 Tð Þ and xab(T) measured on microbridge BKZn-M1. m0H2

c2 Tð Þ is extracted from the

resistive transition points at 90% of the normal state resistivity rn, as determined from a Physical Properties Measurement System in static fields (o9 T,

see Supplementary Fig. 3) and from a pulsed field set-up up to 52 T (Supplementary Fig. 5). xab(T) is estimated from the Ginzburg–Landau formula for an

anisotropic 3D superconductor xab Tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0

�
2pHc

c2 Tð Þ
q

(ref. 21); F0 is the magnetic flux quantum. We also estimated xab(T) by the Ginzburg–Landau

relation x Tð Þ ¼ x0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=Tcð Þ

p
as shown by the dark cyan line. The horizontal violet dotted line shows the mean distance li between neighbouring Zn ions.
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nanobridge, while it is less than the value of 2p2x2
ab. For

BKZn-N2, A* is relatively large but still two orders of magnitude
smaller than its cross-section A. We note that the phase-slip
phenomenon can only appear within a narrow temperature
interval close to Tc, where x is relatively large, as shown in Fig. 1c.

Superconducting order parameter fluctuation. We can
conclude that Zn plays a significant role in reducing the
cross-section of superconducting channels and for the
observation of the phase-slip phenomenon, that is, Zn suppresses
superconductivity locally. Considering fluctuations of the super-
conducting order parameter c, the influence of Zn on the 1D or
quasi-1D high-Tc unconventional superconductors can induce
two different types of c variations, in-plane and out-of-plane.

First of all, since the 122-type superconductors possess an
anisotropic-layered structure, the Cooper pairs prefer to reside
within the Fe2As2 superconducting planes. Previous X-ray and
in-plane resistivity analysis indicated that the Zn ions were
substituted on the Fe sites of Ba0.5K0.5Fe2� xZnxAs2 (ref. 10). Thus,
the Cooper pairs can be broken and the supercurrent will be
excluded from a Zn-centred area of px2

ab within the planes,
vitalizing the so-called 2D ‘Swiss cheese’ model18,19 as shown in

Fig. 4e. To explore the distribution of Zn ions within the ab plane
of BKZn crystals, we performed high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM), as
shown in Fig. 4b, together with STEM-energy-dispersive X-ray
spectroscopy (STEM-XEDS) mapping as shown in Fig. 4c,d.
The Zn ions were found to be homogeneously distributed within
the ab plane of the crystal, without any indication for phase
separation. Since only 3 at% of Fe ions were substituted by Zn in
our crystals, we presume the idealized situation that the Zn ions are
homogenously distributed within the Fe2As2 layers. Thus, a mean
distance li between Zn ions can be estimated as B1.60 nm using
li ¼ r=

ffiffiffi
x
p

, where x is the Zn-doping level, and r¼ 2.77 Å is the
distance between the neighbouring Fe ions. li is significantly
smaller than xab(T), especially, near Tc (see Fig. 1c). As a result, it
seems very likely, that the non-superconducting regions induced
by Zn impurities inhibit superconductivity almost within the whole
crystal. In addition, we estimate the in-plane non-superconducting

volume fraction Z ¼ xpx2
0

. ffiffiffi
2
p

a
� �2¼ 2:35, where a is the lattice

constant. Thus, it seems that superconductivity can hardly survive
in crystals with such doping level of Zn. However, previous
experiments indicated that superconductivity of BK can be
strongly resistant against Zn impurities up to x¼ 10 at% (ref. 36).
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To investigate the local destruction area of Zn, STM experiments
will be the most promising way. But, unfortunately, the STM study
on the Zn-doping effect on Fe-based superconductors is still under
work. The main challenge for the STM experiments is due to the
technical difficulty in high-quality single-crystal fabrication and
in situ cleaving technique. Zhu et al.38 have calculated a single non-
magnetic impurity behaviour in the (K,Tl)FexSe2 superconductors
for various models. The impurity-induced resonance state was
found to exist only for the dx2 � y2 -wave pairing state, but not for
the others like s±. Besides, the bound-state peak in the local
density of states occurs at a non-zero energy for Fe-based systems
even in the unitary limit, indicating an opposite situation from the
cuprate systems. On the basis of the experimental results on Zn-
doping, Chen et al.39 suggested that the in-plane x for the case of a
s± paring symmetry should be as short as two lattice sites, namely,
xDB0.55 nm. Such a short screening length was attributed mainly
to the strong local Coulomb repulsion U, which acts on the
charges. We note that the corresponding Z is quite low, 0.17 for
x¼ 3 at% and xDB0.55 nm. In this case, the c fluctuations could
be strong enough to induce the motion of phase-slips, thus
inhibiting the generation of thermally activated phase-slips24.
Therefore, we argue that the characteristic length should be slightly
o1.34 nm, which is estimated from the boundary condition Z¼ 1.

Considering the out-of-plane variations of c, since xc

perpendicular to the plane (xc(0)¼ 1.20 nm) of the crystal is larger
than the distance between each superconducting plane (t¼ 0.665
nm (ref. 10)), the amplitude of c can be easily strong enough for
Josephson coupling between the layers40, resulting in a weakly
anisotropic behaviour as discussed before21,36. xc(0) of Zn-doped
samples is larger than t¼ 0.666 nm as well10, and particularly,
xc(T) is increasing with increasing T. However, with Zn doping, the
non-superconducting islands around the Zn ions can break the
superconducting structure symmetry along the c axis, leading to an
inhomogeneous 3D structure, for which we propose a 3D ‘Swiss
cheese’ model as shown in Fig. 4f, namely, stacks of 2D
‘Swiss cheese’ separated by Ba/K barrier layers. The presence of
non-superconducting islands acts as additional barriers enhancing
the distance between the adjacent superconducting layers and
weakening the Josephson coupling along the c axis. Consequently,
we may assume that c develops along abundant narrow
superconducting channels within the nanobridges, whose A*
should be dramatically smaller than the cross-sectional area.

Discussion
On the basis of the 3D ‘Swiss cheese’ model, the phase-slip
phenomenon could be observed in a bulk crystal once the Zn
impurity is homogenously distributed within the crystal.
However, we can hardly perform transport measurements on a
bulk crystal because of the dramatically higher value of Ic. Instead,
we studied microbridges with 2 mm width and thicknesses
ranging from 49.2 to 479.5 nm. Phase-slip was found for
microbridges with thickness up to 415.5 nm within a narrow
temperature region just below Tc (see Supplementary Fig. 6 and
Supplementary Note 1). For thinner bridges, however, phase-slip
phenomenon was enhanced quite substantially. Indeed, one can
hardly synthesize an ideal crystal with Zn ions distributed within

the Fe2As2 plane homogenously. The sheet resistance (R&) of the
Zn-doped crystal is R&¼rn/tE211.7O, which is slightly larger
than that of an impurity-free crystal (R&¼ 88.9O), indicating the
existence of weak localization. In addition, the existence of weak
Zn clusters may induce relatively wide superconducting channels
and restrict phase-slipping, which will be much more pronounced
in bulk crystals and relatively wide microbridges, as compared
with mesoscopic system.

The impurity-free nanobridges demonstrated thermal stability
due to smaller number of defects. With introducing Zn, the
nanobridges revealed several phase-slips. We propose that Zn
suppresses superconductivity in a 3D ‘Swiss cheese’-like pattern,
where the order parameter is restricted to be developed along
abundant narrow superconducting channels. Considering that
the order parameter has zero value in the point of each impurity
and since the magnitude of the order parameter can only
change within its characteristic length scale, we can exclude the
spherical regions with radius x around each impurity from
the superconducting condensate, for which the detail discussion
on order parameter along the nanobridge is introduced in
Supplementary Fig. 8 and Supplementary Note 2. We estimated
the effective cross-section of the superconducting channels as a
few nanometres according to the mechanism of thermally
activated phase-slips. This cross-section value is consistent with
the magnitude of the temperature-dependent coherence length
supporting the proposed model.

For a conventional superconducting gap like sþþ , the
non-magnetic impurity ions work as point defects, but do not
affect the Cooper pairs. Oppositely, the Zn ions can induce local
destruction of superconductivity for the unconventional
s± pairing symmetry, and consequently result in phase-slip
phenomenon in the BKZn nanobridges or even microbridges.
The local destruction may provide an evidence for the
pair-breaking effect of non-magnetic impurities and the
unconventional s± pairing symmetry for the iron pnictide
superconductors. Meanwhile, the observation of an unusual large
A*, especially for BKZn-N2, which could be due to the induced
competing order around Zn impurities, suggests that further
experiments might be necessary to achieve a better understanding
of the nature of the superconducting gap symmetry in iron-
pnictides superconductors, as well as the role of Zn impurity.

Methods
Crystal growth. The BK (Ba0.5K0.5Fe2As2) and BKZn (Ba0.5K0.5Fe1.94Zn0.06As2)
single crystals were grown using high-pressure technique as described elsewhere36:
the stoichiometric mixture of BaAs, KAs, FeAs, Fe and Zn was placed in a tantalum
capsule with an h-BN inner, and compressed at 3 GPa in a belt-type high-pressure
apparatus and heated at 1,300 �C for 4 h. The elemental concentration of BKZn was
confirmed by energy dispersive X-ray spectroscopy (Supplementary Fig. 1).

Nanobridge fabrications. The single crystals were cleaved along their c axis into
flakes with thickness down to a few hundred nanometres, and then were glued onto
Si substrates, with their ab plane parallel to the substrate surface, by using a thin
layer of epoxy. The crystals were then fabricated as microbridges as following
process10: (i) Au depositing onto the crystal; (ii) annealing at 200 �C for 24 h under
nitrogen atmosphere; (iii) photolithography patterning on the crystal; (iv) argon
ion milling the sample into a microbridge; (v) removing the photoresist by
acetone and connecting the electrodes with silver paste; and (vi) argon ion
milling the whole sample to remove the Au layer. The thin crystals were
patterned into microbridges with width W¼ 2 mm, length L¼ 10 mm and thickness
h¼ 100–400 nm. Subsequently, some of the microbridges were cut by a focused ion
beam system equipped with a Ga ion source (FEI Dual beam Strata 235) to produce
constrictions within the bridges with W down to 119 nm and different L. The
focused ion beam milling was based on a procedure used earlier for YBCO thin
films41. Here we present data on micro- and nanobridges with dimensions given in
Table 1, where the nanobridges were patterned by ion milling with a focused Ga
beam, while not for the microbridges. Figure 1a shows a scanning electron
microscopy image of the nanobridge BKZn-N1. The thickness was confirmed from
the resistance measurement of the microbridge10.

Table 1 | Dimensions of all micro- and nanobridges.

Samples Materials W (nm) L (nm) h (nm)

BK-N1 Ba0.5K0.5Fe2As2 340 402 105
BKZn-N1 Ba0.5K0.5Fe1.94Zn0.06As2 119 1,452 102
BKZn-N2 Ba0.5K0.5Fe1.94Zn0.06As2 290 1,558 315
BKZn-M1 Ba0.5K0.5Fe1.94Zn0.06As2 2,000 10,000 373
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