toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Parrilla, M.; Vanhooydonck, A.; Johns, M.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid Type A1 Journal article
  Year 2023 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 378 Issue Pages 133159-10  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of continuous monitoring of key biomarkers for diagnostic or therapeutic operations. Particularly, microneedle (MN)-based sensors can access the interstitial fluid (ISF) in the dermis layer of skin to carry out on-body transdermal detection of analytes. Interestingly, 3D-printing technology allows for rapid and versatile prototyping reaching micrometer resolution. Herein, for the first time, we explore 3D-printed hollow MN patches (1 mm height x 1 mm base with 0.3 mm hole) which are modified with conductive inks to develop a potentiometric sensor for pH monitoring. First, the piercing capability of 3D-printed MN patches is demonstrated by using the parafilm model and their insertion in porcine skin. Subsequently, the hollow MNs are filled with conductive inks to engineer a set of microelectrodes. Thereafter, the working and reference electrodes are properly modified with polyaniline and polyvinyl butyral, respectively, toward a highly stable potentiometric cell. A full in vitro characterization is performed within a broad range of pH (i.e. pH 4 to pH 9). Besides, the MN sensor is analytically assessed in phantom gel and pierced on porcine skin to evaluate the resilience of the MN sensor. Finally, the MN sensor is pierced on the forearm of a subject and tested for its on-body monitoring capability. Overall, 3D-printed MN-based potentiometric sensing brings a versatile and affordable technology to minimally-invasively monitor key physiological parameters in the body.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904590500008 Publication Date 2022-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:192381 Serial 8824  
Permanent link to this record
 

 
Author Parrilla, M.; Vanhooydonck, A.; Watts, R.; De Wael, K. pdf  url
doi  openurl
  Title Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids Type A1 Journal article
  Year 2022 Publication Biosensors and bioelectronics Abbreviated Journal  
  Volume 197 Issue Pages  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Wearable electrochemical sensors are driven by the user-friendly capability of on-site detection of key biomarkers for health management. Despite the advances in biomolecule monitoring such as glucose, still, several unmet clinical challenges need to be addressed. For example, patients suffering from phenylketonuria (PKU) should be able to monitor their phenylalanine (PHE) level in a rapid, decentralized, and affordable manner to avoid high levels of PHE in the body which can lead to a profound and irreversible mental disability. Herein, we report a wearable wristband electrochemical sensor for the monitoring of PHE tackling the necessity of controlling PHE levels in PHE hydroxylase deficiency patients. The proposed electrochemical sensor is based on a screen-printed electrode (SPE) modified with a membrane consisting of Nafion, to avoid interferences in biofluids. The membrane also consists of sodium 1,2-naphthoquinone-4-sulphonate for the in situ derivatization of PHE into an electroactive product, allowing its electrochemical oxidation at the surface of the SPE in alkaline conditions. Importantly, the electrochemical sensor is integrated into a wristband configuration to enhance user interaction and engage the patient with PHE self-monitoring. Besides, a paper-based sampling strategy is designed to alkalinize the real sample without the need for sample pretreatment, and thus simplify the analytical process. Finally, the wearable device is tested for the determination of PHE in saliva and blood serum. The proposed wristband-based sensor is expected to impact the PKU self-monitoring, facilitating the daily lives of PKU patients toward optimal therapy and disease management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000719366400003 Publication Date 2021-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:183086 Serial 8957  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages 128234  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 436 Issue Pages 141446-11  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
 

 
Author Van Echelpoel, R.; Parrilla, M.; Sleegers, N.; Thiruvottriyur Shanmugam, S.; van Nuijs, A.L.N.; Slosse, A.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Validated portable device for the qualitative and quantitative electrochemical detection of MDMA ready for on-site use Type A1 Journal article
  Year 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 190 Issue Pages 108693-10  
  Keywords (up) A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Identifying and quantifying 3,4-methyl​enedioxy​methamphetamine (MDMA) on-site in suspected illicit drug samples, whether it be at recreational settings or manufacturing sites, is a major challenge for law enforcement agencies (LEAs). Various analytical techniques exist to fulfil this goal, e.g. colourimetry and portable spectroscopic techniques, each having its specific limitations (e.g. low accuracy, fluorescence, no quantification) and strengths (e.g. fast, easy to use). In this work, for the first time, an electrochemical MDMA sensor is presented to become a detection tool that can realistically be used on-site. More specifically, the use of a single buffer solution and an unmodified screen-printed electrode, along with the integration of a data analysis algorithm and mobile application permits the straightforward on-site identification and quantification of MDMA in suspicious samples. Multiple studies investigating different parameters, including pH, concentration, reproducibility, temperature and binary mixture analyses, were executed. To fully understand all the occurring redox processes, liquid chromatography coupled with high-resolution mass spectrometry analysis of partially electrolyzed MDMA samples was performed unravelling oxidation of the methylenedioxy group. Validation of the methodology was executed on 15 MDMA street samples analysed by gas chromatography coupled with mass spectrometry and compared with the performance of a commercial portable Raman and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) device. The novel methodology outperformed the spectroscopic techniques, correctly identifying all 15 street samples. Additionally, the electrochemical sensor predicted the purity of the tablets with a mean absolute error of 2.3%. Overall, this new, electrochemical detection strategy provides LEAs the rapid, low-cost, on-site detection and quantification of MDMA in suspicious samples, without requiring specialized training.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977060400001 Publication Date 2023-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:195415 Serial 8952  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Meynen, V.; De Wael, K. pdf  url
doi  openurl
  Title An adhesive conducting electrode material based on commercial mesoporous titanium dioxide as a support for Horseradish peroxidase for bioelectrochemical applications Type A1 Journal article
  Year 2016 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta  
  Volume 146 Issue Pages 689-693  
  Keywords (up) A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract An adhesive conducting electrode material containing of graphite, biocompatible ion exchange polymer nafion® and commercial mesoporous TiO2 impregnated with horseradish peroxidase (HRP) is prepared and characterized by amperometric, UVvis and N2 sorption methods. The factors influencing the performance of the resulting biosensor are studied in detail. The optimal electrode material consists of 45% graphite, 50% impregnated HRPTiO2 and 5% nafion®. The optimum conditions for H2O2 reduction are an applied potential of 0.3 V and 0.1 mM hydroquinone. Sensitivity and limit of detection in the optimum conditions are 1 A M−1 cm−2 and 1 µM correspondingly. The N2 sorption results show that the pore volume of TiO2 decreases sharply upon adsorption of HRP. The preparation process of the proposed enzyme electrode is straightforward and potentially can be used for preparation of carbon paste electrodes for bioelectrochemical detections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363815600093 Publication Date 2015-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited 7 Open Access  
  Notes ; The authors thank the Fund for Scientific Research – Flanders (FWO) (Grant G.0687.13), the GOA-BOF UA 2013-2016 (project-ID 28312) for funding and Ward Huybrechts of the University of Antwerp, Laboratory of Adsorption and Catalysis (LADCA) for help with the N<INF>2</INF> sorption. ; Approved Most recent IF: 4.162  
  Call Number UA @ admin @ c:irua:126495 Serial 5458  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Van Doorslaer, S.; Meynen, V.; Gorton, L.; De Wael, K. url  doi
openurl 
  Title Amperometric flow-injection analysis of phenols induced by reactive oxygen species generated under daylight irradiation of titania impregnated with horseradish peroxidase Type A1 Journal article
  Year 2020 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 92 Issue 92 Pages 3643-3649  
  Keywords (up) A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Titanium dioxide (TiO2) is a unique material for biosensing applications due to its capability of hosting enzymes. For the first time, we show that TiO2 can accumulate reactive oxygen species (ROS) under daylight irradiation and can support the catalytic cycle of horseradish peroxidase (HRP) without the need of H2O2 to be present in the solution. Phenolic compounds, such as hydroquinone (HQ) and 4-aminophenol (4-AP), were detected amperometrically in flow-injection analysis (FIA) mode via the use of an electrode modified with TiO2 impregnated with HRP. In contrast to the conventional detection scheme, no H2O2 was added to the analyte solution. Basically, the inherited ability of TiO2 to generate reactive oxygen species is used as a strategy to avoid adding H2O2 in the solution during the detection of phenolic compounds. Electron paramagnetic resonance (EPR) spectroscopy indicates the presence of ROS on titania which, in interaction with HRP, initiate the electrocatalysis toward phenolic compounds. The amperometric response to 4-AP was linear in the concentration range between 0.05 and 2 μM. The sensitivity was 0.51 A M–1 cm–2, and the limit of detection (LOD) 26 nM. The proposed sensor design opens new opportunities for the detection of phenolic traces by HRP-based electrochemical biosensors, yet in a more straightforward and sensitive way following green chemistry principles of avoiding the use of reactive and harmful chemical, such as H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518234700023 Publication Date 2020-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited 3 Open Access  
  Notes ; The authors thank Scientific Reseatch-Flanders (F-WO) (grant 12T4219N) for funding. ; Approved Most recent IF: 7.4; 2020 IF: 6.32  
  Call Number UA @ admin @ c:irua:166241 Serial 5463  
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Meynen, V.; Dewilde, S.; De Wael, K. url  doi
openurl 
  Title Attaching redox proteins onto electrode surfaces by bis-silane Type A1 Journal article
  Year 2016 Publication ChemElectroChem Abbreviated Journal Chemelectrochem  
  Volume 3 Issue 7 Pages 1035-1038  
  Keywords (up) A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Immobilization of redox proteins on electrode surfaces is of special interest for mechanistic studies and applications because of a well-controlled redox state of protein molecules by a polarized electrode and fast electron transfer kinetics, free from diffusion limitation. Here, bis-organosilane (1,2-bis(trimethoxysilyl)ethane) was applied as a fresh solution in a pH 7 phosphate buffer without use of any organic solvent, sol-gel or mesoporous bulk matrix. A short aging period of 30 minutes before deposition on the electrodes was optimal for the immobilization of proteins. Three redox proteins (cytochrome c, neuroglobin and GLB-12) were confined to the gold surface of electrodes with high coverages and stability, indicating that the suggested technique is simple, efficient and generic in nature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380043500001 Publication Date 2016-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.136 Times cited 4 Open Access  
  Notes ; The authors thank the Fund for Scientific Research-Flanders (FWO) (Grant G.0687.13) and the GOA-BOF UA 2013-2016 (project ID 28312) for funding. ; Approved Most recent IF: 4.136  
  Call Number UA @ admin @ c:irua:132628 Serial 5485  
Permanent link to this record
 

 
Author Loreto, S.; Cuypers, B.; Brokken, J.; Van Doorslaer, S.; De Wael, K.; Meynen, V. pdf  url
doi  openurl
  Title The effect of the buffer solution on the adsorption and stability of horse heart myoglobin on commercial mesoporous titanium dioxide : a matter of the right choice Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 21 Pages 13503-13514  
  Keywords (up) A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Despite the numerous studies on the adsorption of different proteins onto mesoporous titanium dioxide and indications on the important role of buffer solutions in bioactivity, a systematic study on the impact of the buffer on the protein incorporation into porous substrates is still lacking. We here studied the interaction between a commercial mesoporous TiO2 and three of the most used buffers for protein incorporation, i.e. HEPES, Tris and phosphate buffer. In addition, this paper analyzes the adsorption of horse heart myoglobin (hhMb) onto commercial mesoporous TiO2 as a model system to test the influence of buffers on the protein incorporation behavior in mesoporous TiO2. N2 sorption analysis, FT-IR and TGA/DTG measurements were used to evaluate the interaction between the buffers and the TiO2 surface, and the effect of such an interaction on hhMb adsorption. Cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) were used to detect changes in the microenvironment surrounding the heme. The three buffers show a completely different interaction with the TiO2 surface, which drastically affects the adsorption of myoglobin as well as its structure and electrochemical activity. Therefore, special attention is required while choosing the buffer medium to avoid misguided evaluation of protein adsorption on mesoporous TiO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402488300013 Publication Date 2017-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 2 Open Access  
  Notes ; We are grateful to Gert Nuyts for performing the XRF measurements, and Dr Stanislav Trashin for his assistance during the electrochemical experiments. This work is supported by the Research Foundation – Flanders (FWO) (grant G.0687.13) and the University of Antwerp (BOF project). ; Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:143514 Serial 5582  
Permanent link to this record
 

 
Author Rahemi, V.; Trashin, S.; Hafideddine, Z.; Meynen, V.; Van Doorslaer, S.; De Wael, K. pdf  url
doi  openurl
  Title Enzymatic sensor for phenols based on titanium dioxide generating surface confined ROS after treatment with H2O2 Type A1 Journal article
  Year 2019 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 283 Issue 283 Pages 343-348  
  Keywords (up) A1 Journal article; Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Titanium dioxide (TiO2) is a popular material as host matrix for enzymes. We now evidence that TiO2 can accumulate and retain reactive oxygen species after treatment by hydrogen peroxide (H2O2) and support redox cycling of a phenolic analyte between horseradish peroxidase (HRP) and an electrode. The proposed detection scheme is identical to that of second generation biosensors, but the measuring solution requires no dissolved H2O2. This significantly simplifies the analysis and overcomes issues related to H2O2 being present (or generated) in the solution. The modified electrodes showed rapid stabilization of the baseline, a low noise level, fast realization of a steady-state current response, and, in addition, improved sensitivity and limit of detection compared to the conventional approach, i.e. in the presence of H2O2 in the measuring solution. Hydroquinone, 4-aminophenol, and other phenolic compounds were successfully detected at sub-μM concentrations. Particularly, a linear response in the concentration range between 0.025 and 2 μM and LOD of 24 nM was demonstrated for 4-aminophenol. The proposed sensor design goes beyond the traditional concept with three sensors generations offering a new possibility for the development of enzymatic sensors based on peroxidases and the formation of ROS on titania after treatment with H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455854000043 Publication Date 2018-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 1 Open Access  
  Notes ; The authors thank the University of Antwerp for GOA funding and the Scientific Research-Flanders (FWO) (grant 12T4219N). V. Rahemi is financially supported through a postdoctoral fellowship of the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:155665 Serial 5605  
Permanent link to this record
 

 
Author Neven, L.; Barich, H.; Ching, H.Y.V.; Khan, S.U.; Colomier, C.; Patel, H.H.; Gorun, S.M.; Verbruggen, S.; Van Doorslaer, S.; De Wael, K. pdf  url
doi  openurl
  Title Correlation between the fluorination degree of perfluorinated zinc phthalocyanines, their singlet oxygen generation ability, and their photoelectrochemical response for phenol sensing Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 13 Pages 5221-5230  
  Keywords (up) A1 Journal article; Organic synthesis (ORSY); Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV–vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural–activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000786254500002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187522 Serial 7141  
Permanent link to this record
 

 
Author Truta, F.M.; Cruz, A.G.; Dragan, A.-M.; Tertis, M.; Cowen, T.; Stefan, M.-G.; Topala, T.; Slosse, A.; Piletska, E.; Van Durme, F.; Kiss, B.; De Wael, K.; Piletsky, S.A.; Cristea, C. pdf  doi
openurl 
  Title Design of smart nanoparticles for the electrochemical detection of 3,4-methylenedioxymethamphetamine to allow in field screening by law enforcement officers Type A1 Journal article
  Year 2023 Publication Drug testing and analysis Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract A portable and highly sensitive sensor was designed for the specific detection of 3,4-methyl-enedioxy-methamphetamine (MDMA), in a range of field-testing situations. The sensor can detect MDMA in street samples, even when other controlled substances drugs, or adulterants are present. In this work, we report for the first time a sensor using electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA and then produced using solid phase synthesis. A composite comprising chitosan, reduced graphene oxide, and molecularly imprinted polymer nanoparticles synthesized for MDMA for the first time was immobilized on screen-printed carbon electrodes. The sensors displayed a satisfactory sensitivity (106.8 nA x mu M-1), limit of detection (1.6 nM; 0.31 ng/mL), and recoveries (92-99%). The accuracy of the results was confirmed through validation using Ultra-High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (UPLC-MS/MS). This technology could be used in forensic analysis and make it possible to selectively detect MDMA in street samples. A highly sensitive and portable sensor has been developed to detect MDMA in street samples. It uses electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA, which were immobilized on screen-printed carbon electrodes with chitosan and graphene. The sensor showed good sensitivity and satisfactory recoveries (92-99%), confirmed with UPLC-MS/MS validation. This technology has the potential to be used in forensic analysis.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001107703400001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access  
  Notes Approved Most recent IF: 2.9; 2023 IF: 3.469  
  Call Number UA @ admin @ c:irua:202058 Serial 9020  
Permanent link to this record
 

 
Author Deconinck, E.; Polet, M.A.; Canfyn, M.; Duchateau, C.; De Braekeleer, K.; Van Echelpoel, R.; De Wael, K.; Gremeaux, L.; Degreef, M.; Balcaen, M. pdf  doi
openurl 
  Title Evaluation of an electrochemical sensor and comparison with spectroscopic approaches as used today in practice for harm reduction in a festival setting: a case study : analysis of 3,4-methylenedioxymethamphetamine samples Type A1 Journal article
  Year 2023 Publication Drug testing and analysis Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract More and more countries and organisations emphasise the value of harm reduction measures in the context of illicit drug use and abuse. One of these measures is drug checking, a preventive action that can represent a quick win by tailored consultation on the risks of substance use upon analytical screening of a submitted sample. Unlike drop-in centres that operate within a fixed setting, enabling drug checking in a harm reduction context at events requires portable, easy to use analytical approaches, operated by personnel with limited knowledge of analytical chemistry. In this case study, four different approaches were compared for the characterisation of 3,4-methylenedioxymethamphetamine samples and this in the way the approaches would be applied today in an event context. The four approaches are mid-infrared (MIR), near-infrared, and Raman spectroscopy, which are today used in drug checking context in Belgium, as well as an electrochemical sensor approach initially developed in the context of law enforcement at ports. The MIR and the electrochemical approach came out best, with the latter allowing for a direct straightforward analysis of the percentage 3,4-methylenedioxymethamphetamine (as base equivalent) in the samples. However, MIR has the advantage that, in a broader drug checking context, it allows to screen for several molecules and so is able to identify unexpected active components or at least the group to which such components belong. The latter is also an important advantage in the context of the growing emergence of new psychotropic substances. MIR, NIR, Raman spectroscopy, and an electrochemical sensor (Narcoreader (R)) for MDMA analysis were compared in a realistic harm reduction context. NIR and Raman failed in simple library approaches. MIR and Narcoreader (R) were preferred. MIR came out as first choice. MIR and Narcoreader (R) have complementary (dis)advantages and could be used in a two-step approach: MIR for screening and Narcoreader (R) for dosage/risk evaluation of MDMA samples.image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001122493700001 Publication Date 2023-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access  
  Notes Approved Most recent IF: 2.9; 2023 IF: 3.469  
  Call Number UA @ admin @ c:irua:202047 Serial 9032  
Permanent link to this record
 

 
Author Pilehvar, S.; Gielkens, K.; Trashin, S.A.; Dardenne, F.; Blust, R.; De Wael, K. url  doi
openurl 
  Title (Electro)sensing of phenicol antibiotics : a review Type A1 Journal article
  Year 2016 Publication Critical reviews in food science and nutrition Abbreviated Journal Crit Rev Food Sci  
  Volume 56 Issue 14 Pages 2416-2429  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The presence of residues from frequent antibiotic use in animal feed can cause serious health risks by contaminating products for human consumption such as meat and milk. The present article gives an overview of the electrochemical methods developed for the detection of phenicol antibiotic residues (chloramphenicol, thiamphenicol, and florfenicol) in different kinds of foodstuffs. Electrochemical sensors based on different biomolecules and nanomaterials are described. The detection limit of various developed methods with their advantages and disadvantage will be highlighted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000382757200015 Publication Date 2015-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-8398 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.077 Times cited 13 Open Access  
  Notes ; The authors are highly thankful for the University of Antwerp Grants (DOCPRO/ IWS). ; Approved Most recent IF: 6.077  
  Call Number UA @ admin @ c:irua:125663 Serial 5585  
Permanent link to this record
 

 
Author Ranjbari, E.; Hadjmohammadi, M.R.; Kiekens, F.; De Wael, K. pdf  url
doi  openurl
  Title Mixed hemi/ad-micelle sodium dodecyl sulfate-coated magnetic iron oxide nanoparticles for the efficient removal and trace determination of rhodamine-B and rhodamine-6G Type A1 Journal article
  Year 2015 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 87 Issue 15 Pages 7894-7901  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g1, respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L1 of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL1. Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359277900056 Publication Date 2015-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 36 Open Access  
  Notes ; ; Approved Most recent IF: 6.32; 2015 IF: 5.636  
  Call Number UA @ admin @ c:irua:126583 Serial 5730  
Permanent link to this record
 

 
Author Eliaerts, J.; Meert, N.; Van Durme, F.; Samyn, N.; De Wael, K.; Dardenne, P. pdf  url
doi  openurl
  Title Practical tool for sampling and fast analysis of large cocaine seizures Type A1 Journal article
  Year 2018 Publication Drug testing and analysis Abbreviated Journal Drug Test Anal  
  Volume 10 Issue 6 Pages 1039-1042  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Large quantities of illicit drugs are frequently seized by law enforcement. In such cases, a representative number of samples needs to be quickly examined prior to destruction. No procedure has yet been set up which rapidly provides information regarding the homogeneity of the samples, the presence of controlled substances and the degree of purity. This study establishes a protocol for fast analysis of cocaine and its most common cutting agent, levamisole, in large seizures. The protocol is based on a hypergeometric sampling approach combined with FTIR spectrometry and Support Vector Machines (SVM) algorithms as analysis methods. To demonstrate the practical use of this approach, five large cocaine seizures (consisting between 45 and 85 units) were analysed simultaneously with GC-MS, GC-FID and a portable FTIR spectrometer using Attenuated Total Reflectance (ATR) sampling combined with SVM models. According to the hypergeometric sampling plan of the Drugs Working Group ENFSI guidelines, the required number of subsamples ranged between 19 and 23. Considering the identification analyses, the SVM models detected cocaine and levamisole in all subsamples of cases 1 to 5 (100% correct classification), which was confirmed by GC-MS analysis. Considering the quantification analyses, the SVM models were able to estimate the cocaine and levamisole content in each subsample, compared to GC-FID data. The developed strategy is easy, cost effective and provides immediate information about both the presence and concentration of cocaine and levamisole. By using this new strategy, the number of confirmation analyses with laborious and expensive chromatographic techniques could be significantly reduced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000435270300016 Publication Date 2018-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.469 Times cited 1 Open Access  
  Notes ; Belgian Science Policy Office (BELSPO), Grant/Award Number: WE/49/N14-O14 ; Approved Most recent IF: 3.469  
  Call Number UA @ admin @ c:irua:148760 Serial 5781  
Permanent link to this record
 

 
Author Eliaerts, J.; Dardenne, P.; Meert, N.; Van Durme, F.; Samyn, N.; Janssens, K.; De Wael, K. url  doi
openurl 
  Title Rapid classification and quantification of cocaine in seized powders with ATR-FTIR and chemometrics Type A1 Journal article
  Year 2017 Publication Drug testing and analysis Abbreviated Journal Drug Test Anal  
  Volume 9 Issue 10 Pages 1480-1489  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Traditionally, fast screening for the presence of cocaine in unknown powders is performed by means of colour tests. The major drawbacks of these tests are subjective colour evaluation depending on the operator (50 shades of blue) and a lack of selectivity. An alternative fast screening technique is Fourier Transform InfraRed (FTIR) spectrometry. This technique provides spectra that are difficult to interpret without specialized expertise and showing a lack of sensitivity for the detection of cocaine in mixtures. To overcome these limitations, a portable FTIR spectrometer using Attenuated Total Reflectance (ATR) sampling was combined with a multivariate technique, called Support Vector Machines (SVM). Representative street drug powders (n = 482), seized during the period January 2013 to July 2015, and reference powders (n = 33) were used to build and validate a classification model (n = 515) and a quantification model (n = 378). Both models were compared with the conventional chromatographic techniques. The SVM classification model showed a high sensitivity, specificity and efficiency (99%). The SVM quantification model determined cocaine content with a root mean squared error of prediction (RMSEP) of 6% calculated over a wide working range from 4 to 99 w%. In conclusion, the developed models resulted in a clear output (cocaine detected or cocaine not detected) and a reliable estimation of the cocaine content in a wide variety of mixtures. The ATR-FTIR technique combined with SVM is a straightforward, user-friendly and fast approach for routine classification and quantification of cocaine in seized powders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000413685200001 Publication Date 2016-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.469 Times cited 9 Open Access  
  Notes ; ; Approved Most recent IF: 3.469  
  Call Number UA @ admin @ c:irua:139483 Serial 5799  
Permanent link to this record
 

 
Author Hrdlickova Kuckova, S.; Hamidi-Asl, E.; Sofer, Z.; Marvan, P.; De Wael, K.; Sanyova, J.; Janssens, K. url  doi
openurl 
  Title A simplified protocol for usage of new immuno-SERS probes for detection of casein, collagens and ovalbumin in cross-sections of artworks Type A1 Journal article
  Year 2018 Publication Analytical methods Abbreviated Journal Anal Methods-Uk  
  Volume 10 Issue 9 Pages 1054-1062  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Although it is now relatively straightforward to identify protein binders in works of art, their proper localization within the corresponding layer still represents a significant analytical challenge. Until now, the identification of proteins has mainly been performed by peptide mass fingerprinting using mass spectrometric methods and their localization in polished paint cross-sections have been realized by optical microscopy via the use of fluorescent stain Sypro Ruby (SR). In this work we propose a simplified protocol for immuno-surface enhanced Raman scattering (immuno-SERS) using gold nanoparticles attached to biphenyl-4,4-dithiol (BPDT) as the SERS-nanotag. These nanoparticles are easily obtainable in the lab and have been used to label multilayered mock up samples prepared as cross-sections to estimate the detection limits of the suggested method. The layers contain egg, casein, and different animal glues binders (prepared in various ratios with linseed oil or a carbohydrate component) mixed with the pigments azurite, vermilion and chalk. The sensitivity of staining agent SR is compared to that of the immuno-SERS protocol for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426696100017 Publication Date 2018-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-9660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.9 Times cited 3 Open Access  
  Notes ; The authors wish to acknowledge the Fund for Scientific Research-Flanders (FWO-Vlaanderen) for the support to act as a Postdoctoral Fellow – Pegasus of the Research Foundation – Flanders, and the grant from Specific University research (MSMT No. 20/2017) from the Czech Republic. This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/ 0000444 financed by the EFRR). Zdenek Sofer and Petr Marvan were supported by specific university research (MSMT No. 20-SVV/2018). ; Approved Most recent IF: 1.9  
  Call Number UA @ admin @ c:irua:148803 Serial 5831  
Permanent link to this record
 

 
Author Ayalew, E.; Gebre, Y.; De Wael, K. url  doi
openurl 
  Title A survey of occupational exposure to inhalable wood dust among workers in small- and medium-scale wood-processing enterprises in Ethiopia Type A1 Journal article
  Year 2015 Publication The annals of occupational hygiene Abbreviated Journal Ann Occup Hyg  
  Volume 59 Issue 2 Pages 253-257  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A study of wood dust exposure in 20 small- and medium-scale wood-processing enterprises was performed in Ethiopia. Sampling was conducted daily from January to June, 2013 and a total of 360 samples from 113 workers were collected with Institute of Occupational Medicine (IOM) personal samplers. Eight-hour time-weighted average exposure to wood dust ranged from 0.24 to 23.3mg m−3 with a geometric mean (GM) of 6.82mg m−3 and a geometric standard deviation of 1.82. Although Ethiopia did not have any defined standard of Occupational Exposure Limit for wood dust exposure, 71% of the measurements exceeded the limit of 5mg m−3 set by the European Union (EU). Higher than the EU exposure limit was measured while workers perform sanding and sawing activities with a GM of 9.72 and 7.60mg m−3, respectively. In conclusion, wood workers in the small- and medium-scale enterprises are at a higher risk of developing different respiratory health problems with continuous exposure trends.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000352158700011 Publication Date 2014-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-4878 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.71 Times cited 4 Open Access  
  Notes ; Eyasu Ayalew thanks the Addis Ababa University (Center for Environmental Sciences) for the personal grant for independent study. ; Approved Most recent IF: 1.71; 2015 IF: 2.101  
  Call Number UA @ admin @ c:irua:119739 Serial 5857  
Permanent link to this record
 

 
Author Eliaerts, J.; Meert, N.; Dardenne, P.; Baeten, V.; Pierna, J.-A.F.; Van Durme, F.; De Wael, K.; Samyn, N. doi  openurl
  Title Comparison of spectroscopic techniques combined with chemometrics for cocaine powder analysis Type A1 Journal article
  Year 2020 Publication Journal Of Analytical Toxicology Abbreviated Journal J Anal Toxicol  
  Volume 44 Issue 8 Pages 851-860  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC-MS) and gas chromatography with flame-ionization detection (GC-FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R-2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R-2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R-2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000606735000011 Publication Date 2020-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-4760; 1945-2403 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved Most recent IF: 2.5; 2020 IF: 2.409  
  Call Number UA @ admin @ c:irua:175117 Serial 7697  
Permanent link to this record
 

 
Author Van Echelpoel, R.; Kranenburg, R.; van Asten, A.; De Wael, K. url  doi
openurl 
  Title Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization Type A1 Journal article
  Year 2022 Publication Forensic chemistry Abbreviated Journal  
  Volume 27 Issue Pages 100383  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Forensic drug laboratories are confronted with increasing amounts of drugs and a demand for faster results that are directly available on-site. In addition, the drug market is getting more complex with hundreds of new psychoactive substances (NPS) entering the market in recent years. Rapid and on-scene presumptive drug testing therefore faces a shift from manual colorimetric tests towards approaches that can detect a wider range of components and process results automatically. Electrochemical detection offers these desired characteristics, making it a suitable candidate for on-site drug detection. In this study, a two-step electrochemical sensor is introduced for the detection of MDMA and 2C-B. Firstly, a direct electrochemical analysis was performed to detect MDMA. Validation experiments on over 70 substances revealed that 2C-B was the only frequently encountered drug that gave a false positive result for MDMA in this first analysis. A second step using in-situ derivatization was subsequently introduced. To this end, formaldehyde was used for N-methylation of 2C-B thereby enhancing its electrochemical profile. The enriched electrochemical fingerprint in the second step allowed for clear differentiation between MDMA and 2C-B. The applicability of this approach was demonstrated with 71 ecstasy tablets seized by the Amsterdam Police. The MDMA/2C-B sensor correctly identified all 39 MDMA-containing tablets and 10 out of 11 tablets containing 2C-B. Most notably, correct results were also obtained for dark colored tablets in which both spectroscopic analysis and colorimetric tests failed due to obscured signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000725708200002 Publication Date 2021-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-1709 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7  
  Call Number UA @ admin @ c:irua:183340 Serial 7149  
Permanent link to this record
 

 
Author de Jong, M.; Florea, A.; Daems, D.; Van Loon, J.; Samyn, N.; De Wael, K. url  doi
openurl 
  Title Electrochemical Analysis of Speedball-like Polydrug Samples Type A1 Journal article
  Year 2020 Publication Analyst Abbreviated Journal Analyst  
  Volume Issue Pages  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract Increasing global production, trafficking and consumption of drugs of abuse cause an emerging threat to people’s health and safety. Electrochemical approaches have proven to be useful for on-site analysis of drugs of abuse. However, few attention has been focused on the analysis of polydrug samples, despite these samples causing severe health concerns, certainly when stimulants and depressants are combined, as is the case for Speedball, a mixture of cocaine and heroin. In this work, we provide solutions for the selective detection of cocaine (stimulant) in polydrug samples adulterated with heroin and codeine (depressants). The presence of either one of these compounds in cocaine street samples leads to an overlap with the cocaine signal in square-wave voltammetry measurements at unmodified carbon screen-printed electrodes, leading to inconclusive screening results in the field. The provided solutions to this problem consist of two parallel approaches: (i) cathodic pretreatment of the carbon screen-printed electrode surface prior to measurement in both alkaline and neutral conditions; (ii) electropolymerization of orthophenylenediamine on graphene modified carbon screen-printed electrodes prior to measurement in neutral conditions. Both strategies allow simultaneous detection of cocaine and heroin in speedball samples as well as simultaneous detection of cocaine and codeine. Implementing these strategies in portable devices holds great potential for significantly improved accuracy of on-site cocaine screening in polydrug samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568961600011 Publication Date 2020-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access  
  Notes This work was supported by IOF-SBO and IOF-POC from University of Antwerp, Antwerp, Belgium; and VLAIO IM [HBC.2019.2181], Brussels, Belgium. Approved Most recent IF: 4.2; 2020 IF: 3.885  
  Call Number AXES @ axes @c:irua:170444 Serial 6395  
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K. url  doi
openurl 
  Title Cephalosporin antibiotics : electrochemical fingerprints and core structure reactions investigated by LC-MSMS Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 91 Issue 3 Pages 2035-2041  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Electrochemistry and exploiting electrochemical fingerprints is a potent approach to address newly emerging surveillance needs, for instance for antibiotics. However, a comprehensive insight in the electrochemical oxidation behaviour and mechanism is re-quired for this sensing strategy. To address the lack in knowledge of the voltammetric behaviour of the cephalosporins antibiotics, a selection of cephalosporin antibiotics and two main intermediates were subjected to an electrochemical study of their redox behaviour by means of pulsed voltammetric techniques and small-scale electrolysis combined with HPLC-MS/MS analyses. Sur-prisingly, the detected oxidation products did not fit the earlier suggested oxidation of the sulfur group to the corresponding sul-foxide. The influence of different side chains, both at the three and the seven position of the β-lactam core structure on the elec-trochemical fingerprint were investigated. Additional oxidation signals at lower potentials were elucidated and linked to different side chains. These signals were further exploited to allow simultaneous detection of different cephalosporins in one voltammetric sweep. These fundamental insights can become the building blocks for an new on-site screening method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458220300055 Publication Date 2019-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 6 Open Access  
  Notes ; The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:156046 Serial 5497  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Trashin, S.; Cuykx, M.; Covaci, A.; De Wael, K.; Janssens, K. pdf  url
doi  openurl
  Title Photodegradation mechanisms and kinetics of Eosin-Y in oxic and anoxic conditions Type A1 Journal article
  Year 2017 Publication Dyes and pigments Abbreviated Journal Dyes Pigments  
  Volume 145 Issue Pages 376-384  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Lakes based on Eosin-Y are extensively used by 19th century artists. Unfortunately, the identification of these pigments in paintings is a difficult task because Eosin-Y degrades very fast under the influence of light. The characterization of the (photo)degradation products of Eosin-Y can be very useful for the identification of these pigments in historic works of art and related cultural heritage artifacts. Furthermore, knowledge on how different factors influence the discoloration process (e.g. different types of irradiation sources and presence/absence of oxygen) is a valuable tool for preventive conservation. To this aim we performed a study on the photodegradation of Eosin-Y in solution under different illumination and in both oxic and anoxic conditions. The photodegradation of Eosin-Y was monitored by UV-VIS spectrophotometry, LC-QTOFMS and electrochemistry techniques. Results indicated higher degradation rates, by a factor of 20 or higher, under illumination with wavelengths near to the main absorbance band of the red pigment. Two different degradation pathways are observed under the conditions studied. LC-QTOFMS and electrochemistry suggested that in the presence of oxygen the degradation mechanism is an oxidative process where the breakdown of the structure causes the total discoloration. Meanwhile under anoxic conditions, a debromination process takes place while the chromophore, and consequently the color of the molecule in solution, remains essentially intact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405972900046 Publication Date 2017-06-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-7208 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.473 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 3.473  
  Call Number UA @ admin @ c:irua:144385 Serial 5770  
Permanent link to this record
 

 
Author Slavkovic, S.; Shoara, A.A.; Churcher, Z.R.; Daems, E.; De Wael, K.; Sobott, F.; Johnson, P.E. url  doi
openurl 
  Title DNA binding by the antimalarial compound artemisinin Type A1 Journal article
  Year 2022 Publication Scientific reports Abbreviated Journal  
  Volume 12 Issue 1 Pages 133  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Artemisinin (ART) is a vital medicinal compound that is used alone or as part of a combination therapy against malaria. ART is thought to function by attaching to heme covalently and alkylating a range of proteins. Using a combination of biophysical methods, we demonstrate that ART is bound by three-way junction and duplex containing DNA molecules. Binding of ART by DNA is first shown for the cocaine-binding DNA aptamer and extensively studied using this DNA molecule. Isothermal titration calorimetry methods show that the binding of ART is both entropically and enthalpically driven at physiological NaCl concentration. Native mass spectrometry methods confirm DNA binding and show that a non-covalent complex is formed. Nuclear magnetic resonance spectroscopy shows that ART binds at the three-way junction of the cocaine-binding aptamer, and that binding results in the folding of the structure-switching variant of this aptamer. This structure-switching ability was exploited using the photochrome aptamer switch assay to demonstrate that ART can be detected using this biosensing assay. This study is the first to demonstrate the DNA binding ability of ART and should lay the foundation for further work to study implications of DNA binding for the antimalarial activity of ART.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000740510500120 Publication Date 2022-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:184507 Serial 8851  
Permanent link to this record
 

 
Author de Jong, M.; Van Echelpoel, R.; Langley, A.R.; Eliaerts, J.; van den Berg, J.; De Wilde, M.; Somers, N.; Samyn, N.; De Wael, K. pdf  url
doi  openurl
  Title Real-time electrochemical screening of cocaine in lab and field settings with automatic result generation Type A1 Journal article
  Year 2022 Publication Drug testing and analysis Abbreviated Journal  
  Volume 14 Issue 8 Pages 1471-1481  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract This work presents the results of a novel application for the fast on-site screening of cocaine and its main cutting agents in suspicious and confiscated samples. The methodology behind the novel application consists of portable electrochemical detection coupled with a peak-recognition algorithm for automated result output generation, validated both in laboratory and field settings. Currently used field tests, predominantly colorimetric tests, are lacking accuracy, often giving false positive or negative results. This presses the need for alternative approaches to field testing. By combining portable electrochemical approaches with peak-recognition algorithms, an accuracy of 98.4% concerning the detection of cocaine was achieved on a set of 374 powder samples. In addition, the approach was tested on multiple 'smuggled', colored cocaine powders and cocaine mixtures in solid and liquid states, typically in matrices such as charcoal, syrup and clothing. Despite these attempts to hide cocaine, our approach succeeded in detecting cocaine during on-site screening scenarios. This feature presents an advantage over colorimetric and optical detection techniques, which can fail with colored sample matrices. This enhanced accuracy on smuggled samples will lead to increased efficiency in confiscation procedures in the field, thus significantly reducing societal economic and safety concerns and highlighting the potential for electrochemical approaches in on-the-spot identification of drugs of abuse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000790965700001 Publication Date 2022-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:187767 Serial 8921  
Permanent link to this record
 

 
Author Amiri-Aref, M.; Raoof, J.B.; Kiekens, F.; De Wael, K. pdf  doi
openurl 
  Title Mixed hemi/ad-micelles coated magnetic nanoparticles for the entrapment of hemoglobin at the surface of a screen-printed carbon electrode and its direct electrochemistry and electrocatalysis Type A1 Journal article
  Year 2015 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron  
  Volume 74 Issue Pages 518-525  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract An efficient procedure for the physical entrapment of proteins within a biocompatible matrix and their immobilization on electrode surfaces is of utmost importance in the fabrication of biosensors. In this work, the magnetic entrapment of hemoglobin (Hb) at the surface of a screen-printed carbon electrode (SPCE), through mixed hemi/ad-micelles (MHAM) array of positively charged surfactant supported iron oxide magnetic nanoparticles (Mag-NPs), is reported. The Hb/MHAM@Mag-NPs biocomposite is captured at SPCE by a super magnet (Hb/MHAM@Mag-NPs/SPCE). To gain insight in the configuration of the mixed hemi/ad-micelles of CTAB at Mag-NPs, zeta-potential measurements were performed. The entrapment of Hb at MHAM@Mag-NPs was confirmed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR). Direct electron transfer of the Hb intercalated into the composite film showed a pair of well-defined quasi-reversible redox peak at formal potential of −0.255 V vs. Ag/AgCl corresponding to heme Fe(III)/Fe(II) redox couple. It shows that the MHAM@Mag-NPs composite could increase the adsorption ability for Hb, thus provides a facile direct electron transfer between the Hb and the substrate. The proposed biosensor showed excellent electrocatalytic activity to the H2O2 reduction in the wide concentration range from 5.0 to 300.0 µM obtained by amperometric measurement. The MichaelisMenten constant (Km) value of Hb at the modified electrode is 55.4 µM, showing its high affinity. Magnetic entrapment offers a promising design for fast, convenient and effective immobilization of protein within a few minutes for determination of the target molecule in low sample volume at disposable cost-effective SPCE.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360772800071 Publication Date 2015-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.78 Times cited 14 Open Access  
  Notes ; We are thankful for the BOF financial support from the University of Antwerp and Hercules financial support (SEM). ; Approved Most recent IF: 7.78; 2015 IF: 6.409  
  Call Number UA @ admin @ c:irua:126535 Serial 5731  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van den Berg, J.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical profiling and liquid chromatography–mass spectrometry characterization of synthetic cathinones : from methodology to detection in forensic samples Type A1 Journal article
  Year 2021 Publication Drug Testing And Analysis Abbreviated Journal Drug Test Anal  
  Volume 13 Issue 7 Pages 1282-1294  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on‐site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SC) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone and 4‐chloro‐alpha‐pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen‐printed electrodes (SPE). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography‐high resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas‐chromatography‐mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever‐diversifying drug market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000624902500001 Publication Date 2021-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.469 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.469  
  Call Number UA @ admin @ c:irua:175583 Serial 7863  
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 2022 Issue 436 Pages 141309-141315  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000882442300001 Publication Date 2022-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191107 Serial 8855  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Cambré, S.; Domínguez-Robles, J.; Detamornrat, U.; Donnelly, R.F.; Oprean, R.; Cristea, C.; De Wael, K. pdf  url
doi  openurl
  Title Microneedle array-based electrochemical sensor functionalized with SWCNTs for the highly sensitive monitoring of MDMA in interstitial fluid Type A1 Journal article
  Year 2023 Publication Microchemical journal Abbreviated Journal  
  Volume 193 Issue Pages 109257-11  
  Keywords (up) A1 Journal article; Pharmacology. Therapy; Nanostructured and organic optical and electronic materials (NANOrOPT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption constitutes a great concern worldwide due to its increased spread and abuse, and the negative consequences exerted on society. For instance, 3,4-methylenedioxymethamphetamine (MDMA), a synthetic amphetamine-type substance, was abused by 20 million people worldwide in 2020. This psychoactive substance exerts a myriad of effects on the human body being dangerous for the consumer’s health. Besides, MDMA has been used in the treatment of some psychiatric conditions. Therefore, the development of wearable devices for MDMA sensing in biological fluids is of great importance for forensic toxicology (e.g., monitoring of patients with suspected or known MDMA consumption) as well as for therapeutic management of patients. Herein, we report the development of a wearable electrochemical platform based on a hollow microneedle (MN) array sensor for the monitoring of MDMA in the interstitial fluid by square-wave voltammetry. First, the holes of the MN array were modified with conductive pastes to devise a MN patch with a three-electrode system. Subsequently, the functionalization of the working electrode with nanomaterials enhanced MDMA detection. Thereafter, analytical parameters were evaluated exhibiting a slope of 0.05 µA µM−1 within a linear range from 1 to 50 µM and a limit of detection of 0.75 µM in artificial interstitial fluid. Importantly, critical parameters such as selectivity, piercing capability, temperature, reversibility and stability were assessed. Overall, the obtained MN sensor exhibited excellent analytical performance, making it a promising tool for MDMA tracking in interstitial fluid for individuals on probation or under therapeutic treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001067945900001 Publication Date 2023-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access Not_Open_Access: Available from 27.02.2024  
  Notes Approved Most recent IF: 4.8; 2023 IF: 3.034  
  Call Number UA @ admin @ c:irua:198183 Serial 8898  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: