toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Aert, S.; de Backer, A.; Martinez, G.T.; Goris, B.; Bals, S.; Van Tendeloo, G.; Rosenauer, A. url  doi
openurl 
  Title Procedure to count atoms with trustworthy single-atom sensitivity Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue (up) 6 Pages 064107-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report a method to reliably count the number of atoms from high-angle annular dark field scanning transmission electron microscopy images. A model-based analysis of the experimental images is used to measure scattering cross sections at the atomic level. The high sensitivity of these measurements in combination with a thorough statistical analysis enables us to count atoms with single-atom sensitivity. The validity of the results is confirmed by means of detailed image simulations. We will show that the method can be applied to nanocrystals of arbitrary shape, size, and atom type without the need for a priori knowledge about the atomic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000315144700006 Publication Date 2013-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 106 Open Access  
  Notes FWO; 262348 ESMI; 312483 ESTEEM2;246791 COUNTATOMS; Hercules 3; esteem2_jra2 Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:105674 Serial 2718  
Permanent link to this record
 

 
Author Holden, T.; Habermeier, H.-U.; Cristiani, G.; Golnik, A.; Boris, A.; Pimenov, A.; Humlicek, J.; Lebedev, O.I.; Van Tendeloo, G.; Keimer, B.; Bernhard, C. doi  openurl
  Title Proximity induced metal-insulator transition in YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 69 Issue (up) 6 Pages 064505,1-064505,7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The far-infrared dielectric response of superlattices (SL) composed of superconducting YBa2Cu3O7 (YBCO) and ferromagnetic La0.67Ca0.33MnO3 (LCMO) has been investigated by ellipsometry. A drastic decrease of the free-carrier response is observed which involves an unusually large length scale of d(crit)approximate to20 nm in YBCO and d(crit)approximate to10 nm in LCMO. A corresponding suppression of metallicity is not observed in SL's where LCMO is replaced by the paramagnetic metal LaNiO3. Our data suggest that either a long-range charge transfer from the YBCO to the LCMO layers or alternatively a strong coupling of the charge carriers to the different and competitive kind of magnetic correlations in the LCMO and YBCO layers is at the heart of the observed metal-insulator transition. The low free-carrier response observed in the far-infrared dielectric response of the magnetic superconductor RuSr2GdCu2O8 is possibly related to this effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000220092100066 Publication Date 2004-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 101 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:54743 Serial 2734  
Permanent link to this record
 

 
Author Hadermann, J.; Van Tendeloo, G.; Abakumov, A.M.; Pavlyuk, B.P.; Rozova, M.G.; Antipov, E.V. doi  openurl
  Title Structural transformation in fluorinated LaACuGaO5 (A=Ca, Sr) brownmillerites Type A1 Journal article
  Year 2000 Publication International journal of inorganic materials Abbreviated Journal Int J Inorg Mater  
  Volume 2 Issue (up) 6 Pages 493-502  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000165985400005 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-6049; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 13 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:36043 Serial 3265  
Permanent link to this record
 

 
Author Vansweevelt, R.; Mortet, V.; D' Haen, J.; Ruttens, bart; van Haesendonck, C.; Partoens, B.; Peeters, F.M.; Wagner, P. doi  openurl
  Title Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes Type A1 Journal article
  Year 2011 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 208 Issue (up) 6 Pages 1252-1258  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we report on the electronic transport properties of mesoscopic, ultrathin graphite flakes with a thickness corresponding to a stack of 150 graphene layers. The graphite flakes show an unexpectedly strong positive magnetoresistance (PMR) already at room temperature, which scales in good approximation with the square of the magnetic field. Furthermore, we show that the resistivity is unaffected by magnetic fields oriented in plane with the graphene layers. Hall effect measurements indicate that the charge carriers are p-type and their concentration increases with increasing temperature while the mobility is decreasing. The Hall voltage is non-linear in higher magnetic fields. Possible origins of the observed effects are discussed. Ball and stick model of the two topmost carbon layers of the hexagonal graphite structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292945800008 Publication Date 2011-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access  
  Notes ; The authors gratefully acknowledge the support by FWO – Research Foundation Flanders (project G.0159.07 “Structural and electronic properties of biologically modified, graphene-based layers”), by the Federal Belgian Interuniversity Attraction Poles Programme BELSPO (project TAP VI P6/42 “Quantum effects in clusters and nanowires”) and by the Methusalem network “NANO – Antwerp-Hasselt,” funded by the Flemish Community. Technical assistance by Stoffel D. Janssens (magnet calibration and software development), Dr. Hong Yin (AFM-based thickness studies), Dr. Ronald Thoelen (data analysis), and Prof. Hans-Gerd Boyen (XPS spectroscopy) is greatly appreciated. ; Approved Most recent IF: 1.775; 2011 IF: 1.463  
  Call Number UA @ lucian @ c:irua:91941 Serial 3343  
Permanent link to this record
 

 
Author Yang, Z.Q.; Verbeeck, J.; Schryvers, D.; Tarcea, N.; Popp, J.; Rösler, W. pdf  doi
openurl 
  Title TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils Type A1 Journal article
  Year 2008 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 17 Issue (up) 6 Pages 937-943  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbonaceous spherules of millimeter size diameter and found in the upper soils throughout Europe are investigated by TEM, including SAED, HRTEM and EELS, and Raman spectroscopy. The spherules consist primarily of carbon and have an open cell-like internal structure. Most of the carbon appears in an amorphous state, but different morphologies of nano- and microdiamond particles have also been discovered including flake shapes. The latter observation, together with the original findings of some of these spherules in crater-like structures in the landscape and including severely deformed rocks with some spherules being embedded in the fused crust of excavated rocks, points towards unique conditions of origin for these spherules and particles, possibly of exogenic origin. (C) 2008 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000256940800005 Publication Date 2008-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 26 Open Access  
  Notes GAO project Approved Most recent IF: 2.561; 2008 IF: 2.092  
  Call Number UA @ lucian @ c:irua:68518 Serial 3474  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Rosner, H. url  doi
openurl 
  Title (CuCl)LaTa2O\text{7} and quantum phase transition in the (CuX)LaM2O7 family (X=Cl, Br; M=Nb, Ta) Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue (up) 6 Pages 064440-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We apply neutron diffraction, high-resolution synchrotron x-ray diffraction, magnetization measurements, electronic structure calculations, and quantum Monte-Carlo simulations to unravel the structure and magnetism of (CuCl)LaTa2O7. Despite the pseudo-tetragonal crystallographic unit cell, this compound features an orthorhombic superstructure, similar to the Nb-containing (CuX)LaNb2O7 with X = Cl and Br. The spin lattice entails dimers formed by the antiferromagnetic fourth-neighbor coupling J(4), as well as a large number of nonequivalent interdimer couplings quantified by an effective exchange parameter J(eff). In (CuCl)LaTa2O7, the interdimer couplings are sufficiently strong to induce the long-range magnetic order with the Neel temperature T-N similar or equal to 7 K and the ordered magnetic moment of 0.53 mu(B), as measured with neutron diffraction. This magnetic behavior can be accounted for by J(eff)/J(4) similar or equal to 1.6 and J(4) similar or equal to 16 K. We further propose a general magnetic phase diagram for the (CuCl)LaNb2O7-type compounds, and explain the transition from the gapped spin-singlet (dimer) ground state in (CuCl)LaNb2O7 to the long-range antiferromagnetic order in (CuCl)LaTa2O7 and (CuBr)LaNb2O7 by an increase in the magnitude of the interdimer couplings J(eff)/J(4), with the (CuCl)LaM2O7 (M = Nb, Ta) compounds lying on different sides of the quantum critical point that separates the singlet and long-range-ordered magnetic ground states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308127600006 Publication Date 2012-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101886 Serial 3526  
Permanent link to this record
 

 
Author Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A. pdf  doi
openurl 
  Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue (up) 6 Pages 1414-1423  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000288291400011 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:87642 Serial 3605  
Permanent link to this record
 

 
Author Afanasov, I.M.; Van Tendeloo, G. doi  openurl
  Title Zirconia-modified exfoliated graphite Type A1 Journal article
  Year 2011 Publication Inorganic materials Abbreviated Journal Inorg Mater+  
  Volume 47 Issue (up) 6 Pages 603-608  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Zirconia has been incorporated into exfoliated graphite (EG) through the anodic polarization in the natural graphite-ZrO(NO3)2-HNO3-H2O system, followed by flash heating. The thermal properties of the oxidized graphites employed as precursors to EG have been studied by thermogravimetry in combination with differential scanning calorimetry, and the distribution of ZrO2 particles in the EG has been assessed by scanning and transmission electron microscopy. Conditions are described for the preparation of EG with bulk densities in the range 1.34.7 g/l and ZrO2 contents in the range 434 wt %.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291698100008 Publication Date 2011-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1685;1608-3172; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.62 Times cited Open Access  
  Notes Approved Most recent IF: 0.62; 2011 IF: 0.414  
  Call Number UA @ lucian @ c:irua:90447 Serial 3933  
Permanent link to this record
 

 
Author Leus, K.; Dendooven, J.; Tahir, N.; Ramachandran, R.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Goeman, J.; Van der Eycken, J.; Detavernier, C.; Van Der Voort, P. url  doi
openurl 
  Title Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst Type A1 Journal article
  Year 2016 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 6 Issue (up) 6 Pages 45  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier) by means of atomic layer deposition (ALD). The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD) measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF) and transmission electron microscopy (TEM) analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373533300009 Publication Date 2016-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 19 Open Access  
  Notes Karen Leus acknowledges the financial support from the Ghent University “Bijzonder Onderzoeksfonds” BOF post-doctoral Grant 01P06813T and UGent “Geconcentreeerde Onderzoekacties” GOA Grant 01G00710. Jolien Dendooven and Stuart Turner gratefully acknowledges the “Fonds Wetenschappelijk Onderzoek” FWO Vlaanderen for a post-doctoral scholarship. Christophe Detavernier thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014) for financial support. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the “Belgian Interuniversitaire Attractie Pool-Pôle d'Attraction Interuniversitaire” IAP-PAI network. Approved Most recent IF: 3.553  
  Call Number c:irua:131902 Serial 4015  
Permanent link to this record
 

 
Author de de Meux, A.J.; Bhoolokam, A.; Pourtois, G.; Genoe, J.; Heremans, P. pdf  doi
openurl 
  Title Oxygen vacancies effects in a-IGZO : formation mechanisms, hysteresis, and negative bias stress effects Type A1 Journal article
  Year 2017 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 214 Issue (up) 6 Pages 1600889  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The amorphous oxide semiconductor Indium-Gallium-Zinc-Oxide (a-IGZO) has gained a large technological relevance as a semiconductor for thin-film transistors in active-matrix displays. Yet, major questions remain unanswered regarding the atomic origin of threshold voltage control, doping level, hysteresis, negative bias stress (NBS), and negative bias illumination stress (NBIS). We undertake a systematic study of the effects of oxygen vacancies on the properties of a-IGZO by relating experimental observations to microscopic insights gained from first-principle simulations. It is found that the amorphous nature of the semiconductor allows unusually large atomic relaxations. In some cases, oxygen vacancies are found to behave as perfect shallow donors without the formation of structural defects. Once structural defects are formed, their transition states can vary upon charge and discharge cycles. We associate this phenomenon to a possible presence of hysteresis in the transfer curve of the devices. Under NBS, the creation of oxygen vacancies becomes energetically very stable, hence thermodynamically very likely. This generation process is correlated with the occurrence of the negative bias stress instabilities observed in a-IGZO transistors. While oxygen vacancies can therefore be related to NBS and hysteresis, it appears unlikely from our results that they are direct causes of NBIS, contrary to common belief.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403339900012 Publication Date 2017-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.775  
  Call Number UA @ lucian @ c:irua:144219 Serial 4678  
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue (up) 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461540600001 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158540 Serial 5205  
Permanent link to this record
 

 
Author Tan, X.; Stephens, P.W.; Hendrickx, M.; Hadermann, J.; Segre, C.U.; Croft, M.; Kang, C.-J.; Deng, Z.; Lapidus, S.H.; Kim, S.W.; Jin, C.; Kotliar, G.; Greenblatt, M. url  doi
openurl 
  Title Tetragonal Cs1.17In0.81Cl3 : a charge-ordered indium halide perovskite derivative Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue (up) 6 Pages 1981-1989  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of Cs1.17In0.81Cl3 were prepared by annealing a mixture of CsCl, InCl, and InCl3, stoichiometric for the targeted CsInCl3. Synchrotron powder X-ray diffraction refinement and chemical analysis by energy dispersive X-ray indicated that Cs1.17In0.81Cl3, a tetragonal distorted perovskite derivative (I4/m), is the thermodynamically stable product. The refined unit cell parameters and space group were confirmed by electron diffraction. In the tetragonal structure, In+ and In3+ are located in four different crystallographic sites, consistent with their corresponding bond lengths. In1, In2, and In3 are octahedrally coordinated, whereas In4 is at the center of a pentagonal bipyramid of Cl because of the noncooperative octahedral tilting of In4Cl6. The charged-ordered In+ and In3+ were also confirmed by X-ray absorption and Raman spectroscopy. Cs1.17In0.81Cl3 is the first example of an inorganic halide double perovskite derivative with charged-ordered In+ and In3+. Band structure and optical conductivity calculations were carried out with both generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) approach; the GGA calculations estimated the band gap and optical band gap to be 2.27 eV and 2.4 eV, respectively. The large and indirect band gap suggests that Cs1.17In0.81Cl3 is not a good candidate for photovoltaic application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462950400017 Publication Date 2019-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes ; M.G. and X.T. were supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. M.G. also acknowledges support of NSF-DMR-1507252 grant. G.K. and C.-J.K. were supported by the Air Force Office of Scientific Research. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The use of the Advanced Photon Source at the Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The works at IOPCAS were supported by NSF & MOST of China through research projects. ; Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:159413 Serial 5262  
Permanent link to this record
 

 
Author Ramaneti, R.; Sankaran, K.J.; Korneychuk, S.; Yeh, C.J.; Degutis, G.; Leou, K.C.; Verbeeck, J.; Van Bael, M.K.; Lin, I.N.; Haenen, K. url  doi
openurl 
  Title Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 5 Issue (up) 6 Pages 066102  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A “patterned-seeding technique” in combination with a “nanodiamond masked reactive ion etching process” is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of theDGHnanorods, which contain sp(2)-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404623000002 Publication Date 2017-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 16 Open Access  
  Notes The authors would like to thank the Methusalem “NANO” network for financial support and Mr. B. Ruttens and Professor Jan D'Haen for technical and experimental assistance. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Approved Most recent IF: 4.335  
  Call Number UA @ admin @ c:irua:152633 Serial 5369  
Permanent link to this record
 

 
Author Chizhov, A.; Vasiliev, R.; Rumyantseva, M.; Krylov, I.; Drozdov, K.; Batuk, M.; Hadermann, J.; Abakumov, A.; Gaskov, A. url  doi
openurl 
  Title Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue (up) 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New hybrid materials-photosensitized nanocomposites containing nanocrystal heterostructures with spatial charge separation, show high response for practically important sub-ppm level NO2 detection at room temperature. Nanocomposites ZnO/CdSe, ZnO/(CdS@CdSe), and ZnO/(ZnSe@CdS) were obtained by the immobilization of nanocrystals-colloidal quantum dots (QDs), on the matrix of nanocrystalline ZnO. The formation of crystalline core-shell structure of QDs was confirmed by HAADF-STEM coupled with EELS mapping. Optical properties of photosensitizers have been investigated by optical absorption and luminescence spectroscopy combined with spectral dependences of photoconductivity, which proved different charge localization regimes. Photoelectrical and gas sensor properties of nanocomposites have been studied at room temperature under green light (max = 535 nm) illumination in the presence of 0.12-2 ppm NO2 in air. It has been demonstrated that sensitization with type II heterostructure ZnSe@CdS with staggered gap provides the rapid growth of effective photoresponse with the increase in the NO2 concentration in air and the highest sensor sensitivity toward NO2. We believe that the use of core-shell QDs with spatial charge separation opens new possibilities in the development of light-activated gas sensors working without thermal heating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487641600002 Publication Date 2019-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This work was financially supported by RFBR grant No. 1653-76001 (RFBR – ERA.Net FONSENS 096) and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 26520408). AC acknowledges support from the RFBR grant No. 18-33-01004. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163776 Serial 5390  
Permanent link to this record
 

 
Author Poulain, R.; Lumbeeck, G.; Hunka, J.; Proost, J.; Savolainen, H.; Idrissi, H.; Schryvers, D.; Gauquelin, N.; Klein, A. pdf  doi
openurl 
  Title Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism Type A1 Journal article
  Year 2022 Publication ACS applied electronic materials Abbreviated Journal  
  Volume 4 Issue (up) 6 Pages 2718-2728  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Although largely studied, contradictory results on nickel oxide (NiO) properties can be found in the literature. We herein propose a comprehensive study that aims at leveling contradictions related to NiO materials with a focus on its conductivity, surface properties, and the intrinsic charge defects compensation mechanism with regards to the conditions preparation. The experiments were performed by in situ photo-electron spectroscopy, electron energy loss spectroscopy, and optical as well as electrical measurements on polycrystalline NiO thin films prepared under various preparation conditions by reactive sputtering. The results show that surface and bulk properties were strongly related to the deposition temperature with in particular the observation of Fermi level pinning, high work function, and unstable oxygen-rich grain boundaries for the thin films produced at room temperature but not at high temperature (>200 degrees C). Finally, this study provides substantial information about surface and bulk NiO properties enabling to unveil the origin of the high electrical conductivity of room temperature NiO thin films and also for supporting a general electronic charge compensation mechanism of intrinsic defects according to the deposition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819431200001 Publication Date 2022-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189555 Serial 7081  
Permanent link to this record
 

 
Author Vishwakarma, M.; Batra, Y.; Hadermann, J.; Singh, A.; Ghosh, A.; Mehta, B.R. pdf  doi
openurl 
  Title Exploring the role of graphene oxide as a co-catalyst in the CZTS photocathodes for improved photoelectrochemical properties Type A1 Journal article
  Year 2022 Publication ACS applied energy materials Abbreviated Journal  
  Volume 5 Issue (up) 6 Pages 7538-7549  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The hydrogen evolution properties of CZTS heterostructure photocathodes are reported with graphene oxide (GO) as a co-catalyst layer coated by a drop-cast method and an Al2O3 protection layer fabricated using atomic layer deposition. In the CZTS absorber, a minor deviation from stoichiometry across the cross section of the thin film results in nanoscale growth of spurious phases, but the kesterite phase remains the dominant phase. We have investigated the band alignment parameters such as the band gap, work function, and Fermi level position that are crucial for making kesterite-based heterostructure devices. The photocurrent density in the photocathode CZTS/CdS/ZnO is found to be improved to -4.71 mAmiddotcm(-2) at -0.40 V-RHE, which is 3 times that of the pure CZTS. This enhanced photoresponse can be attributed to faster carrier separation at p-n junction regions driven by upward band bending at CZTS grain boundaries and the ZnO layer. GO as a co-catalyst over the heterostructure photocathode significantly improves the photocurrent density to -6.14 mAmiddotcm(-2) at -0.40 V-RHE by effective charge migration in the CZTS/CdS/ZnO/GO configuration, but the onset potential shifts only after application of the Al2O3 protection layer. Significant photocurrents of -29 mAmiddotcm(-2) at -0.40 V-RHE and -8 mAmiddotcm(-2) at 0 V-RHE are observed, with an onset potential of 0.7 V-RHE in CZTS/CdS/ZnO/GO/Al2O3. The heterostructure configuration and the GO co-catalyst reduce the charge-transfer resistance, while the Al2O3 top layer provides a stable photocurrent for a prolonged time (similar to 16 h). The GO co-catalyst increases the flat band potential from 0.26 to 0.46 V-RHE in CZTS/CdS/ZnO/GO, which supports the bias-induced band bending at the electrolyte-electrode interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000820418400001 Publication Date 2022-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.4  
  Call Number UA @ admin @ c:irua:189666 Serial 7082  
Permanent link to this record
 

 
Author Pacquets, L.; Van den Hoek, J.; Arenas Esteban, D.; Ciocarlan, R.-G.; Cool, P.; Baert, K.; Hauffman, T.; Daems, N.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO production Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue (up) 6 Pages 7723-7732  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A promising strategy for the inhibition of the hydrogen evolution reaction along with the stabilization of the electrocatalyst in electrochemical CO2 reduction cells involves the application of a nanoscale amorphous carbon layer on top of the active catalyst layer in a gas diffusion electrode. Without modifying the chemical nature of the electrocatalyst itself, these amorphous carbon layers lead to the stabilization of the electrocatalyst, and a significant improvement with respect to the inhibition of the hydrogen evolution reaction was also obtained. The faradaic efficiencies of hydrogen could be reduced from 31.4 to 2.1% after 1 h of electrolysis with a 5 nm thick carbon layer. Furthermore, the impact of the carbon layer thickness (5–30 nm) on this inhibiting effect was investigated. We determined an optimal thickness of 15 nm where the hydrogen evolution reaction was inhibited and a decent stability was obtained. Next, a thickness of 15 nm was selected for durability measurements. Interestingly, these durability measurements revealed the beneficial impact of the carbon layer already after 6 h by suppressing the hydrogen evolution such that an increase of only 37.9% exists compared to 56.9% without the use of an additional carbon layer, which is an improvement of 150%. Since carbon is only applied afterward, it reveals its great potential in terms of electrocatalysis in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000818507900001 Publication Date 2022-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 3 Open Access OpenAccess  
  Notes L.P. was supported through a Ph.D. fellowship strategic basic research (1S56920N) of the Research Foundation-Flanders (FWO). S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. This research was financed by the Research Council of the University of Antwerp (BOF-GOA 33928). P.C. and R.-G.C. acknowledge financial support by FWO Flanders (project no. G038215N). The authors recognize the contribution of S. Pourbabak and T. Derez for the assistance with the Ag and carbon coating, Indah Prihatiningtyas and Bart Van der Bruggen for the assistance with the contact angle measurements, Daniel Choukroun for the use of the in-house-made hybrid flow cell, and Stijn Van den Broeck for his assistance with the FIB measurements. Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:188887 Serial 7099  
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C. url  doi
openurl 
  Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
  Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 13 Issue (up) 6 Pages 1035  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000960297000001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553  
  Call Number EMAT @ emat @c:irua:196115 Serial 7378  
Permanent link to this record
 

 
Author Bhatia, H.; Keshavarz, M.; Martin, C.; Van Gaal, L.; Zhang, Y.; de Coen, B.; Schrenker, N.J.; Valli, D.; Ottesen, M.; Bremholm, M.; Van de Vondel, J.; Bals, S.; Hofkens, J.; Debroye, E. pdf  url
doi  openurl
  Title Achieving High Moisture Tolerance in Pseudohalide Perovskite Nanocrystals for Light-Emitting Diode Application Type A1 Journal Article
  Year 2023 Publication ACS Applied Optical Materials Abbreviated Journal ACS Appl. Opt. Mater.  
  Volume 1 Issue (up) 6 Pages 1184-1191  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The addition of potassium thiocyanate (KSCN) to the FAPbBr3 structure and subsequent post-treatment of nanocrystals (NCs) lead to high quantum confinement, resulting in a photoluminescent quantum yield (PLQY) approaching unity and microsecond decay times. This synergistic approach demonstrated exceptional stability under humid conditions, retaining 70% of the PLQY for over a month, while the untreated NCs degrade within 24 h. Additionally, the devices incorporating the post-treated NCs displayed 1.5% external quantum efficiency (EQE), a 5-fold improvement over untreated devices. These results provide promising opportunities for the use of perovskites in moisture-stable optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2771-9855 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Hercules Foundation, HER/11/14 ; European Commission; Ministerio de Ciencia e Innovaci?n, PID2021-128761OA-C22 ; European Regional Development Fund; Vlaamse regering, CASAS2 Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, 1238622N 1514220N 1S45223N G.0B39.15 G.0B49.15 G098319N S002019N ZW15_09-GOH6316 ; Onderzoeksraad, KU Leuven, C14/19/079 db/21/006/bm iBOF-21-085 STG/21/010 ; Junta de Comunidades de Castilla-La Mancha, SBPLY/21/180501/000127 ; H2020 European Research Council, 642196 815128 ; Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:201011 Serial 8975  
Permanent link to this record
 

 
Author Van den Hoek, J.; Daems, N.; Arnouts, S.; Hoekx, S.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title Improving stability of CO₂ electroreduction by incorporating Ag NPs in N-doped ordered mesoporous carbon structures Type A1 Journal article
  Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 16 Issue (up) 6 Pages 6931-6947  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electroreduction of carbon dioxide (eCO2RR) to CO using Ag nanoparticles as an electrocatalyst is promising as an industrial carbon capture and utilization (CCU) technique to mitigate CO2 emissions. Nevertheless, the long-term stability of these Ag nanoparticles has been insufficient despite initial high Faradaic efficiencies and/or partial current densities. To improve the stability, we evaluated an up-scalable and easily tunable synthesis route to deposit low-weight percentages of Ag nanoparticles (NPs) on and into the framework of a nitrogen-doped ordered mesoporous carbon (NOMC) structure. By exploiting this so-called nanoparticle confinement strategy, the nanoparticle mobility under operation is strongly reduced. As a result, particle detachment and agglomeration, two of the most pronounced electrocatalytic degradation mechanisms, are (partially) blocked and catalyst durability is improved. Several synthesis parameters, such as the anchoring agent, the weight percentage of Ag NPs, and the type of carbonaceous support material, were modified in a controlled manner to evaluate their respective impact on the overall electrochemical performance, with a strong emphasis on operational stability. The resulting powders were evaluated through electrochemical and physicochemical characterization methods, including X-ray diffraction (XRD), N2-physisorption, Inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (SEM-EDS), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-EDS, electron tomography, and X-ray photoelectron spectroscopy (XPS). The optimized Ag/soft-NOMC catalysts showed both a promising selectivity (∼80%) and stability compared with commercial Ag NPs while decreasing the loading of the transition metal by more than 50%. The stability of both the 5 and 10 wt % Ag/soft-NOMC catalysts showed considerable improvements by anchoring the Ag NPs on and into a NOMC framework, resulting in a 267% improvement in CO selectivity after 72 h (despite initial losses) compared to commercial Ag NPs. These results demonstrate the promising strategy of anchoring Ag NPs to improve the CO selectivity during prolonged experiments due to the reduced mobility of the Ag NPs and thus enhanced stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001158812100001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited Open Access Not_Open_Access: Available from 21.06.2024  
  Notes Approved Most recent IF: 9.5; 2024 IF: 7.504  
  Call Number UA @ admin @ c:irua:202309 Serial 9045  
Permanent link to this record
 

 
Author Šoškić, B.N.; Bekaert, J.; Sevik, C.; Šljivančanin, Ž.; Milošević, M.V. pdf  doi
openurl 
  Title First-principles exploration of superconductivity in intercalated bilayer borophene phases Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue (up) 6 Pages 064803-64811  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the emergence of phonon-mediated superconductivity in bilayer borophenes by controlled intercalation with elements from the groups of alkali, alkaline-earth, and transition metals, using systematic first-principles and Eliashberg calculations. We show that the superconducting properties are primarily governed by the interplay between the out-of-plane (????????) boron states and the partially occupied in-plane (????+????????,????) bonding states at the Fermi level. Our Eliashberg calculations indicate that intercalation with alkaline-earth-metal elements leads to the highest superconducting critical temperatures (????????). Specifically, Be in ????4, Mg in ????3, and Ca in the kagome bilayer borophene demonstrate superior performance with ???????? reaching up to 58 K. Our study therefore reveals that intercalated bilayer borophene phases are not only more resilient to chemical deterioration, but also harbor enhanced ???????? values compared to their monolayer counterparts, underscoring their substantial potential for the development of boron-based two-dimensional superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001254 Publication Date 2024-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206919 Serial 9290  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Bacaksiz, C.; Frauenheim, T.; Milošević, M.V. url  doi
openurl 
  Title Strong spin-lattice coupling and high-temperature magnetic ordering in monolayer chromium dichalcogenides Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue (up) 6 Pages 064001-64009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We detail the magnetic properties of monolayer CrX2 and its Janus counterparts CrXY (X, Y = S, Se, Te, with X not equal Y) using ab initio methods and Landau-Lifshitz-Gilbert magnetization dynamics, and uncover the pronouncedly strong interplay between their structure symmetry and the magnetic order. The relaxation of nonmagnetic chalcogen atoms, that carry large spin-orbit coupling, changes the energetically preferential magnetic order between in-plane antiferromagnetic and tilted ferromagnetic one. The considered Janus monolayers exhibit sizable Dzyaloshinskii-Moriya interaction, in some cases above 20% of the isotropic exchange, and critical temperature of the long-range magnetic order in the vicinity or even significantly above the room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001247462600001 Publication Date 2024-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:206660 Serial 9317  
Permanent link to this record
 

 
Author Degutis, G.; Pobedinskas, P.; Turner, S.; Lu, Y.-G.; Al Riyami, S.; Ruttens, B.; Yoshitake, T.; D'Haen, J.; Haenen, K.; Verbeeck, J.; Hardy, A.; Van Bael, M.K. pdf  url
doi  openurl
  Title CVD diamond growth from nanodiamond seeds buried under a thin chromium layer Type A1 Journal article
  Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 64 Issue (up) 64 Pages 163-168  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work presents a morphological and structural analysis of CVD diamond growth on silicon from nanodiamond seeds covered by a 50 nm thick chromium layer. The role of carbon diffusion as well as chromium and carbon silicide formation is analyzed. The local diamond environment is investigated by scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. The evolution of the diamond phase composition (sp3/sp2) is evaluated by micro-Raman spectroscopy. Raman and X-ray diffraction analysis are used to identify the interfacial phases formed during CVD growth. Based upon the observed morphological and structural evolution, a diamond growth model from nanodiamond seeds buried beneath a thin Cr layer is proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000374608100020 Publication Date 2016-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 11 Open Access  
  Notes The authors acknowledge financial support provided by Research Program FWO G.056.810 and G0044.13N. A.H. and M.K.V.B are grateful to Hercules Foundation Flanders for financial support. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation – Flanders (FWO). The Titan microscope used for this work was partially funded by the Hercules Foundation. Approved Most recent IF: 2.561  
  Call Number c:irua:133624UA @ admin @ c:irua:133624 Serial 4091  
Permanent link to this record
 

 
Author Felgen, N.; Naydenov, B.; Turner, S.; Jelezko, F.; Reithmaier, J.P.; Popov, C. pdf  url
doi  openurl
  Title Incorporation and study of SiV centers in diamond nanopillars Type A1 Journal article
  Year 2016 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 64 Issue (up) 64 Pages 64-69  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the incorporation of SiV centers during hot filament chemical vapor deposition of diamond on top of diamond nanopillars with diameters down to 100 nm. The nanopillars themselves were prepared from nano crystalline diamond films by applying electron beam lithography and inductively coupled plasma reactive ion etching. The optical investigations revealed the presence of ensembles of SiV color centers incorporated during the overgrowth step. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000374608100009 Publication Date 2016-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 14 Open Access  
  Notes Approved Most recent IF: 2.561  
  Call Number UA @ lucian @ c:irua:133623 Serial 4193  
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C. pdf  doi
openurl 
  Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
  Year 2016 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 64 Issue (up) 64 Pages 278-285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000376547700033 Publication Date 2016-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.164  
  Call Number UA @ lucian @ c:irua:134164 Serial 4251  
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; Croitoru, M. pdf  doi
openurl 
  Title Atomic resolution electron tomography: a dream? Type A1 Journal article
  Year 2006 Publication International journal of materials research Abbreviated Journal Int J Mater Res  
  Volume 97 Issue (up) 7 Pages 872-879  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000239916700003 Publication Date 2013-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-5282;2195-8556; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.681 Times cited 6 Open Access  
  Notes Approved Most recent IF: 0.681; 2006 IF: NA  
  Call Number UA @ lucian @ c:irua:60965 Serial 176  
Permanent link to this record
 

 
Author Chwiej, T.; Bednarek, S.; Adamowski, J.; Peeters, F.M. url  doi
openurl 
  Title Broken one-particle symmetry in few-electron coupled quantum dots Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue (up) 7 Pages 075422,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000235668900113 Publication Date 2006-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:57003 Serial 257  
Permanent link to this record
 

 
Author Vagov, A.; Glaessl, M.; Croitoru, M.D.; Axt, V.M.; Kuhn, T. url  doi
openurl 
  Title Competition between pure dephasing and photon losses in the dynamics of a dot-cavity system Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue (up) 7 Pages 075309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate that in quantum-dot cavity systems, the interplay between acoustic phonons and photon losses introduces novel features and characteristic dependencies in the system dynamics. In particular, the combined action of both dephasing mechanisms strongly affects the transition from the weak-to the strong-coupling regime as well as the shape of the spectral triplet that represents the quantum-dot occupation in Fourier space. The width of the central peak in the triplet is expected to decrease with rising temperature, while the widths and heights of the side peaks depend nonmonotonically on the dot-cavity coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000341258700002 Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; We acknowledge fruitful discussions with A. Nazir which helped us to more clearly formulate the relation between our phenomenological approach and the microscopic theory. M.D.C. further acknowledges Alexander von Humboldt and BELSPO grants for support. Financial support from the Deutsche Forschungsgemeinschaft (Grant No. AX 17/7-1) is also gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:119257 Serial 437  
Permanent link to this record
 

 
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W. doi  openurl
  Title Compositional characterization of nickel silicides by HAADF-STEM imaging Type A1 Journal article
  Year 2011 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 46 Issue (up) 7 Pages 2001-2008  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A methodology for the quantitative compositional characterization of nickel silicides by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging is presented. HAADF-STEM images of a set of nickel silicide reference samples Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 are taken at identical experimental conditions. The correlation between sample thickness and HAADF-STEM intensity is discussed. In order to quantify the relationship between the experimental Z-contrast intensities and the composition of the analysed layers, the ratio of the HAADF-STEM intensity to the sample thickness or to the intensity of the silicon substrate is determined for each nickel silicide reference sample. Diffraction contrast is still detected on the HAADF-STEM images, even though the detector is set at the largest possible detection angle. The influence on the quantification results of intensity fluctuations caused by diffraction contrast and channelling is examined. The methodology is applied to FUSI gate devices and to horizontal TFET devices with different nickel silicides formed on source, gate and drain. It is shown that, if the elements which are present are known, this methodology allows a fast quantitative 2-dimensional compositional analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000286633000002 Publication Date 2011-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.599; 2011 IF: 2.015  
  Call Number UA @ lucian @ c:irua:88950 Serial 446  
Permanent link to this record
 

 
Author de Oliveira, E.L.; Albuquerque, E.L.; de Sousa, J.S.; Farias, G.A.; Peeters, F.M. doi  openurl
  Title Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue (up) 7 Pages 4399-4407  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The excitonic properties of Si(core)/Ge(shell) and Ge(core)/Si(shell) nanocrystals (NC's) with diameters of similar to 1.9 nm are investigated using a combination density functional ab initio method to obtain the single particle wave functions and a configuration interaction method to compute the exciton fine structure and absorption coefficient. These core/shell structures exhibit type II confinement, which is more pronounced for the Si/Ge NC as a consequence of strain. The absorption coefficients of these NC's exhibit a single dominant peak, which has a much larger oscillator strength than the multipeaks found for pure Si and Ge NC's. The exciton lifetime in Si, Ge, and Ge/Si shows a small i:emperature dependence in the range 10-300 K, whereas in Si/Ge, the exciton lifetime decreases more than an order of magnitude in the same temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000301156500007 Publication Date 2012-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 44 Open Access  
  Notes ; The authors acknowledge financial support from CNPq and the bilateral program between Flanders and Brazil and the Belgian Science Foundation (IAP). ; Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:113045 Serial 482  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: