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Competition between pure dephasing and photon losses in the dynamics of a dot-cavity system
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We demonstrate that in quantum-dot cavity systems, the interplay between acoustic phonons and photon losses
introduces novel features and characteristic dependencies in the system dynamics. In particular, the combined
action of both dephasing mechanisms strongly affects the transition from the weak- to the strong-coupling regime
as well as the shape of the spectral triplet that represents the quantum-dot occupation in Fourier space. The width
of the central peak in the triplet is expected to decrease with rising temperature, while the widths and heights of
the side peaks depend nonmonotonically on the dot-cavity coupling.

DOI: 10.1103/PhysRevB.90.075309 PACS number(s): 78.67.Hc, 03.65.Yz, 42.50.Pq, 63.20.kk

I. INTRODUCTION

High-quality quantum-dot (QD) cavity systems allow the
realization of various technologically important devices such
as sources for single [1] or entangled photons [2,3] that are
relevant for applications in quantum information processing
[4] as well as for tests of fundamental aspects of quantum
mechanics [5]. As state-of-the-art cavities [6] have now
reached a quality where the unavoidable phonon-related loss
channels can compete with cavity losses, studies of the
phonon influence on these systems has become a focus of
topical research. It has been shown that the QD acoustic
phonon coupling is responsible for an unexpectedly strong
QD-cavity coupling for cavities that are detuned from the
QD resonance [7–9], which manifests itself in a spectral
broadening of the Mollow sidebands through off-resonant
cavity emission [10,11]. Further, it was demonstrated that
phonons strongly influence the photon statistics [12–15], can
cause LO phonon-assisted Rabi oscillations [16], and lead
to an enhanced coherent scattering as well as to an off-
resonant sideband narrowing [10,17]. Recently, we performed
a numerically complete path-integral analysis dealing with
the limiting case of negligible cavity losses and demonstrated
that in this case, due to the phonon coupling, an increase
of the light-matter coupling can reduce the visibility of
Jaynes-Cummings revivals and can lead to a broadening and
lowering of spectral sidebands [14].

The large mismatch that is typically found between phonon
and dot transition energies suppresses the phonon-induced
energy relaxation. Therefore, the dominant influence of
phonons on the dynamics of QDs typically stems from
pure dephasing processes which result from couplings of
acoustic phonons to the electronic occupations and do not
involve electronic transitions. Consequently, in the dynamical
equations pure dephasing enters only via the equations for
the off-diagonal elements of the electronic density matrix
[18]. Apart from contributing to the loss of coherence, pure
dephasing interactions lead to dressing phenomena where the
bare electronic states pick up admixtures of phonons and thus
form polaronic states [19]. This dressing is reflected, e.g., in
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polaronic shifts of transition energies or in a renormalization
of the Rabi frequency [20–23]. The latter implies that pure
dephasing due to phonons can be used to modify to some extent
the interaction of a quantum dot with a cavity photon. Recently,
it has been suggested to use these properties for active control
purposes ranging from an performance optimization of broad
emitter-based single-photon sources to the development of a
versatile device that can be operated either as a single-photon
source or as a laser [24].

In this paper, we demonstrate that the competition of the
phonon-induced decoherence with cavity losses brings in
qualitatively new aspects to the system dynamics compared
to the idealized cases when one of the two mechanisms is
absent. In particular, the interplay between phonon-induced
pure dephasing and phonon-induced renormalizations of the
light-matter coupling with cavity and radiative losses strongly
affects the transition from the weak- to the strong-coupling
regime. The crossover from weak to strong coupling can be
monitored most easily by analyzing the electronic density
matrix in Fourier space. Assuming a mean photon number
below 1, which is realized in many typical QD-cavity ex-
periments, the resulting spectra comprise three lines in the
strong-coupling regime and only one line in the weak-coupling
regime. The side peaks appearing in the spectral triplet for
strong coupling describe vacuum Rabi oscillations, while the
center line represents incoherent relaxation processes that
proceed without oscillations. Thus, the widths of the side peaks
reflect the damping of the Rabi oscillations, while the width
of the central peak is associated with the rate at which the
incoherent relaxations take place.

In the present paper, we investigate how the strength of
the dot-cavity coupling and the temperature affect the widths
of these peaks as well as the position of the bifurcation
point which separates the strong- from the weak-coupling
regime. Most striking is the finding that the width of
the central peak acquires a temperature dependence which
would not be there in both limiting cases where either pure
dephasing or cavity losses and radiative decay are absent.
Interestingly, the width decreases with rising temperature.
Our analysis combines a microscopic calculation of phonon-
induced pure dephasing effects with a phenomenological
treatment of other loss channels, providing an easy link to
the standard analysis of the crossover between the weak- and
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strong-coupling regimes, which in the literature is usually
discussed without accounting for pure dephasing (see, e.g.,
Ref. [25]).

II. MODEL AND RATE EQUATIONS

The assumption of mean cavity-photon numbers below 1
allows us to restrict the relevant state space to the following
three active states: |0〉 = |G,n = 0〉, |1〉 = |X,n = 0〉, and
|2〉 = |G,n = 1〉, where |G〉 denotes the ground state of the dot
(empty dot) and |X〉 is an excited state with a single exciton.
The index n refers to the number of photons in the cavity mode.
Other dot states are coupled off-resonantly and are therefore
neglected. The Jaynes-Cummings model [25] describes the
coupling between states |1〉 and |2〉 due to the dipole interaction
between the cavity mode and the QD. The third state, |0〉,
is connected to |1〉 via the radiative decay process, which
returns the excited state |X〉 to the ground state. In addition,
|0〉 is connected to |2〉 due to cavity losses which remove the
photon from state |2〉. Finally, pure dephasing interactions
couple the electronic occupations of the QD to phonon
degrees of freedom. Most important, such couplings do not
introduce couplings between the electronic states [18,26,27].
Nevertheless, transitions induced by the cavity mode are
accompanied by a large production of acoustic phonons, which
causes pure dephasing in the electronic subsystem.

The simplest way to account for cavity losses, radiative
decay, and the dot coupling to acoustic phonons is provided
by the standard Lindblad formalism [28,29]. Here, we shall
concentrate on the case where the dot transition is in resonance
with the cavity mode. The resonant excitation is most favorable
for observing vacuum Rabi oscillations, the presence of which
indicates the transition to the strong-coupling regime. For this
case, we obtain the following explicit equations for the density-
matrix elements that are defined as expectation values ρ�j =
〈ρ̂�j 〉 of the operator ρ̂�j = |�〉〈j |:

d

dt

⎛
⎝ρ11

ρ22

V

⎞
⎠ =

⎛
⎝−r 0 ig

0 −κ −ig

2ig̃ −2ig̃ −(κ + r)/2 − γ

⎞
⎠

︸ ︷︷ ︸
=:M

⎛
⎝ρ11

ρ22

V

⎞
⎠ ,

(1)

where V = ρ12 − ρ21, g denotes the bare QD-cavity coupling
strength, κ accounts for cavity losses and can be expressed in
terms of the quality factor Q and the dot transition frequency
ω0 as κ = ω0/Q, r is the radiative decay rate, and γ is
introduced to account for the phonon-induced pure dephasing
[24,29]. The pure dephasing origin of γ is reflected in the
fact that, unlike κ and r , it does not enter the equations for
the occupations ρ11 and ρ22. The dynamics of the relevant
density-matrix elements involving the ground state |0〉 does
not couple back to the above variables and thus does not
need to be considered here. The Lindblad formalism, however,
does not account for the frequency renormalizations that are
known to result from the dressing of the electronic states
with acoustic phonons due to the pure dephasing coupling
[8,14,17,20,21]. As a phenomenological way to describe these
renormalizations, we have introduced the modified coupling
constant g̃ in our model. In accordance with the microscopic

treatment, the phonon-induced modifications reflected by g̃ are
applied only in the equation for the off-diagonal density-matrix
elements.

Before discussing how this phenomenological relaxation
model is related to more microscopic approaches, it is useful
to briefly summarize some of its basic features. An overview
of the behavior of the dissipative system described by Eq. (1)
is most easily obtained by looking at the eigenvalues λ of
the matrix M in Eq. (1) since the mode vectors vλ(t) :=
eλ exp(λt), with eλ being the eigenvectors of M , span the
solution space of Eq. (1). While analytic expressions for
these eigenvalues are available, in the general case, when all
rates in Eq. (1) are nonzero, they are quite lengthy and not
instructive. This is different in two limiting cases. First, when
pure dephasing is negligible, i.e., in the limit γ = 0 and g̃ = g,
we recover the well-known result [30,31]:

λ0 = −κ + r

2
, λ± = λ0 ± 1

2

√
(κ − r)2 − 16g2. (2)

λ0 is real, corresponding to an eigenmode that decays with
the average rate of cavity losses and radiative decay. This
mode never shows oscillations and thus contributes in the
strong-coupling regime to the central peak in the spectral
representation of the density matrix. The eigenvalues λ±
become complex for 4g > |κ − r|; that is, for large enough
g, these modes oscillate. Looking at the real parts of λ±
reveals that for 4g > |κ − r| these modes exhibit the same
g-independent damping as the λ0 mode. Thus, the λ± modes
correspond to the side peaks in the spectral representation,
which describe vacuum Rabi oscillations. Furthermore, Eq. (2)
predicts that the bifurcation point g = |κ − r|/4 which sep-
arates the weak-coupling regime from the strong-coupling
regime can, even for finite κ , be shifted to arbitrarily small
values of g when κ and r are similar as it is the absolute value
of the difference κ − r which matters. Thus, the influences
of different relaxation channels can compensate their effects
on the position of the bifurcation point. In typical QD cavity
systems, κ dominates by far, and therefore, the competition
between κ and r will lead only to marginal features under
commonly encountered conditions. However, we shall see that
a similar compensation takes place due to the competition of
the damping γ induced by pure dephasing and the relaxation
channels described by κ and r . Finally, if the coupling is less
than g = |κ − r|/4, the eigenvalues λ± are also real, and all
modes are monotonically decaying. However, unlike λ0, the
real values of λ± below the bifurcation point depend on g.

The second simple limiting case is obtained by setting κ =
r = 0 and keeping γ finite. This situation is rarely discussed
because, typically, κ cannot be neglected when compared with
phonon-induced pure dephasing. Of course, further progress
in increasing the quality factors of cavities might make this
regime accessible. Here, however, we are interested in this
limit mainly for two reasons: first, it turns out to be instructive
for later comparisons, and second, it will allow us to match the
results of microscopic calculations of pure dephasing to the
phenomenologically introduced values of γ and g̃. Indeed, for
κ = r = 0 the eigenvalues of the matrix M are given by

λ0 = 0, λ± = −γ

2
± 1

2

√
γ 2 − 16gg̃, (3)
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FIG. 1. (Color online) Real parts of the eigenvalues of the matrix
M in Eq. (1) as a function of the bare light-matter coupling g

calculated with κ = 0.1 ps−1 and r = 0.001 ps−1 assuming a constant
pure dephasing rate γ = 0.01 ps−1 and g̃ = g (thin green lines)
and using γ and g̃ obtained from path-integral calculations for the
microscopic model of a spherical GaAs dot with radius 3 nm at
T = 10 K (thick blue lines). The inset shows the imaginary part of
λ+ (Im[λ0] = 0, Im[λ−] = −Im[λ+]).

revealing that pure dephasing alone does not damp the λ0

mode, only the λ± modes. For any finite and constant γ ,
we obtain a well-defined bifurcation point at 16gg̃ = γ 2, and
for larger gg̃, the damping of the oscillating modes becomes
independent of the light-matter coupling and is given by γ /2.

In the intermediate case, when κ , r , and γ are nonzero,
the situation changes qualitatively, even when the frequency
renormalization is neglected (g̃ = g). This is illustrated in
Fig. 1, which displays the real parts of the eigenvalues of
M as functions of g (thin green lines). In accordance with
typical experimental values [32,33] we have set κ = 0.1 ps−1,
r = 0.001 ps−1. Furthermore, we have used γ = 0.01 ps−1. In
the calculations, all rates (γ , κ , r) are taken to be independent
of g. In contrast to the limits in Eqs. (2) and (3), Fig. 1
demonstrates that, in general, the real part of all eigenvalues,
which determines the damping of the modes, also changes
with g in the strong-coupling regime. In particular above
the bifurcation point (where Re[λ+] = Re[λ−]), |Re[λ±]|
decreases with rising g, while in both limits γ = 0 and
κ = r = 0 a g-independent damping is expected for all modes
when the rates γ , κ , and r are constants.

The competition between the different decay channels also
strongly affects the position of the bifurcation point. Here,
it is essentially only the competition between κ and γ , as r

is too small to have a noticeable influence. For the chosen
parameters, the bifurcation point is found at gb � 0.017 ps−1,
which should be compared with the bifurcation point defined
by Eq. (2) that is given by gb = |κ − r|/4 � 0.025 ps−1; that
is, adding a constant pure dephasing rate to the cavity loss shifts
the bifurcation point to lower values, similar to the effect of
increasing r in Eq. (2) from zero to a finite value that is still
well below κ .

Finally, Fig. 1 reveals that for finite values of γ the situation
is, in general, also qualitatively different from the γ = 0 case
with respect to the degree of degeneracy of the bifurcation
point. While, according to Eq. (2) for γ = 0, the eigenvalues

of all three modes coincide at the bifurcation point, for finite
γ , only the eigenvalues of two modes are degenerate. The
two degenerate modes are those that, above the bifurcation
point, correspond to oscillating modes with mutually complex
conjugate eigenvalues. Also, below the bifurcation point, in
Fig. 1 we have denoted the eigenvalues of those modes that
continuously connect to the oscillating modes by λ±, while
the mode that is nonoscillating for all g is labeled by λ0. Thus,
increasing the threefold degeneracy of the bifurcation point
by a finite value of γ also allows us to unambiguously trace
the oscillating modes and the nonoscillating mode separately
in the region below the bifurcation point. For γ = 0 such a
distinction is arbitrary as all modes are continuously connected
to the bifurcation point. In fact, the labeling of the modes in
Eq. (2), which seems to be most natural for the case γ = 0,
interchanges the λ+ and λ0 modes in the weak-coupling regime
compared with what is obtained by our above assignment in
the limit γ → 0+. This can be seen most clearly by looking at
the results for g = g̃ = 0. In this more or less trivial case the
matrix M is already diagonal, and the eigenvalues are given
by −r , −κ , and −(κ + r)/2 − γ , respectively. Physically, this
corresponds to the case where the cavity is decoupled from the
dot, and therefore, the dynamics reflects only the incoherent
decay of the dot occupation ρ11 described by the radiative
decay rate r and the disappearance of cavity photons reflected
by a decrease of ρ22 with the rate κ . The third eigenvalue
−(κ + r)/2 − γ describes the decay of coherences between
states |1〉 and |2〉. As seen from Fig. 1, the mode that is
nonoscillating for all values of g is always the mode with
the weakest damping for finite γ . Thus, in the limit g → 0+
the eigenvalue λ0 of this mode approaches the value closest to
zero, which for our parameters is −r . However, according to
the assignment in Eq. (2) for γ = 0 it is λ+ which approaches
−r for g → 0, while λ0 is given by the constant −(κ + r)/2.
We note in passing that in the limit κ = r = 0 our assignment
of λ0 below the bifurcation point with the continuation of the
nonoscillating mode coincides with the notation in Eq. (3).

III. PHONON-INDUCED PURE DEPHASING RATES AND
RABI-FREQUENCY RENORMALIZATIONS

While cavity losses and radiative decay are usually well
described by the Lindblad relaxation model [8,29–31], a
description based on Markovian rates might seem, at first
glance, to be questionable for phonon-induced pure dephasing
processes. Indeed, pure dephasing is known to be responsible
for non-Markovian effects [8,12,17,20,34], as can be seen,
e.g., from the fact that the phonon-induced polarization decay
after a short pulse excitation of a QD is only partial and
nonexponential [18]. In this paper, however, we study the case
of a cavity with at most a single photon, which is formally
equivalent to a two-level QD without cavity, subject to laser
driving with a constant amplitude [14]. Here, it turns out that
the stationary state reached at long times is characterized by
nonvanishing off-diagonal elements of ρ reflecting a relaxation
into a thermal distribution of the dressed states [35]. However,
for resonant driving, the nonvanishing part of ρ12 equals
Re[ρ12], which, in this case, is dynamically decoupled from
the three dynamical variables (ρ11, ρ22, and V ) appearing
in Eq. (1). The phonon-induced pure dephasing has recently
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been studied for QD cavity systems [14] within a numerically
complete path-integral approach [36] in the limit of vanishing
cavity and radiative losses. Considering a situation with at
most one photon, it turns out that for a cavity in resonance with
the dot transition, the path-integral results for the dynamical
variables ρ11, ρ22, and V agree perfectly with those obtained
from Eq. (1), provided γ and g̃ are suitably chosen.

Although the comparison with the path-integral results
indicates that for our quantities of interest, the Lindblad
approach is also valid for pure dephasing, it should be noted
that in the microscopic theory both the damping and the
frequency renormalization of the Rabi oscillations depend
nontrivially on the bare dot-cavity coupling g as well as on
the temperature T . This dependence has been neglected in the
calculations presented in Fig. 1, where constant rates have been
used. We will now show that accounting for these dependencies
is crucial.

Assuming that the interplay with other loss mechanisms
has only small effects on the values of γ and g̃, the latter can
be extracted from our path-integral calculations performed for
κ = r = 0. To this end, we consider the path-integral solution
for a system initially prepared in state |2〉, where the exciton
occupation resulting from the simulation can be perfectly
described by the formula [14]

ρ11 = 1
2 [1 − e−�t cos(ωt)], (4)

where the parameters � and ω are obtained from fits to the
numerical path-integral data. Both parameters depend on the
bare cavity-dot coupling g, the temperature T , and the dot
parameters that enter the carrier-phonon coupling. Further, it
was found from the path-integral analysis that, for κ = r =
0, the system exhibits oscillations for all g. This finding of
oscillatory solutions in the microscopic theory for arbitrary
small g implies that the g-dependent renormalizations of �

and ω prevent the system from having a crossover to the weak-
coupling limit; that is, unlike the theory with a g-independent
pure dephasing rate [cf. Eq. (3)], there is no bifurcation point
in a model where phonon-induced pure dephasing is the only
loss channel.

In order to relate the values of � and ω to the parameters γ

and g̃ appearing in Eq. (1) we shall choose the latter in such a
way that the corresponding solution of Eq. (1) for κ = r = 0
coincides with Eq. (4). We recall that oscillating solutions
of Eq. (1) are found only above the bifurcation point, where,
according to Eq. (3), the solution oscillates for κ = r = 0 with
the frequency ω = 1

2

√
16gg̃ − γ 2 and exhibits a damping of

� = γ

2 . Thus, in the case κ = r = 0 Eq. (1) reproduces Eq. (4)
provided we identify

γ (g,T ) = 2�(g,T ), (5)

g̃(g,T ) = [�(g,T )2 + ω(g,T )2]/(4g). (6)

We have determined γ (g,T ) and g̃(g,T ) from simulations of
the dynamics for κ = r = 0 that can be performed within the
path-integral formalism [36] without further approximation to
the model. We have used material parameters for a spherical
GaAs dot with a radius of 3 nm coupled to acoustic phonons via
the deformation potential [37]. Although the phonon coupling
in GaAs-type materials is relatively weak, the corresponding
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FIG. 2. (Color online) Pure dephasing damping rate γ (g) and
renormalized light-matter coupling g̃(g)/g obtained as a function of
the bare light-matter coupling g by fitting path-integral calculations
for the microscopic model at three temperatures using Eqs. (4)–(6).

effects are quite pronounced. The resulting values of γ (g,T )
and g̃(g,T )/g are plotted in Fig. 2 as functions of g. γ (g,T )
increases with rising T and is a nonmonotonic function of
g, reaching zero in both the small and the large coupling
limits. The latter reflects the resonant nature of the dot-phonon
coupling that is known from earlier works [38,39]. Also the
renormalized light-matter coupling g̃/g notably depends on
g and the temperature, where the largest deviations from the
unrenormalized value of 1 are found for small g. Even in the
present case of relatively weak dot-phonon coupling, g̃/g is
already, at T = 10 K, reduced to ∼0.8 for small g, and the
reduction significantly increases with rising temperature.

As the light-matter coupling also enters the radiative
recombination rate, r should exhibit a corresponding g

dependence, which we will, however, neglect due to the overall
smallness of r . Cavity losses, on the other hand, are mainly
properties of the cavity, and hence, no significant influence
of g is expected. Therefore, we shall in the following use the
model in Eq. (1) with γ (g,T ) and g̃(g,T ) determined by our
microscopic path-integral approach and keep κ = 0.1 ps−1 and
r = 0.001 ps−1 fixed.

IV. COMBINED IMPACT OF DIFFERENT
LOSS CHANNELS

Accounting for the g and T dependences of γ and g̃ in
Eq. (1) has significant consequences on the corresponding
dependences of the eigenvalues λ±,0. This can be demonstrated
by comparing the results obtained with g̃ = g and a constant γ
(see the thin green lines in Fig. 1) with calculations accounting
for the g dependence of γ (g,T ) and g̃(g,T ) as extracted from
path-integral simulations for T = 10 K (thick blue lines in
Fig. 1). The bifurcation point is now slightly above the value
expected from Eq. (2) (i.e., vanishing phonon influence) and
not below, as expected for a constant γ . The same trend is
seen when looking at Fig. 3, which displays the eigenvalues
λ± for different temperatures accounting for the g dependences
of γ and g̃. Obviously, the bifurcation point shifts to higher
g values with rising temperatures, which has been found
previously [8] and confirms the intuitive expectation that at
higher temperatures it is harder to reach the strong-coupling
regime.

It is interesting to note that when only the g dependence
of γ is taken into account while the renormalization of the
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FIG. 3. (Color online) Real parts of the eigenvalues λ± of the
matrix M in Eq. (1) calculated at selected temperatures with
parameters κ = 0.1 ps−1 and r = 0.001 ps−1 and using values for
γ (g,T ) and g̃(g,T ) obtained from the microscopic path-integral
calculations. The thin green line labeled “no shift” represents a
calculation accounting for γ (g,T ) at T = 100 K but without the
renormalization of the light-matter coupling, i.e., g̃ = g.

light-matter coupling is neglected (i.e., g̃ = g), the opposite
trend is found (see the thin green line in Fig. 3). The latter
result is due to the fact that with rising T , the phonon-induced
damping γ increases (see Fig. 2) and becomes comparable to
κ . Thus, the situation is analogous to the competition between
κ and r in the phonon-free case (γ = 0, g̃ = g), where we have
found from Eq. (2) that the bifurcation point can be lowered to
arbitrarily small values when r approaches κ . Here, we obtain a
similar reduction of the bifurcation point for a relatively small
r when γ approaches κ . However, this reduction due to the
competition between the damping channels associated with κ

and γ is not visible in the full calculation where, in addition,
the renormalization of the light-matter interaction g̃(g,T ) is
accounted for. As can be seen from Fig. 2 for a bare coupling
g well below 1 ps−1, the light-matter coupling is reduced due to
the phonon renormalization. Thus, compared with the phonon-
free case, a larger g is needed to obtain a renormalized coupling
g̃ that is sufficient to reach the strong-coupling regime. Thus,
the respective influences of the pure dephasing rate γ (g,T ) and
the renormalization of the light-matter coupling g̃(g,T ) shift
the position of the bifurcation point in opposite directions.
Obviously, the effect due to the reduction of the light-matter
coupling is larger, which eventually leads to a shift of the
bifurcation point towards larger light-matter couplings with
rising temperature.

Another striking feature seen in both Figs. 1 and 3 is that
when all g-dependent phonon-induced renormalizations are
included, we now find that the damping of the oscillatory
modes λ± increases with increasing g above the bifurcation
point, which is the opposite of the trend seen in calculations
with a g-independent γ (thin green lines in Fig. 1).

Finally, we note that the g range displayed in Figs. 1
and 3 represents roughly the range of values for g that has
been realized in typical state-of-the-art cavities [32,33]. It is
worthwhile to mention that when g is further increased, Re[λ±]
eventually decreases again, mainly due to the nonmonotonic
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FIG. 4. (Color online) Real eigenvalue λ0 of the matrix M

in Eq. (1) calculated for the same parameters and conditions as λ±
shown in Fig. 3.

g dependence of γ that again arises from the resonant nature
of the carrier-phonon coupling [14,38,39].

Let us turn now to the λ0 mode and the corresponding results
displayed in Fig. 4. It is clearly seen that the damping of the
λ0 mode increases with rising g but it decreases with rising
temperature. We stress that this temperature dependence is
only introduced by the competition between cavity losses and
phonon-induced pure dephasing: cavity losses alone would not
lead to a T dependence in our model, as T enters only in the
phonon-induced parts. Pure dephasing alone would also not
lead to a T dependence, as Eq. (3) predicts no damping of the
λ0 mode at all.

So far, our discussion has been restricted to the dependences
of the eigenvalues of the matrix M . The eigenvalues define the
positions and the widths of the spectral components into which
the elements of the density matrix can be decomposed but do
not reveal the relative weights that enter a specific observable.
As an example of how the above-discussed dependences of the
eigenvalues translate into properties of a measurable quantity,
we shall discuss the real part of the Fourier transform of the dot
exciton occupation ρ11(ω) obtained by solving Eq. (1) for the
system initially prepared in state |2〉. Experimentally, the dot
occupation in the time regime is accessible in photocurrent,
pump-probe, or transient-reflectivity measurements [40–44]
from which ρ11(ω) can be obtained by performing the Fourier
transformation.

Figure 5 shows the corresponding spectra for different
values of g chosen above the bifurcation point where each
spectrum exhibits a three-peak structure. It is clearly seen that
the width of the side peaks increases with rising g for small
or moderate g, while for very high g they decrease. This is
accompanied by similarly nonmonotonic changes of the peak
heights, which first decrease before increasing again at large g.
As this nonmonotonic behavior follows from that of γ (g,T ), it
is also observed in a system with negligible photon losses [14].
For comparison, results for the latter case are also displayed
in Fig. 5 by dashed lines. The competition with cavity losses
overall reduces the heights and increases the widths of the
peaks but does not destroy the phonon-induced nonmonotonic
dependence on g.

The temperature dependence resulting from the combina-
tion of cavity losses and phonon-induced pure dephasing also
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FIG. 5. (Color online) Solid lines: spectra Re[ρ11(ω)] calculated
for different values of the dot-cavity coupling g at T = 10 K and
κ = 0.1, r = 0.001 ps−1. Dashed lines: Re[ρ11(ω)] calculated for κ =
r = 0 with otherwise identical parameters. The heights of all central
peaks as well as of the side peaks for g = 0.1 ps−1 and κ = r = 0
(dashed black line) are clipped to improve the visibility of the other
side peaks.

affects the width of the peak centered at ω = 0 in the spectra
Re[ρ11(ω)]. Figure 6(a) plots the corresponding full width at
half maximum (FWHM) that is extracted for different T as
a function of g from calculations of Re[ρ11(ω)]. It should
be noted that the λ± modes also contribute to the width of
that peak as long as the corresponding frequencies are not
well separated from ω = 0 [see Figs. 6(b) and 6(c)]. This
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FIG. 6. (Color online) (a) Full width at half maximum (FWHM)
of the central peak in the spectra Re[ρ11(ω)] as a function of the
dot-cavity coupling g calculated at T = 10 K (blue dashed line with
squares), T = 50 K (purple dashed line with triangles), and T =
100 K (red dashed line with circles). Triplet spectra at T = 10 (thin
blue line), T = 50 K (purple line), and T = 100 K (thick red line)
calculated for (b) g = 0.075 ps−1 and (c) g = 0.15 ps−1. In all panels,
κ = 0.1 ps−1 and r = 0.001 ps−1.

applies in particular to the weak-coupling limit, where the λ±
contributions are centered at ω = 0 as well. For T = 100 K,
the heights of the peaks associated with the λ± modes are
generally low, and thus, the FWHM in Fig. 6(a) reflects only
the monotonically rising contribution of the λ0 mode. For
lower temperatures, a maximum appears because at low g,
the λ± contributions become more important and strongly
enhance the FWHM as their damping typically increases with
rising temperature (see Fig. 3). This influence decreases with
increasing g, when the side peaks move to higher ω and
eventually become clearly separated.

Due to the competition between the λ0 and the λ±
contributions, the T dependence of the FWHM becomes
nonmonotonic at intermediate g, while at high g, where the λ±
modes are no longer contributing, the low-g trend, reflecting
the dependence of the λ0 mode, is restored; that is, we find a
decrease of the width with rising temperature.

The temperature dependence of the λ0 mode which has
been shown to govern the observable width of the central
peak in the spectra Re[ρ11(ω)] can be understood intuitively
at least in the limit of small g. To this end, we recall that λ0

is the eigenvalue closest to zero. In the limit g → 0 this mode
describes the incoherent decay either of ρ11 (for r < κ) or of
ρ22 (for r > κ); in our case the eigenvector of the λ0 mode
has, at g = 0, a nonzero component only for ρ11. Increasing g

to a finite value introduces a transfer between the occupations
ρ11 and ρ22 and thus couples any excitation in the subspace
spanned by |1〉 and |2〉 to the faster of the two loss channels
provided by κ and r . Consequently, the slowest decay of an
excitation in this subspace (this is the decay described by λ0)
speeds up due to the coupling to the faster decay channel.
The temperature dependence of λ0 can now be traced back to
the T dependences of g̃ and γ displayed in Fig. 2. For low g the
renormalized light-matter coupling g̃ is strongly reduced, and
thus, the coupling between ρ11 and ρ22, which speeds up the
decay of the slowest decaying mode, is suppressed for higher
temperatures. The role of the pure dephasing rate γ can be
appreciated by noting that according to Eq. (1), the occupation
transfer between ρ11 and ρ22 is mediated by the coherences
V = ρ12 − ρ21. The increase of γ with temperature seen in
Fig. 2 leads to a stronger damping of the coherences when T

is increased and thus to a reduction of the excitation transfer.
Thus, the reduction of g̃ and the increase of γ with rising
temperature both suppress the transfer between ρ11 and ρ22,
which is the physical origin of the temperature dependence
of λ0.

Finally, we would like to address briefly a practical issue.
In order to deal with a well-defined situation that is most
favorable for the observation of vacuum Rabi oscillations
that indicate the strong-coupling regime, we have assumed
the cavity is strictly in resonance with the dot transition.
However, it is well known that the dot transition energy shifts
with temperature [32,45]. If this shift is not compensated,
a change in temperature would detune the dot from the
cavity, making it practically impossible to observe a crossover
between the weak- and strong-coupling regimes. Therefore,
in order to see the temperature dependences caused by the
interplay of phonon-induced pure dephasing and cavity losses,
the problem arises of how to maintain the resonance condition
while changing the temperature. There are several possible
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solutions to this problem. For example, experiments indicate
that dot transitions can be tuned in and out of resonance with
a cavity by applying suitable static electric or magnetic fields
[45–47]. However, when such methods are used to readjust the
transition energy, a quantitative description may require us to
account for the changes of the dot-phonon couplings induced
by the applied fields. This can, in principle, be avoided, e.g., by
dielectric switching of the frequency of the cavity to restore the
resonance conditions [48]. The feasibility of such switching
strategies has been experimentally demonstrated for cavities
without dots [49,50].

V. CONCLUSIONS

In conclusion we have shown that the interplay between
cavity losses and the g-dependent pure dephasing and the
phonon-induced renormalization of the bare light-matter
coupling strength g strongly affect the transition from
the weak- to the strong-coupling regime, e.g., reflected in

T -dependent shifts of the bifurcation point. In the weak-
coupling limit, we predict that the width of the peak at ω = 0 in
the Fourier representation of the dot occupation decreases for
higher temperatures. Our analysis reveals that the temperature
dependence of this line results from the combined action
of cavity losses and phonon-induced pure dephasing; either
mechanism alone would lead to a temperature-independent
width.
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[1] D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler,
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