toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cabana, L.; Ke, X.; Kepić, D.; Oro-Solé, J.; Tobías-Rossell, E.; Van Tendeloo, G.; Tobias, G. pdf  url
doi  openurl
  Title The role of steam treatment on the structure, purity and length distribution of multi-walled carbon nanotubes Type A1 Journal article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 93 Issue (down) 93 Pages 1059-1067  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Purification and shortening of carbon nanotubes have attracted a great deal of attention to increase the biocompatibility and performance of the material in several applications. Steam treatment has been employed to afford both purification and shortening of multi-walled carbon nanotubes (MWCNTs). Steam removes the amorphous carbon and the graphitic particles that sheath catalytic nanoparticles, facilitating their removal by a subsequent acidic wash. The amount of metal impurities can be reduced in this manner below 0.01 wt.%. The length distribution of MWCNTs after different steam treatment times (from 1 h to 15 h) was assessed by box plot analysis of the electron microscopy data. Samples with a median length of 0.57 μm have been prepared with the reported methodology while preserving the integrity of the tubular wall structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000360292100108 Publication Date 2015-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 17 Open Access  
  Notes 312483 Esteem2; 290023 Raddel; esteem2_ta Approved Most recent IF: 6.337; 2015 IF: 6.196  
  Call Number c:irua:127691 c:irua:127691 Serial 2921  
Permanent link to this record
 

 
Author Yan, Y.; Zhou, X.; Jin, H.; Li, C.-Z.; Ke, X.; Van Tendeloo, G.; Liu, K.; Yu, D.; Dressel, M.; Liao, Z.-M. url  doi
openurl 
  Title Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue (down) 9 Pages 10244-10251  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg2 and out-of-plane A1g1 modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg2 phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm–1/%, which is twice of that in Bi2Se3 bulk material (0.52 cm–1/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363915300079 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 14 Open Access  
  Notes Y.Y. would like to thank Xuewen Fu for helpful discussions. This work was supported by MOST (Nos. 2013CB934600, 2013CB932602) and NSFC (Nos. 11274014, 11234001). Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:129216 Serial 3963  
Permanent link to this record
 

 
Author Chen, J.J.; Wang, Q.; Meng, J.; Ke, X.; Van Tendeloo, G.; Bie, Y.Q.; Liu, J.; Liu, K.; Liao, Z.M.; Sun, D.; Yu, D.; pdf  url
doi  openurl
  Title Photovoltaic effect and evidence of carrier multiplication in graphene vertical homojunctions with asymmetrical metal contacts Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue (down) 9 Pages 8851-8858  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphene exhibits exciting potentials for high-speed wideband photodetection and high quantum efficiency solar energy harvest because of its broad spectral absorption, fast photoelectric response, and potential carrier multiplication. Although photocurrent can be generated near a metalgraphene interface in lateral devices, the photoactive area is usually limited to a tiny one-dimensional line-like interface region. Here, we report photoelectric devices based on vertical graphene two-dimensional homojunction, which is fabricated via vertically stacking four graphene monolayers with asymmetric metal contacts. The devices show excellent photovoltaic output with excitation wavelength ranging from visible light to mid-infrared. The wavelength dependence of the internal quantum efficiency gives direct evidence of the carrier multiplication effect in graphene. The simple fabrication process, easy scale-up, large photoresponsive active area, and broadband response of the vertical graphene device are very promising for practical applications in optoelectronics and photovoltaics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361935800023 Publication Date 2015-08-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:127689 Serial 2615  
Permanent link to this record
 

 
Author Groeneveld, E.; Witteman, L.; Lefferts, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; de Mello Donega, C. pdf  doi
openurl 
  Title Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange : from core/shell to alloy nanocrystals Type A1 Journal article
  Year 2013 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 7 Issue (down) 9 Pages 7913-7930  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report a study of Zn2+ by Cd2+ cation exchange (CE) in colloidal ZnSe nanocrystals (NCs). Our results reveal that CE in ZnSe NCs is a thermally activated isotropic process. The CE efficiency (i.e., fraction of Cd2+ ions originally in solution, Cdsol, that is incorporated in the ZnSe NC) increases with temperature and depends also on the Cdsol/ZnSe ratio. Interestingly, the reaction temperature can be used as a sensitive parameter to tailor both the composition and the elemental distribution profile of the product (Zn,Cd)Se NCs. At 150 °C ZnSe/CdSe core/shell hetero-NCs (HNCs) are obtained, while higher temperatures (200 and 220 °C) produce (Zn1xCdx)Se gradient alloy NCs, with increasingly smoother gradients as the temperature increases, until homogeneous alloy NCs are obtained at T ≥ 240 °C. Remarkably, sequential heating (150 °C followed by 220 °C) leads to ZnSe/CdSe core/shell HNCs with thicker shells, rather than (Zn1xCdx)Se gradient alloy NCs. Thermal treatment at 250 °C converts the ZnSe/CdSe core/shell HNCs into (Zn1xCdx)Se homogeneous alloy NCs, while preserving the NC shape. A mechanism for the cation exchange in ZnSe NCs is proposed, in which fast CE takes place at the NC surface, and is followed by relatively slower thermally activated solid-state cation diffusion, which is mediated by Frenkel defects. The findings presented here demonstrate that cation exchange in colloidal ZnSe NCs provides a very sensitive tool to tailor the nature and localization regime of the electron and hole wave functions and the optoelectronic properties of colloidal ZnSeCdSe NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000330016900051 Publication Date 2013-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 153 Open Access  
  Notes 262348 Esmi; 246791 Countatoms Approved Most recent IF: 13.942; 2013 IF: 12.033  
  Call Number UA @ lucian @ c:irua:110038 Serial 3469  
Permanent link to this record
 

 
Author Felten, A.; Gillon, X.; Gulas, M.; Pireaux, J.-J.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.; Najafi, E.; Hitchcock, A.P. pdf  doi
openurl 
  Title Measuring point defect density in individual carbon nanotubes using polarization-dependent X-ray microscopy Type A1 Journal article
  Year 2010 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 4 Issue (down) 8 Pages 4431-4436  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The presence of defects in carbon nanotubes strongly modifies their electrical, mechanical, and chemical properties. It was long thought undesirable, but recent experiments have shown that introduction of structural defects using ion or electron irradiation can lead to novel nanodevices. We demonstrate a method for detecting and quantifying point defect density in individual carbon nanotubes (CNTs) based on measuring the polarization dependence (linear dichroism) of the C 1s → π* transition at specific locations along individual CNTs with a scanning transmission X-ray microscope (STXM). We show that STXM can be used to probe defect density in individual CNTs with high spatial resolution. The quantitative relationship between ion dose, nanotube diameter, and defect density was explored by purposely irradiating selected sections of nanotubes with kiloelectronvolt (keV) Ga+ ions. Our results establish polarization-dependent X-ray microscopy as a new and very powerful characterization technique for carbon nanotubes and other anisotropic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000281052700014 Publication Date 2010-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 26 Open Access  
  Notes Approved Most recent IF: 13.942; 2010 IF: 9.865  
  Call Number UA @ lucian @ c:irua:84734 Serial 1966  
Permanent link to this record
 

 
Author Yan, Y.; Liao, Z.M.; Ke, X.; Van Tendeloo, G.; Wang, Q.; Sun, D.; Yao, W.; Zhou, S.; Zhang, L.; Wu, H.C.; Yu, D.P.; pdf  doi
openurl 
  Title Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue (down) 8 Pages 4389-4394  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The photothermoelectric effect in topological insulator Bi2Se3 nanoribbons is studied. The topological surface states are excited to be spin-polarized by circularly polarized light. Because the direction of the electron spin is locked to its momentum for the spin-helical surface states, the photothermoelectric effect is significantly enhanced as the oriented motions of the polarized spins are accelerated by the temperature gradient. The results are explained based on the microscopic mechanisms of a photon induced spin transition from the surface Dirac cone to the bulk conduction band. The as-reported enhanced photothermoelectric effect is expected to have potential applications in a spin-polarized power source.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000340446200028 Publication Date 2014-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 51 Open Access  
  Notes European Research Council under the Seventh Framework Program (FP7); ERC Advanced Grant No. 246791-COUNTATOMS. Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:118128 Serial 3678  
Permanent link to this record
 

 
Author Bertoni, G.; Grillo, V.; Brescia, R.; Ke, X.; Bals, S.; Catellani, A.; Li, H.; Manna, L. doi  openurl
  Title Direct determination of polarity, faceting, and core location in colloidal core/shell wurtzite semiconductor nanocrystals Type A1 Journal article
  Year 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue (down) 7 Pages 6453-6461  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The ability to determine the atomic arrangement and termination of various facets of surfactant-coated nanocrystals is of great importance for understanding their growth mechanism and their surface properties and represents a critical piece of information that can be coupled to other experimental techniques and to calculations. This is especially appealing in the study of nanocrystals that can be grown in strongly anisotropic shapes, for which the relative growth rates of various facets can be influenced under varying reaction conditions. Here we show that in two representative cases of rod-shaped nanocrystals in the wurtzite phase (CdSe(core)/CdS(shell) and ZnSe(core)/ZnS(shell) nanorods) the terminations of the polar facets can be resolved unambiguously by combining advanced electron microscopy techniques, such as aberration-corrected HRTEM with exit wave reconstruction or aberration-corrected HAADF-STEM. The [0001] and [000-1] polar directions of these rods, which grow preferentially along their c-axis, are revealed clearly, with one side consisting of the Cd (or Zn)-terminated (0001) facet and the other side with a pronounced faceting due to Cd (or Zn)-terminated {10-1-1} facets. The lateral faceting of the rods is instead dominated by three nonpolar {10-10} facets. The core buried in the nanostructure can be localized in both the exit wave phase and HAADF-STEM images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306673800079 Publication Date 2012-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 63 Open Access  
  Notes The authors gratefully acknowledge funding from the European Research Council under grant number 240111 (NANO-ARCH) and the financial support from the Flemish Hercules 3 Programme for large infrastructures. G.B. and V.G. thank E. Rotunno for his help with STEM_CELL and IWFR. Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number UA @ lucian @ c:irua:101138 Serial 710  
Permanent link to this record
 

 
Author He, Z.; Ke, X.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct evidence for the existence of multi-walled carbon nanotubes with hexagonal cross-sections Type A1 Journal article
  Year 2012 Publication Carbon Abbreviated Journal Carbon  
  Volume 50 Issue (down) 7 Pages 2524-2529  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon nanotubes (CNTs) with a polygonal cross-section have been paid increasing attention since their three-dimensional structure is related to specific physical properties, which are found to be different in comparison to CNTs with a circular cross-section. Here, we report the existence of novel multi-walled CNTs yielding walls with a rounded-hexagonal configuration. This structure was directly confirmed for the first time by both cross-sectional transmission electron microscopy and electron tomography. The morphology of the Fe catalytic particle also exhibits hexagonal characteristics, and is proposed as the origin of the formation of the rounded-hexagonal walls of the CNT. This observation is of great importance with respect to the design of polygonal (such as pentagonal or hexagonal) cross-sectional CNTs. By controlling the morphology of the catalytic nanoparticles it will be possible to grow CNTs with desired electronic and mechanical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000303038400015 Publication Date 2012-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 6.337; 2012 IF: 5.868  
  Call Number UA @ lucian @ c:irua:96956 Serial 711  
Permanent link to this record
 

 
Author Chen, J.-J.; Ke, X.; Van Tendeloo, G.; Meng, J.; Zhou, Y.-B.; Liao, Z.-M.; Yu, D.-P. pdf  doi
openurl 
  Title Magnetotransport across the metal-graphene hybrid interface and its modulation by gate voltage Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue (down) 7 Pages 5516-5524  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The graphene-metal contact is very important for optimizing the performance of graphene based electronic devices. However, it is difficult to probe the properties of the graphene/metal interface directly via transport measurements in traditional graphene lateral devices, because the dominated transport channel is graphene, not the interface. Here, we employ the Au/graphene/Au vertical and lateral hybrid structure to unveil the metal-graphene interface properties, where the transport is dominated by the charge carriers across the interface. The magnetoresistance (MR) of Au/monolayer graphene/Au and Au/stacked two-layered graphene/Au devices is measured and modulated by gate voltage, demonstrating that the interface is a device. The gate-tunable MR is identified from the graphene lying on the SiO2 substrate and underneath the top metal electrode. Our unique structures couple the in-plane and out-of-plane transport and display linear MR with small amplitude oscillations at low temperatures. Under a magnetic field, the electronic coupling between the graphene edge states and the electrode leads to the appearance of quantum oscillations. Our results not only provide a new pathway to explore the intrinsic transport mechanism at the graphene/metal interface but also open up new vistas of magnetoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000351372400050 Publication Date 2015-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 3 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number c:irua:125533 Serial 1931  
Permanent link to this record
 

 
Author Hadad, C.; Ke, X.; Carraro, M.; Sartorel, A.; Bittencourt, C.; Van Tendeloo, G.; Bonchio, M.; Quintana, M.; Prato, M. pdf  doi
openurl 
  Title Positive graphene by chemical design : tuning supramolecular strategies for functional surfaces Type A1 Journal article
  Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 50 Issue (down) 7 Pages 885-887  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A diazonium based-arylation reaction was efficiently used for the covalent addition of 4-amino-N,N,N-trimethylbenzene ammonium to stable dispersions of few layer graphene (FLG) yielding an innovative FLG platform with positive charges to immobilize inorganic polyanions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000328884500036 Publication Date 2013-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 19 Open Access  
  Notes Approved Most recent IF: 6.319; 2014 IF: 6.834  
  Call Number UA @ lucian @ c:irua:113733 Serial 2678  
Permanent link to this record
 

 
Author Wang, C.; Ke, X.; Wang, J.; Liang, R.; Luo, Z.; Tian, Y.; Yi, D.; Zhang, Q.; Wang, J.; Han, X.-F.; Van Tendeloo, G.; Chen, L.-Q.; Nan, C.-W.; Ramesh, R.; Zhang, J. url  doi
openurl 
  Title Ferroelastic switching in a layered-perovskite thin film Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue (down) 7 Pages 10636  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A controllable ferroelastic switching in ferroelectric/multiferroic oxides is highly desirable due to the non-volatile strain and possible coupling between lattice and other order parameter in heterostructures. However, a substrate clamping usually inhibits their elastic deformation in thin films without micro/nano-patterned structure so that the integration of the non-volatile strain with thin film devices is challenging. Here, we report that reversible in-plane elastic switching with a non-volatile strain of approximately 0.4% can be achieved in layered-perovskite Bi2WO6 thin films, where the ferroelectric polarization rotates by 90 degrees within four in-plane preferred orientations. Phase-field simulation indicates that the energy barrier of ferroelastic switching in orthorhombic Bi2WO6 film is ten times lower than the one in PbTiO3 films, revealing the origin of the switching with negligible substrate constraint. The reversible control of the in-plane strain in this layered-perovskite thin film demonstrates a new pathway to integrate mechanical deformation with nanoscale electronic and/or magnetoelectronic applications.  
  Address Department of Physics, Beijing Normal University, 100875 Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000371020600002 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 40 Open Access  
  Notes The work in Beijing Normal University is supported by the NSFC under contract numbers 51322207, 51332001 and 11274045. J.Z. also acknowledges the support from National Basic Research Program of China, under contract No. 2014CB920902. G.V.T. acknowledges the funding from the European Research Council under the Seventh Framework Program (FP7), ERC Advanced Grant No. 246791-COUNTATOMS. X.K. acknowledges the funding from NSFC (Grant No.11404016) and Beijing University of Technology (2015-RD-QB-19). J.W. acknowledges the funding from NSFC (Grant number 51472140). L.-Q.C. acknowledges the supporting by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award FG02-07ER46417. R.L. acknowledges Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation. Z.L. acknowledges the support from the NSFC (No.11374010 and No.11434009). Q.Z. and X.-F.H. acknowledge the funding support from NSFC (Grant No. 11434014). R.R. acknowledges support from the National Science Foundation (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) under grant number EEC-1160504. Approved Most recent IF: 12.124  
  Call Number c:irua:130978 Serial 4007  
Permanent link to this record
 

 
Author Zhong, R.; Peng, L.; de Clippel, F.; Gommes, C.; Goderis, B.; Ke, X.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. pdf  doi
openurl 
  Title An eco-friendly soft template synthesis of mesostructured silica-carbon nanocomposites for acid catalysis Type A1 Journal article
  Year 2015 Publication ChemCatChem Abbreviated Journal Chemcatchem  
  Volume 7 Issue (down) 7 Pages 3047-3058  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of ordered mesoporous silica-carbon composites was explored by employing TEOS and sucrose as the silica and carbon precursor respectively, and the triblock copolymer F127 as a structure-directing agent via an evaporation-induced self-assembly (EISA) process. It is demonstrated that the synthesis procedures allow for control of the textural properties and final composition of these silica-carbon nanocomposites via adjustment of the effective SiO2/C weight ratio. Characterization by SAXS, N-2 physisorption, HRTEM, TGA, and C-13 and Si-29 solid-state MAS NMR show a 2D hexagonal mesostructure with uniform large pore size ranging from 5.2 to 7.6nm, comprising of separate carbon phases in a continuous silica phase. Ordered mesoporous silica and non-ordered porous carbon can be obtained by combustion of the pyrolyzed nanocomposites in air or etching with HF solution, respectively. Sulfonic acid groups can be readily introduced to such kind of silica-carbon nanocomposites by a standard sulfonation procedure with concentrated sulfuric acid. Excellent acid-catalytic activities and selectivities for the dimerization of styrene to produce 1,3-diphenyl-1-butene and dimerization of -methylstyrene to unsaturated dimers were demonstrated with the sulfonated materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000361189400037 Publication Date 2015-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.803 Times cited 13 Open Access  
  Notes Approved Most recent IF: 4.803; 2015 IF: 4.556  
  Call Number UA @ lucian @ c:irua:127836 Serial 4138  
Permanent link to this record
 

 
Author Vidick, D.; Ke, X.; Devillers, M.; Poleunis, C.; Delcorte, A.; Moggi, P.; Van Tendeloo, G.; Hermans, S. pdf  url
doi  openurl
  Title Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue (down) 6 Pages 1287-1297  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru-Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1-3 nm) bimetal Ru-Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355908400001 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 7 Open Access  
  Notes 246791 Countatoms; 262348 Esmi Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126431 Serial 1420  
Permanent link to this record
 

 
Author Li, J.; Ji, M.; Schwarz, T.; Ke, X.; Van Tendeloo, G.; Yuan, J.; Pereira, P.J.; Huang, Y.; Zhang, G.; Feng, H.L.; Yuan, Y.H.; Hatano, T.; Kleiner, R.; Koelle, D.; Chibotaru, L.F.; Yamaura, K.; Wang, H.B.; Wu, P.H.; Takayama-Muromachi, E.; Vanacken, J.; Moshchalkov, V.V.; pdf  url
doi  openurl
  Title Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors Type A1 Journal article
  Year 2015 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 6 Issue (down) 6 Pages 7614  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional Swiss cheese-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000358857000007 Publication Date 2015-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 12 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 12.124; 2015 IF: 11.470  
  Call Number c:irua:126677 Serial 1827  
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Ke, X.; Vosch, T.; Van Tendeloo, G.; Baron, G.V.; Jacobs, P.A.; Denayer, J.F.M.; Sels, B.F. pdf  doi
openurl 
  Title Molecular sieve properties of mesoporous silica with intraporous nanocarbon Type A1 Journal article
  Year 2010 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 46 Issue (down) 6 Pages 928-930  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biporous carbonsilica materials (CSM) with molecular sieve properties and high sorption capacity were developed by synthesizing nano-sized carbon crystallites in the mesopores of Al-MCM-41.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000274070800024 Publication Date 2009-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 21 Open Access  
  Notes Fwo; Iap Approved Most recent IF: 6.319; 2010 IF: 5.787  
  Call Number UA @ lucian @ c:irua:80994 Serial 2182  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue (down) 6 Pages 1541-1557  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357977300001 Publication Date 2015-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 10 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126857 Serial 2682  
Permanent link to this record
 

 
Author Suarez-Martinez, I.; Bittencourt, C.; Ke, X.; Felten, A.; Pireaux, J.J.; Ghijsen, J.; Drube, W.; Van Tendeloo, G.; Ewels, C.P. pdf  doi
openurl 
  Title Probing the interaction between gold nanoparticles and oxygen functionalized carbon nanotubes Type A1 Journal article
  Year 2009 Publication Carbon Abbreviated Journal Carbon  
  Volume 47 Issue (down) 6 Pages 1549-1554  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The interaction between evaporated gold and pristine or oxygen plasma treated multi-walled carbon nanotubes (MWCNTs) is investigated. Experimental and theoretical results indicate that gold nucleation occurs at defect sites, whether initially present or introduced by oxygen plasma treatment. Uniform gold cluster dispersion is observed on plasma treated carbon nanotubes (CNTs) and associated with the presence of uniformly dispersed oxidized vacancy centres on the CNT surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000265518700018 Publication Date 2009-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 38 Open Access  
  Notes Pai Approved Most recent IF: 6.337; 2009 IF: 4.504  
  Call Number UA @ lucian @ c:irua:77267 Serial 2717  
Permanent link to this record
 

 
Author Bittencourt, C.; van Lier, G.; Ke, X.; Suarez-Martinez, I.; Felten, A.; Ghijsen, J.; Van Tendeloo, G.; Ewels, C.O. pdf  doi
openurl 
  Title Spectroscopy and defect identification for fluorinated carbon nanotubes Type A1 Journal article
  Year 2009 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal Chemphyschem  
  Volume 10 Issue (down) 6 Pages 920-925  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Multi-wall carbon nanotubes (MWCNTs) were exposed to a CF4 radio-frequency (rf) plasma. High-resolution photoelectron spectroscopy shows that the treatment effectively grafts fluorine atoms onto the MWCNTs, altering the valence electronic states. Fluorine surface concentration can be tuned by varying the exposure time. Evaporation of gold onto MWCNTs is used to mark active site formation. High-resolution transmission electron microscopy coupled with density functional theory (DFT) modelling is used to characterise the surface defects formed, indicating that the plasma treatment does not etch the tube surface. We suggest that this combination of theory and microscopy of thermally evaporated gold atoms onto the CNT surface may be a powerful approach to characterise both surface defect density as well as defect type.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000265469200011 Publication Date 2009-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235;1439-7641; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.075 Times cited 14 Open Access  
  Notes Iuap; Fwo Approved Most recent IF: 3.075; 2009 IF: 3.453  
  Call Number UA @ lucian @ c:irua:77315 Serial 3073  
Permanent link to this record
 

 
Author Skaltsas, T.; Ke, X.; Bittencourt, C.; Tagmatarchis, N. doi  openurl
  Title Ultrasonication induces oxygenated species and defects onto exfoliated graphene Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 117 Issue (down) 44 Pages 23272-23278  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The effect of ultrasonication parameters, such as time and power applied, to exfoliate graphite in o-dichlorobenzene (o-DCB) and N-methyl-1,2-pyrrolidone (NMP) was examined. It was found that the concentration of graphene was higher in o-DCB, while its dispersibility was increased when sonication was applied for a longer period and/or at higher power. However, spectroscopic examination by X-ray photoelectron spectroscopy (XPS) revealed that ultrasonication causes defects and induces oxygen functional groups in the form of carboxylic acids and ethers/epoxides onto the graphene lattice. Additional proof for the latter arose from Raman, IR, and thermogravimetry studies. The carboxylic acids and ethers/epoxides onto exfoliated graphene were derived from air during ultrasonication and found independent of the solvent used for the exfoliation and the power and/or time ultrasonication applied. Quantitative evaluation of the amount of oxygenated species present on exfoliated graphene as performed by high-resolution XPS revealed that the relative oxygen percentage was higher when exfoliation was performed in NMP. Finally, the sonication time and/or power affected the oxygen content on exfoliated graphene, since extended ultrasonication resulted in a decrease in the oxygen content on exfoliated graphene, with a simultaneous increase of defected sp(3) carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000326845400090 Publication Date 2013-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 65 Open Access  
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835  
  Call Number UA @ lucian @ c:irua:112710 Serial 3797  
Permanent link to this record
 

 
Author Bittencourt, C.; Navio, C.; Nicolay, A.; Ruelle, B.; Godfroid, T.; Snyders, R.; Colomer, J.-F.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Suarez-Martinez, I.; Ewels, C.P. pdf  doi
openurl 
  Title Atomic oxygen functionalization of vertically aligned carbon nanotubes Type A1 Journal article
  Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 115 Issue (down) 42 Pages 20412-20418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vertically aligned multiwalled carbon nanotubes (v-MWCNTs) are functionalized using atomic oxygen generated in a microwave plasma. X-ray photoelectron spectroscopy depth profile analysis shows that the plasma treatment effectively grafts oxygen exclusively at the v-MWCNT tips. Electron microscopy shows that neither the vertical alignment nor the structure of v-MWCNTs were affected by the plasma treatment. Density functional calculations suggest assignment of XPS C 1s peaks at 286.6 and 287.5 eV, to epoxy and carbonyl functional groups, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000296205600009 Publication Date 2011-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 31 Open Access  
  Notes Iap Approved Most recent IF: 4.536; 2011 IF: 4.805  
  Call Number UA @ lucian @ c:irua:91890 Serial 174  
Permanent link to this record
 

 
Author Goffin, A.-L.; Duquesne, E.; Raquez, J.-M.; Miltner, H.E.; Ke, X.; Alexandre, M.; Van Tendeloo, G.; van Mele, B.; Dubois, P. pdf  doi
openurl 
  Title From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites Type A1 Journal article
  Year 2010 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 20 Issue (down) 42 Pages 9415-9422  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polyester-grafted polyhedral oligomeric silsesquioxane (POSS) nanohybrids selectively produced by ring-opening polymerization of ε-caprolactone and L,L-lactide (A.-L. Goffin, E. Duquesne, S. Moins, M. Alexandre, Ph. Dubois, Eur. Polym. Journal, 2007, 43, 4103) were studied as masterbatches by melt-blending within their corresponding commercial polymeric matrices, i.e., poly(ε-caprolactone) (PCL) and poly(L,L-lactide) (PLA). For the sake of comparison, neat POSS nanoparticles were also dispersed in PCL and PLA. The objective was to prepare aliphatic polyester-based nanocomposites with enhanced crystallization behavior, and therefore, enhanced thermo-mechanical properties. Wide-angle X-ray scattering and transmission electron microscopy attested for the dispersion of individualized POSS nanoparticles in the resulting nanocomposite materials only when the polyester-grafted POSS nanohybrid was used as a masterbatch. The large impact of such finely dispersed (grafted) nanoparticles on the crystallization behavior for the corresponding polyester matrices was noticed, as evidenced by differential scanning calorimetry analysis. Indeed, well-dispersed POSS nanoparticles acted as efficient nucleating sites, significantly increasing the crystallinity degree of both PCL and PLA matrices. As a result, a positive impact on thermo-mechanical properties was highlighted by dynamic mechanical thermal analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000283264500017 Publication Date 2010-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 42 Open Access  
  Notes Fwo; Iap-6 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85784 Serial 1284  
Permanent link to this record
 

 
Author Vereecke, B.; van der Veen, M.H.; Sugiura, M.; Kashiwagi, Y.; Ke, X.; Cott, D.J.; Hantschel, T.; Huyghebaert, C.; Tökei, Z. pdf  doi
openurl 
  Title Wafer-level electrical evaluation of vertical carbon nanotube bundles as a function of growth temperature Type A1 Journal article
  Year 2013 Publication Japanese journal of applied physics Abbreviated Journal Jpn J Appl Phys  
  Volume 52 Issue (down) 42 Pages 04cn02-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have evaluated the resistance of carbon nanotubes (CNTs) grown at a CMOS-compatible temperature using a realistic integration scheme. The structural analysis of the CNTs by transmission electron microscopy (TEM) showed that the degree of graphitization decreased significantly when the growth temperature was decreased from 540 to 400 °C. The CNTs were integrated to form 150-nm-diameter vertical interconnects between a TiN layer and Cu metal trenches on 200 mm full wafers. Wafers with CNTs grown at low temperature were found to have a lower single-contact resistance than those produced at high temperatures. Thickness measurements showed that the low contact resistance is a result of small contact height. This height dependence is masking the impact of CNT graphitization quality on resistance. When benchmarking our results with data from the literature, a relationship between resistivity and growth temperature cannot be found for CNT-based vertical interconnects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Kyoto Editor  
  Language Wos 000320002400150 Publication Date 2013-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-4922;1347-4065; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.384 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.384; 2013 IF: 1.057  
  Call Number UA @ lucian @ c:irua:108713 Serial 3902  
Permanent link to this record
 

 
Author Bittencourt, C.; Hecq, M.; Felten, A.; Pireaux, J.J.; Ghijsen, J.; Felicissimo, M.P.; Rudolf, P.; Drube, W.; Ke, X.; Van Tendeloo, G. pdf  doi
openurl 
  Title Platinumcarbon nanotube interaction Type A1 Journal article
  Year 2008 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 462 Issue (down) 4/6 Pages 260-264  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The interaction between evaporated Pt and pristine or oxygen-plasma-treated multiwall carbon nanotubes (CNTs) is investigated. Pt is found to nucleate at defect sites, whether initially present or introduced by oxygen plasma treatment. The plasma treatment induces a uniform dispersion of Pt nanoparticles at the CNT surface. The absence of additional features in the C 1s core level spectrum indicates that no mixed PtC phase is formed. The formation of COPt bonds at the cluster-CNT interface is suggested to reduce the electronic interaction between Pt nanoparticles and the CNT surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000258830900025 Publication Date 2008-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 62 Open Access  
  Notes Pai Approved Most recent IF: 1.815; 2008 IF: 2.169  
  Call Number UA @ lucian @ c:irua:76489 Serial 2652  
Permanent link to this record
 

 
Author Shan, L.; Punniyakoti, S.; Van Bael, M.J.; Temst, K.; Van Bael, M.K.; Ke, X.; Bals, S.; Van Tendeloo, G.; D'Olieslaeger, M.; Wagner, P.; Haenen, K.; Boyen, H.G.; pdf  doi
openurl 
  Title Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts : a facile way to large-scale ordered arrays of transition-metal nanoparticles Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue (down) 4 Pages 701-707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new and facile approach is presented for generating quasi-regular patterns of transition metal-based nanoparticles on flat substrates exploiting polystyrene-block-poly2vinyl pyridine (PS-b-P2VP) micelles as intermediate templates. Direct loading of such micellar nanoreactors by polar transition metal salts in solution usually results in nanoparticle ensembles exhibiting only short range order accompanied by broad distributions of particle size and inter-particle distance. Here, we demonstrate that the use of P2VP homopolymers of appropriate length as molecular carriers to transport precursor salts into the micellar cores can significantly increase the degree of lateral order within the final nanoparticle arrays combined with a decrease in spreading in particle size. Thus, a significantly extended range of materials is now available which can be exploited to study fundamental properties at the transition from clusters to solids by means of well-organized, well-separated, size-selected metal and metal oxide nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000329069900015 Publication Date 2013-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 5 Open Access Not_Open_Access  
  Notes FWO projects G.0456.12; 50 G.0346.09N; Methusalem project "NANO Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:113734 Serial 1489  
Permanent link to this record
 

 
Author Song, H.-D.; Wu, Y.-F.; Yang, X.; Ren, Z.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Liu, D.; Wu, H.-C.; Yan, B.; Wu, X.; Duan, C.-G.; Han, G.; Liao, Z.-M.; Yu, D. pdf  doi
openurl 
  Title Asymmetric Modulation on Exchange Field in a Graphene/BiFeO3Heterostructure by External Magnetic Field Type A1 Journal article
  Year 2018 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 18 Issue (down) 4 Pages 2435-2441  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphene, having all atoms on its surface, is favorable to extend the functions by introducing the spin–orbit coupling and magnetism through proximity effect. Here, we report the tunable interfacial exchange field produced by proximity coupling in graphene/BiFeO3 heterostructures. The exchange field has a notable dependence with external magnetic field, and it is much larger under negative magnetic field than that under positive magnetic field. For negative external magnetic field, interfacial exchange coupling gives rise to evident spin splitting for N ≠ 0 Landau levels and a quantum Hall metal state for N = 0 Landau level. Our findings suggest graphene/BiFeO3 heterostructures are promising for spintronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430155900034 Publication Date 2018-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 9 Open Access Not_Open_Access  
  Notes This work was supported by National Key Research and Development Program of China (No. 2016YFA0300802) and NSFC (Nos. 11774004 and 11604004). Ministry of Science and Technology of the People's Republic of China, 2016YFA0300802 ; National Natural Science Foundation of China, 11604004 11774004 ; Approved Most recent IF: 12.712  
  Call Number EMAT @ lucian @c:irua:150794 Serial 4923  
Permanent link to this record
 

 
Author Llobet, E.; Espinosa, E.H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J.J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.; pdf  doi
openurl 
  Title Carbon nanotube TiO2 hybrid films for detecting traces of O2 Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue (down) 37 Pages 375501-375511  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. <= 10 ppm) in a flow of CO(2), which is of interest for the beverage industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000258385600014 Publication Date 2008-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 48 Open Access  
  Notes Pai Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:103083 Serial 282  
Permanent link to this record
 

 
Author Spyrou, K.; Potsi, G.; Diamanti, E.K.; Ke, X.; Serestatidou, E.; Verginadis, I.I.; Velalopoulou, A.P.; Evangelou, A.M.; Deligiannakis, Y.; Van Tendeloo, G.; Gournis, D.; Rudolf, P.; doi  openurl
  Title Towards Novel Multifunctional Pillared Nanostructures: Effective Intercalation of Adamantylamine in Graphene Oxide and Smectite Clays Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue (down) 37 Pages 5841-5850  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multifunctional pillared materials are synthesized by the intercalation of cage-shaped adamantylamine (ADMA) molecules into the interlayer space of graphite oxide (GO) and aluminosilicate clays. The physicochemical and structural properties of these hybrids, determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman and X-ray photoemission (XPS) spectroscopies and transmission electron microscopy (TEM) show that they can serve as tunable hydrophobic/hydrophilic and stereospecific nanotemplates. Thus, in ADMA-pillared clay hybrids, the phyllomorphous clay provides a hydrophilic nanoenvironment where the local hydrophobicity is modulated by the presence of ADMA moieties. On the other hand, in the ADMA-GO hybrid, both the aromatic rings of GO sheets and the ADMA molecules define a hydrophobic nanoenvironment where sp(3)-oxo moieties (epoxy, hydroxyl and carboxyl groups), present on GO, modulate hydrophilicity. As test applications, these pillared nanostructures are capable of selective/stereospecific trapping of small chlorophenols or can act as cytotoxic agents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000342794500008 Publication Date 2014-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 19 Open Access  
  Notes Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:121085 Serial 3686  
Permanent link to this record
 

 
Author Schulze, A.; Hantschel, T.; Dathe, A.; Eyben, P.; Ke, X.; Vandervorst, W. pdf  doi
openurl 
  Title Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects Type A1 Journal article
  Year 2012 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 23 Issue (down) 30 Pages 305707  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The fabrication and integration of low-resistance carbon nanotubes (CNTs) for interconnects in future integrated circuits requires characterization techniques providing structural and electrical information at the nanometer scale. In this paper we present a slice-and-view approach based on electrical atomic force microscopy. Material removal achieved by successive scanning using doped ultra-sharp full-diamond probes, manufactured in-house, enables us to acquire two-dimensional (2D) resistance maps originating from different depths (equivalently different CNT lengths) on CNT-based interconnects. Stacking and interpolating these 2D resistance maps results in a three-dimensional (3D) representation (tomogram). This allows insight from a structural (e.g. size, density, distribution, straightness) and electrical point of view simultaneously. By extracting the resistance evolution over the length of an individual CNT we derive quantitative information about the resistivity and the contact resistance between the CNT and bottom electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000306333500029 Publication Date 2012-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.44; 2012 IF: 3.842  
  Call Number UA @ lucian @ c:irua:100750 Serial 895  
Permanent link to this record
 

 
Author Ustarroz, J.; Ke, X.; Hubin, A.; Bals, S.; Terryn, H. pdf  doi
openurl 
  Title New insights into the early stages of nanoparticle electrodeposition Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 116 Issue (down) 3 Pages 2322-2329  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electrodeposition is an increasingly important method to synthesize supported nanoparticles, yet the early stages of electrochemical nanoparticle formation are not perfectly understood. In this paper, the early stages of silver nanoparticle electrodeposition on carbon substrates have been studied by aberration-corrected TEM, using carbon-coated TEM grids as electrochemical electrodes. In this manner we have access to as-deposited nanoparticle size distribution and structural characterization at the atomic scale combined with electrochemical measurements, which represents a breakthrough in a full understanding of the nanoparticle electrodeposition mechanisms. Whereas classical models, based upon characterization at the nanoscale, assume that electrochemical growth is only driven by direct attachment, the results reported hereafter indicate that early nanoparticle growth is mostly driven by nanocluster surface movement and aggregation. Hence, we conclude that electrochemical nulceation and growth models should be revised and that an electrochemical aggregative growth mechanism should be considered in the early stages of nanoparticle electrodeposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000299584400037 Publication Date 2011-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 104 Open Access  
  Notes Fwo Approved Most recent IF: 4.536; 2012 IF: 4.814  
  Call Number UA @ lucian @ c:irua:96225 Serial 2316  
Permanent link to this record
 

 
Author Hoek, M.; Coneri, F.; Poccia, N.; Renshaw Wang, X.; Ke, X.; Van Tendeloo, G.; Hilgenkamp, H. pdf  url
doi  openurl
  Title Strain accommodation through facet matching in La1.85Sr0.15CuO4/Nd1.85Ce0.15CuO4 ramp-edge junctions Type A1 Journal article
  Year 2015 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 3 Issue (down) 3 Pages 086101  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scanning nano-focused X-ray diffraction and high-angle annular dark-field scanning transmission electron microscopy are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd1.85Ce0.15CuO4 and superconducting hole-doped La1.85Sr0.15CuO4 thin films, the latter being the top layer. On the ramp, a new growth mode of La1.85Sr0.15CuO4 with a 3.3° tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360656800009 Publication Date 2015-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 4 Open Access  
  Notes 312483 Esteem2; 246791 Countatoms; esteem2_jra2 Approved Most recent IF: 4.335; 2015 IF: NA  
  Call Number c:irua:127690 c:irua:127690 Serial 3163  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: