|
Record |
Links |
|
Author |
Bertoni, G.; Grillo, V.; Brescia, R.; Ke, X.; Bals, S.; Catellani, A.; Li, H.; Manna, L. |
|
|
Title |
Direct determination of polarity, faceting, and core location in colloidal core/shell wurtzite semiconductor nanocrystals |
Type |
A1 Journal article |
|
Year |
2012 |
Publication |
ACS nano |
Abbreviated Journal |
Acs Nano |
|
|
Volume |
6 |
Issue |
7 |
Pages |
6453-6461 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The ability to determine the atomic arrangement and termination of various facets of surfactant-coated nanocrystals is of great importance for understanding their growth mechanism and their surface properties and represents a critical piece of information that can be coupled to other experimental techniques and to calculations. This is especially appealing in the study of nanocrystals that can be grown in strongly anisotropic shapes, for which the relative growth rates of various facets can be influenced under varying reaction conditions. Here we show that in two representative cases of rod-shaped nanocrystals in the wurtzite phase (CdSe(core)/CdS(shell) and ZnSe(core)/ZnS(shell) nanorods) the terminations of the polar facets can be resolved unambiguously by combining advanced electron microscopy techniques, such as aberration-corrected HRTEM with exit wave reconstruction or aberration-corrected HAADF-STEM. The [0001] and [000-1] polar directions of these rods, which grow preferentially along their c-axis, are revealed clearly, with one side consisting of the Cd (or Zn)-terminated (0001) facet and the other side with a pronounced faceting due to Cd (or Zn)-terminated {10-1-1} facets. The lateral faceting of the rods is instead dominated by three nonpolar {10-10} facets. The core buried in the nanostructure can be localized in both the exit wave phase and HAADF-STEM images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000306673800079 |
Publication Date |
2012-06-18 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1936-0851;1936-086X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
13.942 |
Times cited |
63 |
Open Access |
|
|
|
Notes |
The authors gratefully acknowledge funding from the European Research Council under grant number 240111 (NANO-ARCH) and the financial support from the Flemish Hercules 3 Programme for large infrastructures. G.B. and V.G. thank E. Rotunno for his help with STEM_CELL and IWFR. |
Approved |
Most recent IF: 13.942; 2012 IF: 12.062 |
|
|
Call Number |
UA @ lucian @ c:irua:101138 |
Serial |
710 |
|
Permanent link to this record |