toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kolev, I.; Bogaerts, A. doi  openurl
  Title Numerical models of the planar magnetron glow discharges Type A1 Journal article
  Year 2004 Publication Contributions to plasma physics Abbreviated Journal Contrib Plasm Phys  
  Volume 44 Issue 7/8 Pages 582-588  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000225541000003 Publication Date 2004-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0863-1042;1521-3986; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.44 Times cited 22 Open Access  
  Notes Approved Most recent IF: 1.44; 2004 IF: 0.701  
  Call Number UA @ lucian @ c:irua:49069 Serial 2402  
Permanent link to this record
 

 
Author Veldeman, E.; Van 't dack, L.; Gijbels, R.; Pentcheva, E. openurl 
  Title Sulfur species and associated trace elements in south-west Bulgarian thermal waters Type A1 Journal article
  Year 1991 Publication Applied geochemistry Abbreviated Journal Appl Geochem  
  Volume 6 Issue Pages 49-62  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1991EU47000004 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0883-2927 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.268 Times cited 7 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:706 Serial 3348  
Permanent link to this record
 

 
Author Cidu, R.; Fanfani, L.; Shand, P.; Edmunds, W.M.; Van 't dack, L.; Gijbels, R. doi  openurl
  Title Hydrogeochemical exploration for gold in the Osilo area, Sardinia, Italy Type A1 Journal article
  Year 1995 Publication Applied geochemistry Abbreviated Journal Appl Geochem  
  Volume 10 Issue Pages 517-530  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1995TP12700003 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0883-2927; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.268 Times cited 10 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:12273 Serial 1536  
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M. openurl 
  Title What modeling reveals about the properties of an inductively coupled plasma Type A1 Journal article
  Year 2016 Publication Spectroscopy Abbreviated Journal Spectroscopy-Us  
  Volume 31 Issue 1 Pages 52-59  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of a mass spectrometry (MS) sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Springfield, Or. Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0887-6703 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.466 Times cited Open Access  
  Notes Approved Most recent IF: 0.466  
  Call Number UA @ lucian @ c:irua:131601 Serial 4278  
Permanent link to this record
 

 
Author Kumar, N.; Perez-Novo, C.; Shaw, P.; Logie, E.; Privat-Maldonado, A.; Dewilde, S.; Smits, E.; Berghe, W.V.; Bogaerts, A. pdf  url
doi  openurl
  Title Physical plasma-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death Type A1 Journal article
  Year 2021 Publication Free Radical Biology And Medicine Abbreviated Journal Free Radical Bio Med  
  Volume 166 Issue Pages 187-200  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Despite modern therapeutic advances, the survival prospects of pancreatic cancer patients remain poor, due to chemoresistance and dysregulated oncogenic kinase signaling networks. We applied a novel kinome activitymapping approach using biological peptide targets as phospho-sensors to identify vulnerable kinase de­pendencies for therapy sensitization by physical plasma. Ser/Thr-kinome specific activity changes were mapped upon induction of ferroptotic cell death in pancreatic tumor cells exposed to reactive oxygen and nitrogen species of plasma-treated water (PTW). This revealed a broad kinome activity response involving the CAMK, the AGC and CMGC family of kinases. This systems-level kinome network response supports stress adaptive switches between chemoresistant anti-oxidant responses of Kelch-like ECH-associated protein 1 (KEAP1)/Heme Oxy­genase 1 (HMOX1) and ferroptotic cell death sensitization upon suppression of Nuclear factor (erythroid derived 2)-like 2 (NRF2) and Glutathione peroxidase 4 (GPX4). This is further supported by ex vivo experiments in the chicken chorioallantoic membrane assay, showing decreased GPX4 and Glutathione (GSH) expression as well as increased lipid peroxidation, along with suppressed BxPC-3 tumor growth in response to PTW. Taken all together, we demonstrate that plasma treated water-derived oxidants sensitize pancreatic cancer cells to fer­roptotic cell death by targeting a NRF2-HMOX1-GPX4 specific kinase signaling network.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632703400001 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0891-5849 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.606 Times cited Open Access OpenAccess  
  Notes We gratefully acknowledge the financial support obtained from the Research Foundation Flanders (FWO), Belgium, grant number 12J5617 N and Department of Biotechnology (DBT) Ramalingaswami Re-entry Fellowship, India, grant number D.O.NO.BT/HRD/35/02/2006. We are thankful to the Laboratory of Experimental Hematology, for providing the facilities for the experimental and fluorescence micro­scopy work. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), Belgium. The Kinome profiling was performed at the Epigenetic Signaling service facility (PPES-UA) funded by the Hercules Foundation and Foundation against cancer Belgium (KOTK 7872). Approved Most recent IF: 5.606  
  Call Number PLASMANT @ plasmant @c:irua:176878 Serial 6711  
Permanent link to this record
 

 
Author Eeckhaoudt, S.; van Vaeck, L.; Gijbels, R.; van Grieken, R.E. openurl 
  Title Laser microprobe mass spectrometry in biology and biomedicine Type A1 Journal article
  Year 1994 Publication Scanning microscopy Abbreviated Journal  
  Volume S8 Issue Pages 335-358  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0891-7035 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:9531 Serial 1794  
Permanent link to this record
 

 
Author Wu, S.; van Daele, A.; Jacob, W.; Gijbels, R.; Verbeeck, A.; de Keyzer, R. openurl 
  Title Microanalysis of individual silver halide microcrystals Type A1 Journal article
  Year 1993 Publication Scanning microscopy Abbreviated Journal  
  Volume 7 Issue Pages 17-24  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos A1993LA65400003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0891-7035 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Approved PHYSICS, CONDENSED MATTER 16/67 Q1 #  
  Call Number UA @ lucian @ c:irua:6143 Serial 2024  
Permanent link to this record
 

 
Author Geuens, I.; Nys, B.; Naudts, J.; Gijbels, R.; Jacob, W.; van Espen, P. openurl 
  Title The primary energy dependence of backscattered electron images up to 100 keV Type A1 Journal article
  Year 1991 Publication Scanning microscopy Abbreviated Journal  
  Volume 5 Issue 2 Pages 339-344  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Chemometrics (Mitac 3)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos A1991GC67000005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0891-7035 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:709 Serial 2713  
Permanent link to this record
 

 
Author Vertes, A.; Gijbels, R. openurl 
  Title Restricted energy transfer in laser desorption of high molecular weight biomolecules Type A1 Journal article
  Year 1991 Publication Scanning microscopy Abbreviated Journal  
  Volume 5 Issue Pages 317-328  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos A1991GC67000003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0891-7035 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes Approved INSTRUMENTS & INSTRUMENTATION 31/56 Q3 # NUCLEAR SCIENCE & TECHNOLOGY 9/32 Q2 # PHYSICS, PARTICLES & FIELDS 24/28 Q4 # SPECTROSCOPY 28/43 Q3 #  
  Call Number UA @ lucian @ c:irua:705 Serial 2899  
Permanent link to this record
 

 
Author Matnazarova, S.; Khalilov, U.; Yusupov, M. url  doi
openurl 
  Title Effect of endohedral nickel atoms on the hydrophilicity of carbon nanotubes Type A1 Journal article
  Year 2023 Publication Molecular simulation Abbreviated Journal  
  Volume 49 Issue 17 Pages 1575-1581  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Carbon nanotubes (CNTs) have been successfully used in biomedicine, including cancer therapy, due to their unique physico-chemical properties. Because pristine CNTs exhibit hydrophobic behaviour, they can have a cytotoxic effect on cells, which limits their practical use in biomedicine. The toxicity of CNTs can be reduced by adding water-soluble functional radicals to their surface, i.e. by increasing their hydrophilicity. Another possibility for increasing the hydrophilicity of CNTs is probably filling them with endohedral metal atoms, which has not yet been studied. Thus, in this study, we use computer simulations to investigate the combined effect of endohedral nickel atoms and functional groups on the hydrophilicity of CNTs. Our simulation results show that the introduction of endohedral nickel atoms into CNTs increases their binding energy with functional groups. We also find that the addition of functional groups to the surface of CNT, along with filling it with endohedral nickel atoms, leads to an increase in the dipole moment of the CNT as well as its interaction energy with water, thereby increasing the hydrophilicity of the CNT and, consequently, its solubility in water. This, in turn, can lead to a decrease in CNT toxicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001059544800001 Publication Date 2023-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0892-7022 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.1 Times cited Open Access  
  Notes Approved Most recent IF: 2.1; 2023 IF: 1.254  
  Call Number UA @ admin @ c:irua:199261 Serial 9027  
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C. doi  openurl
  Title Self-limiting oxidation in small-diameter Si nanowires Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 11 Pages 2141-2147  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core I ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiOx (x <= 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000305092600021 Publication Date 2012-05-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 45 Open Access  
  Notes Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number UA @ lucian @ c:irua:99079 Serial 2976  
Permanent link to this record
 

 
Author Eckert, M.; Mortet, V.; Zhang, L.; Neyts, E.; Verbeeck, J.; Haenen, ken; Bogaerts, A. pdf  doi
openurl 
  Title Theoretical investigation of grain size tuning during prolonged bias-enhanced nucleation Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 6 Pages 1414-1423  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, the effects of prolonged bias-enhanced nucleation (prolonged BEN) on the growth mechanisms of diamond are investigated by molecular dynamics (MD) and combined MD-Metropolis Monte Carlo (MD-MMC) simulations. First, cumulative impacts of CxHy+ and Hx+ on an a-C:H/nanodiamond composite were simulated; second, nonconsecutive impacts of the dominant ions were simulated in order to understand the observed phenomena in more detail. As stated in the existing literature, the growth of diamond structures during prolonged BEN is a process that takes place below the surface of the growing film. The investigation of the penetration behavior of CxHy+ and Hx+ species shows that the carbon-containing ions remain trapped within this amorphous phase where they dominate mechanisms like precipitation of sp3 carbon clusters. The H+ ions, however, penetrate into the crystalline phase at high bias voltages (>100 V), destroying the perfect diamond structure. The experimentally measured reduction of grain sizes at high bias voltage, reported in the literature, might thus be related to penetrating H+ ions. Furthermore, the CxHy+ ions are found to be the most efficient sputtering agents, preventing the build up of defective material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000288291400011 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 9 Open Access  
  Notes Iwt; Fwo; Esteem 026019; Iap Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:87642 Serial 3605  
Permanent link to this record
 

 
Author Bogaerts, A.; Zhang, Q.-Z.; Zhang, Y.-R.; Van Laer, K.; Wang, W. pdf  url
doi  openurl
  Title Burning questions of plasma catalysis: Answers by modeling Type A1 Journal article
  Year 2019 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 337 Issue Pages 3-14  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is promising for various environmental, energy and chemical synthesis applications, but the underlying mechanisms are far from understood. Modeling can help to obtain a better insight in these mechanisms. Some burning questions relate to the plasma behavior inside packed bed reactors and whether plasma can penetrate into catalyst pores. In this paper, we try to provide answers to these questions, by means of both fluid modeling and particle-in-cell/Monte Carlo collision simulations. We present a short overview of recent findings obtained in our group by means of modeling, i.e., the enhanced electric field near the contact points and the streamer propagation through the packing in packed bed reactors, as well as the plasma behavior in catalyst pores, to determine the minimum pore size in which plasma streamers can penetrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482179500002 Publication Date 2019-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 7 Open Access  
  Notes University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc”; “CryoEtch” within Horizon2020, 657304 702604 ;We would like to thank H.-H. Kim for performing experiments to validate the modeling of streamer propagation in packed bed reactors. We acknowledge financial support from the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowships “GlidArc” and “CryoEtch” within Horizon2020 (Grant Nos. 657304 and 702604). Approved Most recent IF: 4.636  
  Call Number PLASMANT @ plasmant @c:irua:161775 Serial 5356  
Permanent link to this record
 

 
Author Bogaerts, A.; Centi, G.; Hessel, V.; Rebrov, E. pdf  url
doi  openurl
  Title Challenges in unconventional catalysis Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume 420 Issue Pages 114180  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Catalysis science and technology increased efforts recently to progress beyond conventional “thermal” catalysis and face the challenges of net-zero emissions and electrification of production. Nevertheless, a better gaps and opportunities analysis is necessary. This review analyses four emerging areas of unconventional or less- conventional catalysis which share the common aspect of using directly renewable energy sources: (i) plasma catalysis, (ii) catalysis for flow chemistry and process intensification, (iii) application of electromagnetic (EM) fields to modulate catalytic activity and (iv) nanoscale generation at the catalyst interface of a strong local EM by plasmonic effect. Plasma catalysis has demonstrated synergistic effects, where the outcome is higher than the sum of both processes alone. Still, the underlying mechanisms are complex, and synergy is not always obtained. There is a crucial need for a better understanding to (i) design catalysts tailored to the plasma environment, (ii) design plasma reactors with optimal transport of plasma species to the catalyst surface, and (iii) tune the plasma conditions so they work in optimal synergy with the catalyst. Microfluidic reactors (flow chemistry) is another emerging sector leading to the intensification of catalytic syntheses, particularly in organic chemistry. New unconventional catalysts must be designed to exploit in full the novel possibilities. With a focus on (a) continuous-flow photocatalysis, (b) electrochemical flow catalysis, (c) microwave flow catalysis and (d) ultra­ sound flow activation, a series of examples are discussed, with also indications on scale-up and process indus­ trialisation. The third area discussed regards the effect on catalytic performances of applying oriented EM fields spanning several orders of magnitude. Under well-defined conditions, gas breakdown and, in some cases, plasma formation generates activated gas phase species. The EM field-driven chemical conversion processes depend further on structured electric/magnetic catalysts, which shape the EM field in strength and direction. Different effects influencing chemical conversion have been reported, including reduced activation energy, surface charging, hot spot generation, and selective local heating. The last topic discussed is complementary to the third, focusing on the possibility of tuning the photo- and electro-catalytic properties by creating a strong localised electrical field with a plasmonic effect. The novel possibilities of hot carriers generated by the plasmonic effect are also discussed. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001004623300001 Publication Date 2023-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access OpenAccess  
  Notes The EU ERC Synergy SCOPE project supported this work (project ID 810182) “ Surface-COnfined fast-modulated Plasma for process and Energy intensification in small molecules conversion”. This review thus aims to stimulate the reader to make new, creative catalysis to address the challenges of reaching a carbon-neutral world. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number PLASMANT @ plasmant @c:irua:196446 Serial 7380  
Permanent link to this record
 

 
Author Ndayirinde, C.; Gorbanev, Y.; Ciocarlan, R.-G.; De Meyer, R.; Smets, A.; Vlasov, E.; Bals, S.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic ammonia synthesis : packed catalysts act as plasma modifiers Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume 419 Issue Pages 114156-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the plasma-catalytic production of NH3 from H2 and N2 in a dielectric barrier discharge plasma reactor using five different Co-based catalysts supported on Al2O3, namely Co/Al2O3, CoCe/Al2O3, CoLa/Al2O3, CoCeLa/Al2O3 and CoCeMg/Al2O3. The catalysts were characterized via several techniques, including SEM-EDX, and their performance was compared. The best performing catalyst was found to be CoLa/Al2O3, but the dif-ferences in NH3 concentration, energy consumption and production rate between the different catalysts were limited under the same conditions (i.e. feed gas, flow rate and ratio, and applied power). At the same time, the plasma properties, such as the plasma power and current profile, varied significantly depending on the catalyst. Taken together, these findings suggest that in the production of NH3 by plasma catalysis, our catalysts act as plasma modifiers, i.e., they change the discharge properties and hence the gas phase plasma chemistry. Importantly, this effect dominates over the direct catalytic effect (as e.g. in thermal catalysis) defined by the chemistry on the catalyst surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000987221300001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the Methusalem project of the University of Antwerp. We also gratefully acknowledge the NH3-TPD analysis performed by Sander Bossier. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number UA @ admin @ c:irua:197268 Serial 8917  
Permanent link to this record
 

 
Author Brault, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering Type A1 Journal article
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 256 Issue 256 Pages 3-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Magnetron sputtering is a widely used physical vapor deposition technique for deposition and formation of nanocatalyst thin films and clusters. Nevertheless, so far only few studies investigated this formation process at the fundamental level. We here review atomic scale molecular dynamics simulations aimed at elucidating the nanocatalyst growth process through magnetron sputtering. We first introduce the basic magnetron sputtering background and machinery of molecular dynamics simulations, and then describe the studies conducted in this field so far. We also present a perspective view on how the field may be developed further.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000360085300002 Publication Date 2015-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 18 Open Access  
  Notes Approved Most recent IF: 4.636; 2015 IF: 3.893  
  Call Number c:irua:127408 Serial 2174  
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.(K.) pdf  url
doi  openurl
  Title Nanoscale thermodynamic aspects of plasma catalysis Type A1 Journal article
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 256 Issue 256 Pages 23-28  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis continues to gain increasing scientific interest, both in established fields like toxic waste abatement and emerging fields like greenhouse gas conversion into value-added chemicals. Attention is typically focused on the obtained conversion process selectivity, rates and energy efficiency. Much less attention is usually paid to the underlying mechanistic aspects of the processes that occur. In this contribution, we critically examine a number of fundamentally important nanoscale thermodynamic aspects of plasma catalysis, which are very relevant to these processes but so far have been overlooked or insufficiently covered in the plasma catalysis literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000360085300004 Publication Date 2015-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 14 Open Access  
  Notes Approved Most recent IF: 4.636; 2015 IF: 3.893  
  Call Number c:irua:127409 Serial 2274  
Permanent link to this record
 

 
Author Nozaki, T.; Neyts, E.C.; Sankaran, M.; Ostrikov, K.(K.); Liu, C.-J. pdf  doi
openurl 
  Title Plasmas for enhanced catalytic processes (ISPCEM 2014) Type Editorial
  Year 2015 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 256 Issue 256 Pages 1-2  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000360085300001 Publication Date 2015-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.636; 2015 IF: 3.893  
  Call Number c:irua:127407 Serial 2641  
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Huygh, S.; Bal, K.M.; Neyts, E.C. pdf  doi
openurl 
  Title Temperature influence on the reactivity of plasma species on a nickel catalyst surface : an atomic scale study Type A1 Journal article
  Year 2013 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 211 Issue Pages 131-136  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years, the potential use of hydrogen as a clean energy source has gained considerable attention. Especially H2 formation by Ni-catalyzed reforming of methane at elevated temperatures is an attractive process. However, a more fundamental knowledge at the atomic level is needed for a full comprehension of the reactions at the catalyst surface. In this contribution, we therefore investigate the H2 formation after CHx impacts on a Ni(1 1 1) surface in the temperature range 4001600 K, by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. While some H2 formation is already observed at the lower temperatures, substantial H2 formation is only obtained at elevated temperatures of 1400 K and above. At 1600 K, the H2 molecules are even the most frequently formed species. In direct correlation with the increasing dehydrogenation at elevated temperatures, an increased surface-to-subsurface C-diffusivity is observed as well. This study highlights the major importance of the temperature on the H2 formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000320697800020 Publication Date 2013-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 27 Open Access  
  Notes Approved Most recent IF: 4.636; 2013 IF: 3.309  
  Call Number UA @ lucian @ c:irua:108675 Serial 3500  
Permanent link to this record
 

 
Author Volkov, V.V.; van Landuyt, J.; Marushkin, K.; Gijbels, R.; Férauge, C.; Vasilyev, M.G.; Shelyakin, A.A.; Sokolovsky, A.A. pdf  doi
openurl 
  Title LPE growth and characterization of InGaAsP/InP heterostructures: IR-emitting diodes at 1.66 μm: application to the remote monitoring of methane gas Type A1 Journal article
  Year 1997 Publication Sensors and actuators : A : physical Abbreviated Journal Sensor Actuat A-Phys  
  Volume 62 Issue 1/3 Pages 624-632  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Highly effective IR light-emitting diodes operating at the wavelength 1.66 mu m and based on the buried heterostructure In0.88Ga0.12As0.26P0.74/ In0.72Ga0.28As0.62P0.38/In0.53Ga0.47As/InP have been grown by liquid-phase epitaxy (LPE) and characterized in detail by means of transmission electron microscopy (TEM), high-resolution electron microscopy (HREM),electron diffraction (ED), X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS) and electroluminescence measurements. The InGaAsP epilayers are found to be well lattice matched and of good structural quality. A tentative explanation is presented for the spinodal decomposition observed in InGaAsP alloys. A new type of selective CK, gas sensor has been developed and fabricated an the basis of the IR light-emitting diode mentioned above. Especially designed for the remote control of CH4 gas via fibre optics, an integrated optoelectronic readout scheme has been developed and tested, It is shown that the proposed type of sensor can be used for the quantitative remote control of CH4 gas concentration (0.2-100%) via a fibre glass line up to a distance of 2 x 1 km. (C) 1997 Elsevier Science S.A.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos A1997YD90600029 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0924-4247; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.499 Times cited 3 Open Access  
  Notes Approved Most recent IF: 2.499; 1997 IF: 0.635  
  Call Number UA @ lucian @ c:irua:20455 Serial 1855  
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van den Sanden, M.C.M. doi  openurl
  Title Molecular dynamics simulations for the growth of diamond-like carbon films from low kinetic energy species Type A1 Journal article
  Year 2004 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 13 Issue Pages 1873-1881  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000223883400021 Publication Date 2004-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 53 Open Access  
  Notes Approved Most recent IF: 2.561; 2004 IF: 1.670  
  Call Number UA @ lucian @ c:irua:48276 Serial 2173  
Permanent link to this record
 

 
Author Liu, Y.H.; Neyts, E.; Bogaerts, A. doi  openurl
  Title Monte Carlo method for simulations of adsorbed atom diffusion on a surface Type A1 Journal article
  Year 2006 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 15 Issue 10 Pages 1629-1635  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000241224000021 Publication Date 2006-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.561; 2006 IF: 1.935  
  Call Number UA @ lucian @ c:irua:59633 Serial 2196  
Permanent link to this record
 

 
Author Neyts, E.; Tacq, M.; Bogaerts, A. doi  openurl
  Title Reaction mechanisms of low-kinetic energy hydrocarbon radicals on typical hydrogenated amorphous carbon (a-C:H) sites: a molecular dynamics study Type A1 Journal article
  Year 2006 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 15 Issue 10 Pages 1663-1676  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000241224000026 Publication Date 2006-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.561; 2006 IF: 1.935  
  Call Number UA @ lucian @ c:irua:59634 Serial 2819  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Van Laer, K.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Can plasma be formed in catalyst pores? A modeling investigation Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 185 Issue 185 Pages 56-67  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract tWe investigate microdischarge formation inside catalyst pores by a two-dimensional fluid model forvarious pore sizes in the m-range and for various applied voltages. Indeed, this is a poorly understoodphenomenon in plasma catalysis. The calculations are performed for a dielectric barrier discharge inhelium, at atmospheric pressure. The electron and ion densities, electron temperature, electric field andpotential, as well as the electron impact ionization and excitation rate and the densities of excited plasmaspecies, are examined for a better understanding of the characteristics of the plasma inside a pore. Theresults indicate that the pore size and the applied voltage are critical parameters for the formation of amicrodischarge inside a pore. At an applied voltage of 20 kV, our calculations reveal that the ionizationmainly takes place inside the pore, and the electron density shows a significant increase near and inthe pore for pore sizes larger than 200m, whereas the effect of the pore on the total ion density isevident even for 10m pores. When the pore size is fixed at 30m, the presence of the pore has nosignificant influence on the plasma properties at an applied voltage of 2 kV. Upon increasing the voltage,the ionization process is enhanced due to the strong electric field and high electron temperature, andthe ion density shows a remarkable increase near and in the pore for voltages above 10 kV. These resultsindicate that the plasma species can be formed inside pores of structured catalysts (in the m range),and they may interact with the catalyst surface, and affect the plasma catalytic process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369452000006 Publication Date 2015-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 75 Open Access  
  Notes This work was supported by the Fund for Scientific ResearchFlanders (FWO) (Grant no. G.0217.14N), the National Natural Sci-ence Foundation of China (Grant no. 11405019), and the ChinaPostdoctoral Science Foundation (Grant no. 2015T80244). Theauthors are very grateful to V. Meynen for the useful discussions oncatalysts. This work was carried out in part using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwer-pen, a division of the Flemish Supercomputer Center VSC, fundedby the Hercules Foundation, the Flemish Government (departmentEWI) and the University of Antwerp. Approved Most recent IF: 9.446  
  Call Number c:irua:129808 Serial 3984  
Permanent link to this record
 

 
Author Shirazi, M.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title DFT study of Ni-catalyzed plasma dry reforming of methane Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 605-614  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract tWe investigated the plasma-assisted catalytic reactions for the production of value-added chemicalsfrom Ni-catalyzed plasma dry reforming of methane by means of density functional theory (DFT). Weinspected many activation barriers, from the early stage of adsorption of the major chemical fragmentsderived fromCH4andCO2molecules up to the formation of value-added chemicals at the surface, focusingon the formation of methanol, as well as the hydrogenation of C1and C2hydrocarbon fragments. Theactivation barrier calculations show that the presence of surface-bound H atoms and in some cases alsoremaining chemical fragments at the surface facilitates the formation of products. This implies that thehydrogenation of a chemical fragment on the hydrogenated crystalline surface is energetically favouredcompared to the simple hydrogenation of the chemical fragment at the bare Ni(111) surface. Indeed, thepresence of hydrogen modifies the electronic structure of the surface and the course of the reactions.We therefore conclude that surface-bound H atoms, and to some extent also the remaining chemicalfragments at the crystalline surface, induce the following effects: they facilitate associative desorption ofmethanol and ethane by increasing the rate of H-transfer to the adsorbed fragments while they impedehydrogenation of ethylene to ethane, thus promoting again the desorption of ethylene. Overall, they thusfacilitate the catalytic conversion of the formed fragments from CH4and CO2, into value-added chemicals.Finally, we believe that the retention of methane fragments, especially CH3, in the presence of surface-boundHatoms (as observed here for Ni) can be regarded as an identifier for the proper choice of a catalystfor the production of value-added chemicals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393931000063 Publication Date 2017-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 26 Open Access OpenAccess  
  Notes Financial support from the Reactive Atmospheric Plasmaprocessing –eDucation network (RAPID), through the EU 7thFramework Programme (grant agreement no. 606889) is grate-fully acknowledged. The calculations were performed using theTuring HPC infrastructure at the CalcUA core facility of the Univer-siteit Antwerpen, a division of the Flemish Supercomputer CenterVSC, funded by the Hercules Foundation, the Flemish Approved Most recent IF: 9.446  
  Call Number PLASMANT @ plasmant @ c:irua:139514 Serial 4343  
Permanent link to this record
 

 
Author Yi, Y.; Li, S.; Cui, Z.; Hao, Y.; Zhang, Y.; Wang, L.; Liu, P.; Tu, X.; Xu, X.; Guo, H.; Bogaerts, A. pdf  url
doi  openurl
  Title Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling Type A1 Journal Article;Methane conversion
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 296 Issue Pages 120384  
  Keywords A1 Journal Article;Methane conversion; Plasma catalysis; Selective oxidation; Methanol synthesis; Plasma chemistry; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The selective oxidation of methane to methanol (SOMTM) by molecular oxygen is a holy grail in catalytic chemistry and remains a challenge in chemical industry. We perform SOMTM in a CH4/O2 plasma, at low temperature and atmospheric pressure, promoted by Ni-based catalysts, reaching 81 % liquid oxygenates selectivity and 50 % CH3OH selectivity, with an excellent catalytic stability. Chemical kinetics modelling shows that CH3OH in the plasma is mainly produced through radical reactions, i.e., CH4 + O(1D) → CH3O + H, fol­lowed by CH3O + H + M→ CH3OH + M and CH3O + HCO → CH3OH + CO. The catalyst characterization shows that the improved production of CH3OH is attributed to abundant chemisorbed oxygen species, originating from highly dispersed NiO phase with strong oxide support interaction with γ-Al2O3, which are capable of promoting CH3OH formation through E-R reactions and activating H2O molecules to facilitate CH3OH desorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706860000003 Publication Date 2021-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access OpenAccess  
  Notes National Natural Science Foundation of China; PetroChina Innovation Foundation; We acknowledge financial support from the PetroChina Innovation Foundation [grant ID: 2018D-5007-0501], the Young Star Project of Dalian Science and Technology Bureau [grant ID: 2019RQ042], the National Natural Science Foundation of China [grant ID: 21503032] and the TOP research project of the Research Fund of the University of Antwerp [grant ID: 32249]. Approved Most recent IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:178816 Serial 6793  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
  Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal  
  Volume 337 Issue Pages 122977  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056527600001 Publication Date 2023-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0926-3373 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 22.1 Times cited Open Access Not_Open_Access  
  Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446  
  Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798  
Permanent link to this record
 

 
Author Xie, L.; Brault, P.; Coutanceau, C.; Bauchire, J.-M.; Caillard, A.; Baranton, S.; Berndt, J.; Neyts, E.C. pdf  doi
openurl 
  Title Efficient amorphous platinum catalyst cluster growth on porous carbon : a combined molecular dynamics and experimental study Type A1 Journal article
  Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 162 Issue 162 Pages 21-26  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Amorphous platinum clusters supported on porous carbon have been envisaged for high-performance fuel cell electrodes. For this application, it is crucial to control the morphology of the Pt layer and the Ptsubstrate interaction to maximize activity and stability. We thus investigate the morphology evolution during Pt cluster growth on a porous carbon substrate employing atomic scale molecular dynamics simulations. The simulations are based on the Pt-C interaction potential using parameters derived from density functional theory and are found to yield a Pt cluster morphology similar to that observed in low loaded fuel cell electrodes prepared by plasma sputtering. Moreover, the simulations show amorphous Pt cluster growth in agreement with X-ray diffraction and transmission electron microscopy experiments on high performance low Pt content (10 μgPt cm−2) loaded fuel cell electrodes and provide a fundamental insight in the cluster growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000343686900003 Publication Date 2014-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 20 Open Access  
  Notes Approved Most recent IF: 9.446; 2015 IF: 7.435  
  Call Number c:irua:117949 Serial 874  
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C. pdf  doi
openurl 
  Title Interactions of plasma species on nickel catalysts : a reactive molecular dynamics study on the influence of temperature and surface structure Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 154 Issue Pages 1-8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Methane reforming by plasma catalysis is a complex process that is far from understood. It requires a multidisciplinary approach which ideally takes into account all effects from the plasma on the catalyst, and vice versa. In this contribution, we focus on the interactions of CHx (x = {1,2,3}) radicals that are created in the plasma with several nickel catalyst surfaces. To this end, we perform reactive molecular dynamics simulations, based on the ReaxFF potential, in a wide temperature range of 4001600 K. First, we focus on the H2 formation as a function of temperature and surface structure. We observe that substantial H2 formation is obtained at 1400 K and above, while the role of the surface structure seems limited. Indeed, in the initial stage, the type of nickel surface influences the CH bond breaking efficiency of adsorbed radicals; however, the continuous carbon diffusion into the surface gradually diminishes the surface crystallinity and therefore reduces the effect of surface structure on the H2 formation probability. Furthermore, we have also investigated to what extent the species adsorbed on the catalyst surface can participate in surface reactions more in general, for the various surface structures and as a function of temperature. These results are part of the ongoing research on the methane reforming by plasma catalysis, a highly interesting yet complex alternative to conventional reforming processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000335098800001 Publication Date 2014-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 23 Open Access  
  Notes Approved Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:114607 Serial 1686  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: