
This item is the archived peer-reviewed author-version of:

Nanoscale thermodynamic aspects of plasma catalysis

Reference:
Neyts Erik, Ostrikov Kostya (Ken).- Nanoscale thermodynamic aspects of plasma catalysis
Catalysis today - ISSN 0920-5861 - 256:1(2015), p. 23-28 
DOI: http://dx.doi.org/doi:10.1016/j.cattod.2015.02.025 
Handle: http://hdl.handle.net/10067/1274090151162165141

Institutional repository IRUA

http://anet.uantwerpen.be/irua


Nanoscale thermodynamic aspects of plasma catalysis 
 
Erik C. Neyts1,*, Kostya (Ken) Ostrikov2,3 

 
1 University of Antwerp, Department of Chemistry, Research Group PLASMANT, 
Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium 
 
2  Institute for Future Environments and School of Chemistry, Physics, and 
Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, 
Australia 
  
3  Plasma Nanoscience Laboratories, Industrial Innovation Program, Manufacturing 
Flagship, CSIRO, P. O. Box 218, Lindfield, NSW 2070, Australia 
 
* Corresponding author.  
Tel: +32-3-265.23.88 
E-mail: erik.neyts@uantwerpen.be 
 
Abstract 
Plasma catalysis continues to gain increasing scientific interest, both in established 
fields like toxic waste abatement and emerging fields like greenhouse gas conversion 
into value-added chemicals. Attention is typically focused on the obtained conversion 
process selectivity, rates and energy efficiency. Much less attention is usually paid to 
the underlying mechanistic aspects of the processes that occur. In this contribution, 
we critically examine a number of fundamentally important nanoscale thermodynamic 
aspects of plasma catalysis, which are very relevant to these processes but so far have 
been overlooked or insufficiently covered in the plasma catalysis literature. 
 
1. Introduction 
The central idea in catalysis is to facilitate an alternative pathway for a chemical 
reaction to occur through the use of a catalyst. This alternative pathway is subject to a 
lower energy barrier, resulting in higher reaction rates. The catalyst will typically 
lower certain barriers more than others, and stabilize certain intermediates more than 
others, such that the catalyst also determines the selectivity towards the desired end 
products [1-3]. Provided that the reactants are supplied and the products are removed 
efficiently, the catalyst properties ultimately determine the dominant reaction 
pathways, as well as their selectivity, rates, products and energy efficiency [4-6]. 
 
Most of the catalyst materials are nanostructured [7]. This can be achieved by 
controlling their synthesis, as is the case for nanoparticles and nanoporous materials 
[3, 8]. The catalysts also feature nanoscale roughness, which also plays a role in many 
catalytic processes [9, 10]. Catalyst properties strongly depend on their structure and 
size [2, 6, 11]. To make a catalytic process as cost-effective as possible, the total 
catalyst surface area should be maximized. In this way the exposure of catalytically 
active sites is maximized while the used amount of catalytic material is reduced.  
 
In heterogeneous catalysis, this is accomplished by dispersing the catalyst over a 
suitable (most often nanoporous) support and by deliberately allowing the catalyst to 
form nanofeatures, thereby dramatically increasing the surface area compared to a 
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atomically smooth surface [12, 13]. Clearly, taking into account the nanoscale nature 
of the catalyst is of prime importance. 
 
At the microscopic level, the catalytic process may be divided in three steps:  

1) arrival and binding (e.g., physi- or chemisorption) of the reactants to the    
catalyst surface;  

2) physico-chemical surface processes such as physical diffusion and chemical 
reactions; and  

3) desorption of the catalytic reaction products into the gas phase. 
 
While catalytic processes are traditionally treated using physical and chemical 
kinetics approaches, thermodynamics play a crucial role in each of these steps. 
Thermodynamics is concerned with the description of systems in terms of the 
exchange of energy and matter with their surroundings, and determines to what extent 
the reaction can proceed. As the reaction approaches the equilibrium, as determined 
by the thermodynamic equilibrium constant for a given set of reaction conditions, the 
reaction rate will drop accordingly. Therefore, a complete description of the catalytic 
process requires considering thermodynamics next to the kinetics of the process. 
 
Classical thermodynamics deal with macroscopic systems under equilibrium 
conditions where time is not a parameter. Plasma catalysis, however, is typically a 
far-from-equilibrium process, where large fluxes of energy and matter are 
continuously delivered to the catalyst [14-16]. The thermodynamic complexity of 
plasma nano-catalysis is further increased by the nanometer length scale of the system. 
For instance, it is well known that both non-equilibrium and nanoscale effects play 
very important roles in plasma-based catalyzed growth of nanotubes [17-19]. In this 
case, fluxes of atomic, radical, molecular, excited, etc. species, as well as ions, 
electrons and photons impinge on the nano-catalyst, leading to out-of-equilibrium-
growth of the (nanoscale) structure. Here we will focus on nanoscale thermodynamic 
aspects relevant to plasma catalysis. 
 
2. Theoretical description of thermodynamics for nanoscale systems 
Various approaches to describe the thermodynamics of nanosystems have been 
developed, including nanothermodynamics by Hill [20], Tsallis thermodynamics [21], 
nanoscale thermodynamics based on classical thermodynamics [22], and fluctuation 
theorems [23]. 
 
At the nanoscale, the classical macroscopic laws of thermodynamics no longer hold, 
and modifications or alternative descriptions are required. Consider for example a 
icosahedral Ni147 cluster, which has an apex-to-apex diameter of about 1.5 nm and a 
surface-to-volume ratio of around 5. As will be shown below, both the melting 
temperature and adsorption energy on its surface depend on the exact size and 
structure. Standard equilibrium thermodynamics are not very well suited to describe 
such a system, because of inherent fluctuations in structure and energy. In fact, due to 
these fluctuations, definition of static equilibrium becomes rather difficult, if not 
impossible. This is why structural characteristics in nanoscale systems vary 
dynamically, in contrast to the quasi-static equilibrium of macroscale objects.  
 
At the nanoscale, modifications or alternative descriptions of classical macroscale 
thermodynamics are often required. Some authors argue that no such modifications 



are needed and including a classical size-dependence (as in classical nucleation 
theory) is sufficient to describe and address the behaviour of nanoscopic systems [24]. 
Nonetheless, it is obvious that nano-catalysts exhibit modified properties relative to 
their macrosopic analogues, due to their large surface-to-volume ratio. Hence, 
standard equilibrium size-independent thermodynamics are not very well suited to 
describe such systems, because of 1) the finite nature of nanoscale structures, and 2) 
inherent fluctuations in structure and energy.  
 
Below, we will examine the most important relations between the thermodynamic 
factors and catalytic effects in nanoscale systems, in particular affected by the plasma.  
 
2.1. The Gibbs-Duhem equation at the nanoscale 
The first conceptual framework for thermodynamics of nanoscale objects, referred to 
as “nanothermodynamics” [20, 25], was established by Hill. We first consider 
traditional thermodynamics and then introduce the nanoscale effects [20], keeping the 
above in consideration. For a macroscopic one-component system the internal energy 
U may be expressed as a function of its three natural extensive variables: 
 
 
 
where S is the conventional entropy (an extensive state function), V is the volume and 
N is the number of particles. The other variables appearing in this equation are the 
temperature T, the pressure P and the chemical potential μ. Since the internal energy 
U is a state function, the total derivative  
 
 
 
can be written as the sum of partial derivatives 
 
 
 
 
 
 
Equation (3) expresses conservation of energy, i.e., the first law of thermodynamics. 
Combining equations (2) and (3) yields 
 
 
 
which is the well-known Gibbs-Duhem equation for macroscale systems. This 
equation states that changes in the intensive quantities T, P and μ are not independent. 
 
Therefore, at the nanoscale, the internal energy (or any of the other thermodynamic 
potentials) in principle depends on the exact number of particles N the structure 
contains and how they are arranged [20]. As a result, fundamental thermodynamic 
equations like the Gibbs-Duhem equation are no longer valid. Indeed, in nanoscale 
systems, the detailed geometry and structure of the system must be taken into account, 
as well as the fact that surfaces, edges and corners are present and system rotation and 
translation may occur. According to Hill, the internal energy is now complemented by 
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the so-called subdivision potential ε, which takes these factors into account at the 
ensemble level 
 
 
 
leading to  
 
 
which represents the nanoscale version of the Gibbs-Duhem equation. In a 
macroscopic system, the factors contributing to ε become negligible, and equation (5) 
reduces to equation (1). Equation (6) in effect means that the intensive quantities T, P 
and μ may now be varied independently, or stated differently, that ε is a function of 
three independent variables T, P, and μ. Nanoscale systems thus have one more 
degree of freedom compared to macroscale systems. 
 
2.2. Second law of thermodynamics and extensivity in nano-catalysis 
An alternative view on thermodynamics at the nanoscale stems from the second law 
of thermodynamics. Indeed, the second law of thermodynamics may be violated in 
nanoscale systems for very short periods of time, due to fluctuations [26, 27]. The 
Boltzmann definition of entropy is: 
 
 
 
where S is the entropy of the system, kB is the Boltzmann factor (which can be 
regarded as the thermodynamic unit of measurement of entropy), and Ω is the number 
of distinct ways of arranging the constituent particles consistent with the overall 
macroscale properties of the system. The Boltzmann entropy has two fundamental 
properties: (1) non-decrease, which means that when no heat enters or leaves the 
system the entropy cannot decrease, and (2) additivity, which means that that the 
entropy of two systems taken together is the sum of the separate entropies. In 
nanosystems, however, it is impossible to completely satisfy both properties. 
 
Nonextensive thermodynamics is based on a new statistics introduced by Tsallis [21]. 
Tsallis statistics can be regarded as a modification of generalized Boltzmann-Gibbs 
statistical mechanics by relaxation of extensive properties to include non-extensive 
features. This can be seen as follows. In Tsallis thermodynamics, the Tsallis entropy 
is defined as [21, 28]: 
 
 
 
 
 
where pj is the probability of microstate j and q is the so-called entropic parameter. In 
the limit     the standard Gibbs entropy,             

 
 , is recovered. A key 

difference between the Gibbs (or Boltzmann) entropy and the Tsallis entropy is the 
(non-)additivity. The property of additivity for the standard Boltzmann entropy  
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where          denotes the entropy of the system composed of subsystems A and B, 
and       and       are the entropies of the separate states A and B, respectively, is 
now changed to  
 
 
 
where the last term quantifies the non-additivity of the system. Note that additivity 
should not be confused with extensivity [29]. A quantity is additive if this quantity for 
a joint state of a composite system may be decomposed as the sum of the separate 
quantities for the individual states of the system. On the other hand, a quantity is 
defined as extensive if it scales proportionally with the number of states the system 
contains. In general, most of the macroscopic physical systems are extensive. one 
does not imply the other, although in most cases encountered in physics, this is 
actually the case [29]. 
 
At the nanoscale, extensivity no longer holds. Indeed, the notion of extensivity in 
thermodynamics is based on the requirement that the associated functions (such as the 
entropy, internal energy, etc.) are homogeneous functions to degree 1 of the system 
size. This means that a function F(x) for      obeys the mapping           . 
Likewise, quantities such as the pressure and temperature are homogeneous functions 
to degree 0 at the macroscale, i.e., these are intensive quantities. These functions, 
however, are only homogeneous in the thermodynamic limit. At the nanoscale, 
thermal fluctuations render the system inhomogeneous, and the macroscopic notions 
of extensivity and intensivity are thus not applicable directly to nanoscale systems 
[30]. This indicates that nanosystems are in principle non-extensive, and non-
extensive thermodynamics must be applied. 
 
Hill-nanothermodynamics and Tsallis-thermodynamics (based on non-additivity of 
entropy) have been established separately. While some authors have presented them 
as distinct models [22], they are in fact equivalent [31]. Non-additivity in the entropy 
(Tsallis statistics) and the introduction of the subdivision potential (Hill 
nanothermodynamics) can as such be seen as two different pathways leading to the 
consistent thermodynamic description of nanoscale systems [31]. 
 
 
2.3. The Gibbs-Thomson effect 
Another approach to thermodynamics at the nanoscale is the extension of traditional 
thermodynamics with finite-size effects. This is one of the oldest approaches to 
handle finite systems, although the application to nanosystems is still debated. For 
instance, Wang et al. [22] specifically address metastable phase nucleation at the 
nanoscale by considering the Young-Laplace equation  
 
 
 
 
where   is the surface energy, which determines the pressure difference across a 
curved surface with radius r. As nanoscale objects have very high curvatures (i.e., r is 
very small), the internal pressure buildup can be significant. This phenomenon allows 
metastable phases in the equilibrium macroscale phase diagram to become stable at 
the nanoscale [22].  
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The fact that the internal equilibrium pressure increases with decreasing particle size, 
in turn also elevates the chemical potential. The equation describing this effect is the 
Gibbs-Thomson equation  
 
 
 
 
where   

  is the standard chemical potential of the particle with radius r,   
  is the 

standard chemical potential of the infinite bulk material, and   and   are the surface 
energy and atomic volume of the particle, respectively.  
 
It is important to note that in this formulation the surface energy does not depend on 
the particle size and is assumed to be isotropic. For nanometer sized particles the 
surface energy is indeed size dependent [32]. Moreover, the surface energy   is not 
isotropic for facetted nanoparticles [33]. 
 
Another incarnation of the Gibbs-Thomson effect is the depression of the melting 
point of nanoclusters relative to the melting point of the bulk material. For metallic 
nanoparticles, this effect can be expressed as: 

 
 
 
 
 
where ΔTm(d) is the decrease in melting temperature for a nanocluster of diameter d, 
Tm,bulk is the melting point of the bulk material, σsl is the solid-liquid interface energy, 
Hf is the bulk heat of fusion, and ρs is the solid mass density. Note that in this 
expression the interface energy σsl is assumed to be isotropic, and the bulk heat of 
fusion Hf and the solid mass density ρs are assumed to retain their bulk values at the 
nanoscale. 
 
The Gibbs-Thomson effect has been widely studied both experimentally [34-36] as 
well as computationally [37-39]. In Figure 1, the melting point as calculated from 
classical molecular dynamics simulations of a series of nanoclusters is shown as a 
function of nanocluster inverse diameter [39], for clusters in the size range of 1 – 3 
nm commonly used in catalysis applications.  
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Figure 1 – Calculated melting points of Fe nanoclusters as a function of inverse 
diameter. Reproduced with permission from [39]. 
 
 
The origin of the Gibbs-Thomson effect lies in the large surface-to-volume ratio of 
nanoparticles, and hence the undercoordination of the surface atoms [40]. As 
undercoordinated atoms require less energy (heat) to be displaced from their lattice 
positions, atoms at the surface of the nanocluster become mobile at a reduced 
temperature.  
 
The importance of the Gibbs-Thomson effect in catalysis and plasma catalysis lies in 
the associated size- and temperature dependent phase states. Indeed, catalytic 
processes are often conducted at quite high temperatures. Under such conditions the 
surface of the nanocatalyst particles may be in a liquid state. This effect is thus very 
important in any process where the chemical reaction proceeds on a surface of a 
nanoparticle at elevated temperatures. Non-exhaustive examples include catalyzed 
carbon nanotube growth [41, 42], ammonia synthesis on nanometer sized Ru-crystals 
[43], Fischer-Tropsch synthesis of hydrocarbons [44], and many more heterogeneous 
catalytic processes [7, 45n, 46n]. 
 
Moreover, not only is the melting point of the nanocluster typically lower than the 
bulk melting point, nanoclusters also typically show a melting interval rather than a 
melting point. Indeed, while in a bulk material the derivative of the free energy with 
respect to temperature shows a discontinuity at the melting point, there is no such 
discontinuity at the nanoscale. Indeed, due to fluctuations inherent to the nanoscale 
(see below), phases may coexist over a range of temperatures and pressures, instead 
of coexistence along sharp lines or points. The Gibbs phase rule is thus not applicable 
to nanoscale systems, and many phase-like forms may occur that are unobservable in 
macroscale systems [47]. 
 
Bulk systems often demonstrate regions in their phase diagram where liquid and solid 
states coexist. At the nanoscale, however, such spatial coexistence is (at least below a 
certain system size) not possible, due to the inherent fluctuations in nanoscale systems. 
At a given time-averaged temperature, however, a nanocluster may adopt different 
physical states as a function of time, if at least kinetically permitted. This kinetic 
condition is typically fulfilled for the solid-liquid phase transition, but is often not for 
solid-solid phase transitions. Recently, Engelmann et al. [48] proposed to assigning an 
equilibrium constant to this phenonemon, 
 
 
 
 
 
where τliq is the time the cluster spends in the liquid state and τsol is the time the 
cluster spends in the solid state, in accordance with classical bulk thermodynamics. 
Under isobaric conditions, it follows that [48]: 
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where ΔfH is the enthalpy of fusion (i.e., the enthalpy change due to complete melting, 
where the cluster is always liquid) and ΔH is is the enthalpy change due to partial 
melting (i.e., when the cluster is fluctuating between the solid state and the liquid 
state). Note, however, that the cluster is in thermal equilibrium and that this 
fluctuation therefore does not imply an out-of-equilibrium state. Rather, the observed 
fluctuation in phase state is an emanation of the instrinsic thermal fluctuations in the 
system made possible by the nanoscale size of the system. An example is shown in 
Figure 2, for an isolated Ni55 cluster in vacuum [48]. This cluster has an apex-to-apex 
diameter of approximately 1.0 nm. It can be seen from the figure that at temperatures 
below 950 K, the equilibrium constant is close to zero, while it tends to infinity at 
temperatures above 1025 K. 
 
 

 
Figure 2 – Total energy curve for a Ni55 cluster, showing the typical melting interval. 
Reproduced with permission from [48]. 
 
 
Because the phase of a nanoscale system depends on its size through the Gibbs-
Thomson effect, its phase diagram also changes when additional elements are added. 
Consider for instance the binary Ni/C system. This system is relevant for, e.g., metal-
catalyzed carbon nanotube and graphene growth [49-51], catalytic dry reforming of 
methane [52, 53], Fischer-Tropsch synthesis of hydrocarbons [54], etc. When adding 
carbon to a nickel nanocluster, the lattice is disrupted, leading to an even lower 
melting point than expected based on only its size. It has also been demonstrated that 
this lattice disruption is accompanied by an increase in Ni-Ni and Ni-C bond 
switching rates, leading to a lowered activation energy for diffusion [55]. As a result, 
the solubility of carbon in nickel is a function of the cluster size [48, 56, 57]. 
 
2.4. Chemisorption at the nanoscale 
The binding (or chemisorption) energy of a reactant to the surface of the catalyst is of 
prime importance for catalysis. This binding energy is also a function of the 
nanocatalyst size. The size dependence of the nanocatalyst chemical reactivity has 
been demonstrated both theoretically [58] (Figure 3a) as well as experimentally [32] 
(Figure 3b). Density Functional Theory (DFT) calculations show that, for instance, 
CO adsorption on Pd-nanoclusters is weakest (lowest adsorption energy) for clusters 
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containing 30 – 50 atoms. Below and above this size range, the CO adsorption is 
stronger. Below this size range, the interaction is stronger because of the decreasing 
energy gap between the 2π* lowest unoccupied molecular orbital (LUMO) of the CO 
molecule and the energies of the d-levels of the metal. Above this size, on the other 
hand, the interaction energy increases due to a decrease in lattice contraction with 
increasing particle size [58].  
 

 

Figure 3 – Size dependence of the heat of adsorption of CO on Pd (left panel, 
reproduced with permission from [58], and Pb on MgO(100) (right panel, reproduced 
with permission from [32]). 
 
 
2.5. Non-equilibrium thermodynamics and fluctuation theorems 
As mentioned above, plasma catalysis is a non-equilibrium process, and in principle 
non-equilibrium thermodynamics must be applied. Under non-equilibrium conditions, 
net currents of energy and matter flow across the system. Moreover, nanoscale 
systems naturally display fluctuations in their properties, both under non-equilibrium 
as well as under equilibrium conditions, as also described above in Section 2.3.  
 
A general treatment of these fluctuations and the non-equilibrium thermodynamic 
treatment of small systems is provided by the so-called fluctuation theorems [27]. 
These fluctuation theorems describe how thermal fluctuations become important at 
the nanoscale (and on short time scales), and how they lead to deviations from the 
average macroscale behaviour. Specifically, the fluctuation theorems demonstrate that 
these thermal fluctuations give rise to a non-zero probability of violating the second 
law in non-equilibrium systems.  
 
The importance of this for nanoscale systems can be easily understood from e.g. 
fluctuations in kinetic energy of a system of particles obeying the Maxwell-
Boltzmann distribution: 
 
 
 
 
for which the fluctuations are of the order of        , where N is the number of 
particles. As the number of particles becomes countable on the nanoscale, it is thus 
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clear that the magnitude of the fluctuations become significant. Because of the 
presence of these fluctuations, the very concepts of thermal, mechanical and chemical 
equilibrium, which together constitute (macroscopic) thermodynamic equilibrium, 
may be hard to define.  
 
To fully appreciate the fluctuation theorems, it is instructive at this point to recall 
Loschmidt’s objection from 1876 to the statistical definition of entropy by Boltzmann. 
Loschmidt argued that since the microscopic laws of motion are time-reversible 
(which means that for every forward trajectory, their exists a conjugate, backward 
trajectory that is an equally valid solution to the equations of motion), it must also be 
possible that a system evolves towards a lower entropy state. This, however, is in 
apparent contradiction with the second law of thermodynamics, which states that the 
entropy must increase monotonically. This paradox may be understood from the 
fluctuation theorems. 
 
The fluctuation theorem derived by Evans and Searles [23, 59] 
 
 
  
 
relates the probabilities of forward and backward trajectories. In this equation, Ωt is 
the dissipation function, which is in general a dimensionless dissipated energy, and 
which corresponds to the entropy production       for ergodic temperature-
stabilized (thermostatted) time-reversible dynamical systems, with Q being the heat 
exchanged between system and thermostat bath at temperature T. Because the 
dissipation function is an extensive property, which scales with time, equation (17) 
shows that the probability of backward trajectories becomes exponentially rare as the 
system size or the observation time increases. Thus, for sufficiently large systems and 
sufficiently long time scales, the classical second law of thermodynamics is recovered. 
This, in turn, is the solution to Loschmidt’s paradox. Clearly, as plasma nanocatalysis 
deals with nanoscale systems which are far from equilibrium, fluctuation theorems are 
of great importance in understanding the thermodynamics of these systems. 
 
Another fluctuation theorem was presented by Crooks [60]. This theorem relates the 
distributions of trajectories from an equilibrium state A to another equilibrium state B 
to the distributions of reverse trajectories, from state B to state A. The relation 
between both distributions  
 
 
 
 
 
is determined by the work W. The trajectories may be crossed at an arbitrary rate and 
thus be far from equilibrium. For reversible trajectories the work associated with the 
forward trajectories is equal but of the opposite sign to the work associated with the 
reverse trajectories, such that the ratio of distributions is unity and     . Taking 
the ensemble average 
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yields the Jarzynski equality [61], where the ensemble average is taken over the 
forward trajectories A Æ B. This equality is very important, as it allows to determine 
the free energy change in going from state A to state B by measuring or calculating 
the work done along the irreversible trajectories connecting both states. As recently 
pointed out by Sevick et al. [62], this equality (and fluctuation theorems in general) is 
required for understanding molecular-scale processes, which are critical in plasma 
catalysis. 
 
3. Summary of relation between thermodynamics and nanoscale systems  
 
Following the above analysis, the relation between thermodynamics and nanosystems 
can be summarized as follows: 
 

1. While macroscopic systems are independent of ambient conditions, nanoscale 
systems are not. Consequently, differences in environment will lead to 
differences in system properties. Moreover, properties such as the surface free 
energy, edge effects and particle rotation are important in nanoscale systems, 
and must be accounted for in the total energy. This is reflected by a 
modification of the Gibbs-Duhem equation at the nanoscale and constitutes a  
fundamental modification of classical thermodynamics. 

2. In nanosystems, the number of particles is countable, and the thermodynamic 
limit does not apply. This results in, a.o., a depression of the melting point due 
to the Gibbs-Thomson effect and a size-dependence of the chemisorption 
energy. The description of such effects is still possible within the framework 
of classical thermodynamics, albeit including a size-dependence. 

3. Fluctuations significantly affect nanoscale systems, which is not the case at 
macroscales. Taking these effects into account also requires a modification of 
the thermodynamic description of the system. 

 
These effects also play a significant role in plasma-assisted catalysis where a number 
of plasma and catalytic effects can be gainfully used in a number of applications such 
as air pollution [15], catalytic reforming of natural gas into value-added chemical 
products [14, 16] or catalyzed growth of a variety of nanostructures of various 
dimensionality, morphology, structure, and chemical composition [17, 18, 41, 63-68].   
 
4. Conclusion 
 
In the above, we have examined a number of fundamental approaches and phenomena 
in the thermodynamics of nanoscale systems, which are of particular importance for 
plasma catalysis. Specifically, the nanoscale size of catalysts typically used in plasma 
catalysis adds an additional term to the expression for the internal energy of the 
system, the subdivision energy. Second, nanoscale systems are affected by 
fluctuations, which can be accounted by using the fluctuation theorems. Another 
important aspect of nanocatalysis and plasma nanocatalysis is the depression of the 
melting point, as described by the Gibbs-Thomson effect. This effect demonstrates 
that for temperatures typcally used in catalytic processes, the catalyst may be either 
solid, semi-liquid or liquid, depending on the catalyst size. Finally, we have also 
described the size dependence of the chemisorption energy, implying the (in 
principle) size dependence of volcano plots, often reported in the catalysis literature. 
 



Acknowledgments 
K. O. acknowledges partial support by the Australian Research Council and the  
Science Leader Program of CSIRO’s Office of Chief Executive.   
   
References 
[1] A. J. Gellman, N. Shukla, Nature Mater. 8 (2009) 87-88 
[2] B. R. Cuenya, Thin Solid Films 518 (2010) 3127-3150 
[3] A. Z. Moshfegh, J. Phys. D: Appl. Phys. 42 (2009) 233001 
[4] A. T. Bell, Science 299 (2003) 1688-1691. 
[5] R. M. Mohamed, D. L. McKinney, W. M. Sigmund, Mat. Sci. Eng. R 73 (2012) 1-
13 
[6] K. Philippot, P. Serp, in “Nanomaterials in Catalysis”, P. Serp, K. Philippot (Eds.), 
Wiley-VCH Verlag GmbH, 2013. 
[7] G. Ertl, Angew. Chem. Int. Ed. 47 (2008) 3524-3535. 
[8] H. Bönnemann, K. S. Nagabhushana, in “Metal Nanoclusters in Catalysis – the 
Issue of Size Control”, B. Corain, G. Schmid, N. Toshima (Eds.), Elsevier, 2008. 
[9] J. H. Oh, J. S. Lee, J. Nanosci. Nanotechnol. 14 (2014) 3753-3757. 
[10] M. Bizarro, M. A. Tapia-Rodriguez, M. L. Ojeda, J. C. Alonso, A. Ortiz, Appl. 
Surf. Sci. 255 (2009) 6274-6278. 
[11] N. R. Shiju, V. V. Guliants, Appl. Catal. A: General 356 (2009) 1-17. 
[12] J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, A. A. Romero, Chem. Sus. 
Chem. 2 (2009) 18-45. 
[13] O. Deutschmann, H. Knözinger, K. Kochloefl, T. Turek, in “Ullmann's 
Encyclopedia of Industrial Chemistry”, Wiley-VCH Verlag GmbH & Co., 2009. 
[14] E. C. Neyts, A. Bogaerts, J. Phys. D: Appl. Phys. 47 (2010) 224010. 
[15] H. H. Kim, Plasma Proc. Polym. 1 (2004) 91-110. 
[16] H. L. Chen, H. M. Lee, S. H. Chen, Y. Chao, M. B. Chang, Appl. Catal. B: Envir. 
85 (2008) 1-9. 
[17] E. C. Neyts, J. Vac. Sci. Technol. B 30 (2012) 030803. 
[18] M. Meyyappan, J. Phys. D: Appl. Phys. 44 (2011) 174002. 
[19] S. H. Lim, Z. Luo, Z. Shen, J. Lin, Nanoscale Res. Lett. 5 (2010) 1377-1386. 
[20] T. L. Hill, Nano Lett. 1 (2001) 273-275. 
[21] C. Tsallis, J. Stat. Phys. 52 (1988) 479. 
[22] C. X. Wang, G. W. Yang, Mater. Sci. Eng. R 49 (2005) 157-202. 
[23] D. J. Evans, D. J. Searles, Adv. Phys. 51 (2002) 1529-1585. 
[24] F. Delogu, J. Phys. Chem. B 109 (2005) 21938-21941. 
[25] T. L. Hill, Nano Lett. 1 (2001) 111-112. 
[26] G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, D. J. Evans, Phys. Rev. Lett. 
89 (2002) 050601. 
[27] C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 58 (2005) 43-48. 
[28] G. R. Vakili-Nezhaad, G. A. Mansoori, J. Comput. Theor. Nanosci. 1 (2004) 
227-229. 
[29] H. Touchette, Physica A 305 (2002) 84-88. 
[30] P. Mohazzabi, G. A. Mansoori, J. Comput. Theor. Nanosci. 2 (2005) 138-147. 
[31] V. García-Morales, J. Cervera, J. Pellicer, Physica Lett. 1 336 (2005) 82-88. 
[32] S. C. Parker, C. T. Campbell, Phys. Rev. B 75 (2007) 035430. 
[33] A. W. Searcy, J. W. Bullard, J. Am. Ceram. Soc. 77 (1994) 2314-2318. 
[34] Ph. Buffat, J.-P. Borel, Phys. Rev. A 13 (1976) 2287-2298. 
[35] T. Bachels, H-J. Güntherodt, R. Schäfer, Phys. Rev. Lett. 85 (2000) 1250-1253. 



[36] H. Haberland, T. Hippler, J. Donges, O. Kostko, M. Schmidt, B. von Issendorff, 
Phys. Rev. Lett. 94 (2005) 035701. 
[37] Y. Shibuta, T. Suzuki, J. Chem. Phys. 129 (2008) 144102. 
[38] E. C. Neyts, A. Bogaerts, J. Phys. Chem. C 113 (2009) 2771-2776. 
[39] A. Jiang, N. Awasthi, A. N. Kolmogorov, W. Setyawan, A. Börjesson, K. Bolton, 
A. R. Harutyunyan, S. Curtarolo, Phys. Rev. B 75 (2007) 205426. 
[40] C. Q. Sun, Y. Wang, B. K. Tay, S. Li, H. Huang, Y. B. Zhang, J. Phys. Chem. B 
106 (2002) 10701-10705. 
[41] K. Ostrikov, E. C. Neyts, M. Meyyappan, Adv. Phys. 62 (2013) 113-224. 
[42] K. Ostrikov, H. Mehdipour, ACS Nano 5 (2011) 8372-8382. 
[43] N. Saadatjou, A. Jafari, S. Sahebdelfar, Chem. Eng. Comm. 202 (2015) 420-448. 
[44] R. A. van Santen, A. J. Markvoort, Faraday Discuss. 162 (2013) 267-279. 
[45n] W. Somers, A. Bogaerts, A. C. T. van Duin, E. C. Neyts, J. Phys. Chem. C 116 
(2012) 20958-20965. 
[46n] W. Somers, A. Bogaerts, A. C. T. van Duin, S. Huygh, K. M. Bal, E. C. Neyts, 
Cat. Today 211 (2013) 131-136. 
[47] K. Esfarjani, G. A. Mansoori, in “Handbook of Theoretical and Computational 
Nanotechnology”, Edited by Michael Rieth and Wolfram Schommers Volume X: 
Pages (1–45), 2005 
[48] Y. Engelmann, A. Bogaerts, E. C. Neyts, Nanoscale 6 (2014) 11981-11987. 
[49] J. A. Elliott, Y. Shibuta, H. Amara, C. Bichara, E. C. Neyts, Nanoscale 5 (2013) 
6662-6676. 
[50] E. C. Neyts, A. C. T. van Duin, A. Bogaerts, Nanoscale 5 (2013) 7250-7255. 
[51] L. Meng, Q. Sun, J. Wang, F. Ding, J. Phys. Chem. C 116 (2012) 6097-6102. 
[52] J. Guo, H. Lou, H. Zhao, D. Chai, X. Zheng, Appl. Catal. A: General 273 (2004) 
75-82. 
[53] C. Fukuhara, R. Hyodo, K. Yamamoto, K. Masuda, R. Watanabe, Appl. Catal. A: 
General 468 (2013) 18-25. 
[54] B. C. Enger, A. Holmen, Cat. Rev.: Sci. Eng. 54 (2012) 437-488. 
[55] E. Neyts, Y. Shibuta, A. Bogaerts, Chem. Phys. Lett. 488 (2010) 202-205. 
[56] M. Diarra, H. Amara, F. Ducastelle, C. Bichara, Phys. Stat. Solidi B 249 (2012) 
2629-2634. 
[57] A. R. Harutyunyan, N. Awasthi, A. Jiang, W. Setyawan, E. Mora, T. Tokune, K. 
Bolton, S. Curtarolo, Phys. Rev. Lett. 100 (2008) 195502. 
[58] I. V. Yudanov, A. Genest, S. Schauermann, H.-J. Freund, N. Rösch, Nano Lett. 
12 (2012) 2134-2139. 
[59] D. J. Evans, D. J. Searles, Phys. Rev. E 50 (1994) 1645. 
[60] G. E. Crooks, Phys. Rev. E 60 (1999) 2721. 
[61] C. Jarzynski, Phys. Rev. Lett. 78 (1997) 2690. 
[62] E. M. Sevick, R. Prabhakar, S. R. Williams, D. J. Searles, Annu. Rev. Phys. 
Chem. 59 (2008) 603-633. 
[63] U. Cvelbar, K. Ostrikov, M. Mozetic, Nanotechnology 19 (2008) 405605. 
[64] U. Cvelbar, J. Phys. D: Appl. Phys. 44 (2011) 174014. 
[65] F. G. Petzold, J. Jasinski, E. L. Clark, J. H. Kim, J. Absher, H. Toufar, M. K. 
Sunkara, Cat. Today 198 (2012) 219-227. 
[66] S. Sharma, M. K. Sunkara, J. Am. Chem. Soc. 124 (2002) 12288-12293. 
[67] I. Levchenko, M. Keidar, S. Y. Xu, H. Kersten, K. Ostrikov, J. Vac. Sci. Technol. 
B 31 (2013) 050801. 
[68] R. M. Sankaran, J. Phys. D: Appl. Phys. 44 (2011) 174005. 
 


