toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jannis, D.; Velazco, A.; Béché, A.; Verbeeck, J. url  doi
openurl 
  Title Reducing electron beam damage through alternative STEM scanning strategies, Part II: Attempt towards an empirical model describing the damage process Type A1 Journal article
  Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume Issue Pages 113568  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In this second part of a series we attempt to construct an empirical model that can mimick all experimental observations made regarding the role of an alternative interleaved scan pattern in STEM imaging on the beam damage in a specific zeolite sample. We make use of a 2D diffusion model that describes the dissipation of the deposited beam energy in the sequence of probe positions that are visited during the scan pattern. The diffusion process allows for the concept of trying to ‘outrun’ the beam damage by carefully tuning the dwell time and distance between consecutively visited probe positions. We add a non linear function to include a threshold effect and evaluate the accumulated damage in each part of the image as a function of scan pattern details. Together, these ingredients are able to describe qualitatively all aspects of the experimental data and provide us with a model that could guide a further optimisation towards even lower beam damage without lowering the applied electron dose. We deliberately remain vague on what is diffusing here which avoids introducing too many sample specific details. This provides hope that the model can be applied also in sample classes that were not yet studied in such great detail by adjusting higher level parameters: a sample dependent diffusion constant and damage threshold.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000832788000003 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 4 Open Access OpenAccess  
  Notes D.J., A.V, A.B. and J.V. acknowledge funding from FWO project G093417N (’Compressed sensing enabling low dose imaging in transmission electron microscopy’) and G042920N (’Coincident event detection for advanced spectroscopy in transmission electron microscopy’). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 ESTEEM3. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from GOA project “Solarpaint” of the University of Antwerp .; esteem3reported; esteem3jra; Approved Most recent IF: 2.2  
  Call Number EMAT @ emat @c:irua:188535 Serial 7071  
Permanent link to this record
 

 
Author Bhat, S.G.; Gauquelin, N.; Sebastian, N.K.; Sil, A.; Béché, A.; Verbeeck, J.; Samal, D.; Kumar, P.S.A. pdf  doi
openurl 
  Title Orthorhombic vs. hexagonal epitaxial SrIrO3 thin films : structural stability and related electrical transport properties Type A1 Journal article
  Year 2018 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 122 Issue 2 Pages 28003  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metastable orthorhombic SrIrO3 (SIO) is an arch-type spin-orbit coupled material. We demonstrate here a controlled growth of relatively thick (200 nm) SIO films that transform from bulk “6H-type” structure with monoclinic distortion to an orthorhombic lattice by controlling growth temperature. Extensive studies based on high-resolution X-ray diffraction and transmission electron microscopy infer a two distinct structural phases of SIO. Electrical transport reveals a weak temperature-dependent semi-metallic character for both phases. However, the temperature-dependent Hall-coefficient for the orthorhombic SIO exhibits a prominent sign change, suggesting a multiband character in the vicinity of E-F. Our findings thus unravel the subtle structure-property relation in SIO epitaxial thin films. Copyright (C) EPLA, 2018  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000435517300001 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 4 Open Access Not_Open_Access  
  Notes ; SGB and DS acknowledge useful discussions with E. P. Houwman, University of Twente, on X-ray diffraction. DS would like to thank H. Takagi, Max-Planck Institute for Solid State Research, Stuttgart, for the fruitful discussion on the transport properties of SIO thin films. SGB and NKS thank A. Aravind, Bishop Moore College, Mavelikara, for his valuable inputs while depositing the thin films of SIO. SGB, NKS and PSAK acknowledge Nano Mission Council, Department of Science & Technology, India, for the funding. DS acknowledges the financial support from Max-Planck Society through MaxPlanck Partner Group. NG, AB and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G093417N. ; Approved Most recent IF: 1.957  
  Call Number UA @ lucian @ c:irua:152074UA @ admin @ c:irua:152074 Serial 5034  
Permanent link to this record
 

 
Author Denneulin, T.; Rouvière, J.L.; Béché, A.; Py, M.; Barnes, J.P.; Rochat, N.; Hartmann, J.M.; Cooper, D. pdf  doi
openurl 
  Title The reduction of the substitutional C content in annealed Si/SiGeC superlattices studied by dark-field electron holography Type A1 Journal article
  Year 2011 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume 26 Issue 12 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Si/Si(1 − x − y)GexCy superlattices are used in the construction of new microelectronic architectures such as multichannel transistors. The introduction of carbon in SiGe allows for compensation of the strain and to avoid plastic relaxation. However, the formation of incoherent β-SiC clusters during annealing limits the processability of SiGeC. This precipitation leads to a modification of the strain in the alloy due to the reduction of the substitutional carbon content. Here, we investigated the strain in annealed Si/Si0.744Ge0.244C0.012 superlattices grown by reduced pressure chemical vapour deposition using dark-field electron holography. The variation of the substitutional C content was calculated by correlating the results with finite-element simulations. The obtained values were then compared with Fourier-transformed infrared spectrometry measurements. It was shown that after annealing for 2 min at 1050 °C carbon no longer has any influence on strain in the superlattice, which behaves like pure SiGe. However, a significant proportion of substitutional C atoms remain in a third-nearest neighbour (3nn) configuration. It was deduced that the influence of 3nn C on strain is negligible and that only isolated atoms have a significant contribution. It was also proposed that the 3nn configuration is an intermediary step during the formation of SiC clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000300151300010 Publication Date 2011-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited Open Access  
  Notes Approved Most recent IF: 2.305; 2011 IF: 1.723  
  Call Number UA @ lucian @ c:irua:136427 Serial 4508  
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Béché, A.; Bender, H.; Verbeeck, J. url  doi
openurl 
  Title Strain measurement in semiconductor FinFET devices using a novel moiré demodulation technique Type A1 Journal article
  Year 2019 Publication Semiconductor science and technology Abbreviated Journal Semicond Sci Tech  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Moiré fringes are used throughout a wide variety of applications in physics and

engineering to bring out small variations in an underlying lattice by comparing with another reference lattice. This method was recently demonstrated in Scanning Transmission Electron Microscopy imaging to provide local strain measurement in crystals by comparing the crystal lattice with the scanning raster that then serves as the reference. The images obtained in this way contain a beating fringe pattern with a local period that represents the deviation of the lattice from the reference. In order to obtain the actual strain value, a region containing a full period of the fringe is required, which results in a compromise between strain sensitivity and spatial resolution. In this paper we propose an advanced setup making use of an optimised scanning pattern and a novel phase stepping demodulation scheme. We demonstrate the novel method on a series of 16 nm Si-Ge semiconductor FinFET devices in which strain plays a crucial role in modulating the charge carrier mobility. The obtained results are compared with both Nano-beam diffraction and the recently proposed Bessel beam diffraction technique. The setup provides a much improved spatial resolution over conventional moiré imaging in STEM while at the same time being fast and requiring no specialised diffraction camera as opposed to the diffraction techniques we compare to.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537721200002 Publication Date 2019-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0268-1242 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.305 Times cited 8 Open Access  
  Notes The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. We would also like to thank Dr. Thomas Nuytten and Prof. Dr. Wilfried Vandervorst from IMEC, Leuven for their continuous support and collaboration with the project. Approved Most recent IF: 2.305  
  Call Number EMAT @ emat @c:irua:165794 Serial 5445  
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Lubk, A.; Mazilu, M.; Van Boxem, R.; Verbeeck, J. url  doi
openurl 
  Title Exploiting lens aberrations to create electron-vortex beams Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 6 Pages 064801-64805  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A model for a new electron-vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condenser plane. Experimental results are found to be in good agreement with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322921200009 Publication Date 2013-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 66 Open Access  
  Notes Vortex; Esteem2; Countatoms; FWO; Esteem2jra3 ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:109340UA @ admin @ c:irua:109340 Serial 1148  
Permanent link to this record
 

 
Author Lubk, A.; Béché, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Electron Microscopy of Probability Currents at Atomic Resolution Type A1 Journal article
  Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 115 Issue 115 Pages 176101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Atomic resolution transmission electron microscopy records the spatially resolved scattered electron density to infer positions, density, and species of atoms. These data are indispensable for studying the relation between structure and properties in solids. Here, we show how this signal can be augmented by the lateral probability current of the scattered electrons in the object plane at similar resolutions and fields of view. The currents are reconstructed from a series of three atomic resolution TEM images recorded under a slight difference of perpendicular line foci. The technique does not rely on the coherence of the electron beam and can be used to reveal electric, magnetic, and strain fields with incoherent electron beams as well as correlations in inelastic transitions, such as electron magnetic chiral dichroism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363023700011 Publication Date 2015-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 12 Open Access  
  Notes J. V. and A. B. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. The Qu-Ant- EM microscope was partly funded by the Hercules fund from the Flemish Government. All authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. J. V. acknowledges funding from the FWO under Project No. G.0044.13N.; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 8.462; 2015 IF: 7.512  
  Call Number c:irua:129190 c:irua:129190UA @ admin @ c:irua:129190 Serial 3954  
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Jones, L.; Martinez, G.T.; Béché, A.; Nellist, P.D. pdf  url
doi  openurl
  Title Control of Knock-On Damage for 3D Atomic Scale Quantification of Nanostructures: Making Every Electron Count in Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 122 Issue 6 Pages 066101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding nanostructures down to the atomic level is the key to optimizing the design of advancedmaterials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458824200008 Publication Date 2019-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 3 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (WO.010.16N, G.0934.17N, G.0502.18N, G.0267.18N), and a grant to A. D. B. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 312483— ESTEEM2 (Integrated Infrastructure Initiative-I3) and the UK EPSRC (Grant No. EP/M010708/1). Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157175 Serial 5156  
Permanent link to this record
 

 
Author Jones, E.; Cooper, D.; Rouvière, J.-L.; Béché, A.; Azize, M.; Palacios, T.; Gradecak, S. doi  openurl
  Title Towards rapid nanoscale measurement of strain in III-nitride heterostructures Type A1 Journal article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue Pages 231904  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the structural and compositional nanoscale characterization of InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the use of geometric phase analysis (GPA) and nanobeam electron diffraction (NBED). The strain distribution in the HEMT layer is quantified and compared to the expected strain profile for the nominal structure predicted by finite element analysis (FEA). Using the experimental strain results, the actual structure is determined and used to modify the FEA model. The improved fit of the model demonstrates that GPA and NBED provide a powerful platform for routine and rapid characterization of strain in III-V semiconducting device systems leading to insights into device evolution during processing and future device optimization.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328634900025 Publication Date 2013-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136443 Serial 4513  
Permanent link to this record
 

 
Author Cooper, D.; Rouvière, J.-L.; Béché, A.; Kadkhodazadeh, S.; Semenova, E.S.; Dunin-Borkowsk, R. doi  openurl
  Title Quantitative strain mapping of InAs/InP quantum dots with 1 nm spatial resolution using dark field electron holography Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 99 Issue Pages 261911-261913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The optical properties of semiconductor quantum dots are greatly influenced by their strain state. Dark field electron holography has been used to measure the strain in InAsquantum dotsgrown in InP with a spatial resolution of 1 nm. A strain value of 5.4% ± 0.1% has been determined which is consistent with both measurements made by geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images and with simulations.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000298638500027 Publication Date 2012-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:136428 Serial 4507  
Permanent link to this record
 

 
Author Cooper, D.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping for the silicon-on-insulator generation of semiconductor devices by high-angle annular dark field scanning electron transmission microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue Pages 233121  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The strain in pMOS p-type metal-oxide-semiconductor devicesgrown on silicon-on-insulator substrates has been measured by using the geometrical phase analysis of high angle annular dark field scanning electron microscopy. We show that by using the latest generations of electron microscopes, the strain can now be quantitatively measured with a large field of view, a spatial resolution as low as 1 nm with a sensitivity as good as 0.15%. This technique is extremely flexible, provides both structural and strain information, and can be applied to all types of nanoscale materials both quickly and easily.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 2012-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136432 Serial 4509  
Permanent link to this record
 

 
Author Cooper, D.; Denneulin, T.; Barnes, J.-P.; Hartmann, J.-M.; Hutin, L.; Le Royer, C.; Béché, A.; Rouvière, J.-L. doi  openurl
  Title Strain mapping with nm-scale resolution for the silicon-on-insulator generation of semiconductor devices by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 112 Issue Pages 124505  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Strain engineering in the conduction channel is a cost effective method of boosting the performance in state-of-the-art semiconductor devices. However, given the small dimensions of these devices, it is difficult to quantitatively measure the strain with the required spatial resolution. Three different transmission electron microscopy techniques, high-angle annular dark field scanning transmission electron microscopy, dark field electron holography, and nanobeam electron diffraction have been applied to measure the strain in simple bulk and SOI calibration specimens. These techniques are then applied to different gate length SiGe SOI pFET devices in order to measure the strain in the conduction channel. For these devices, improved spatial resolution is required, and strain maps with spatial resolutions as good as 1 nm have been achieved. Finally, we discuss the relative advantages and disadvantages of using these three different techniques when used for strain measurement.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000312829400128 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:136433 Serial 4510  
Permanent link to this record
 

 
Author Rouvière, J.-L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D. doi  openurl
  Title Improved strain precision with high spatial resolution using nanobeam precession electron diffraction Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue Pages 241913  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract NanoBeam Electron Diffraction is a simple and efficient technique to measure strain in nanostructures. Here, we show that improved results can be obtained by precessing the electron beam while maintaining a few nanometer probe size, i.e., by doing Nanobeam Precession Electron Diffraction (N-PED). The precession of the beam makes the diffraction spots more uniform and numerous, making N-PED more robust and precise. In N-PED, smaller probe size and better precision are achieved by having diffraction disks instead of diffraction dots. Precision in the strain measurement better than 2 × 10−4 is obtained with a probe size approaching 1 nm in diameter.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000328706500031 Publication Date 2013-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 53 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:136442 Serial 4502  
Permanent link to this record
 

 
Author Béché, A.; Goris, B.; Freitag, B.; Verbeeck, J. pdf  url
doi  openurl
  Title Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 108 Pages 093103  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The concept of compressed sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic beam blanker placed in the condenser plane of a STEM is proposed. The beam blanker deflects the beam with a random pattern, while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both the medium scale and high resolution are acquired and reconstructed based on a discrete cosine algorithm. The obtained results confirm that compressed sensing is highly attractive to limit beam damage in experimental STEM even though some remaining artifacts need to be resolved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375329200043 Publication Date 2016-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 40 Open Access  
  Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2), from the GOA project SOLARPAINT and the POC project I13/009 from the University of Antwerp. B.G. acknowledges the Research Foundation Flanders (FWO Vlaanderen) for a postdoctoral research grant. The QuAnTem microscope was partially funded by the Hercules Foundation. We thank Zhaoliang Liao from the Mesa+ laboratory at the University of Twente for the perovskite test sample.; esteem2jra3 ECASJO; Approved Most recent IF: 3.411  
  Call Number c:irua:131895 c:irua:131895UA @ admin @ c:irua:131895 Serial 4023  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Spectroscopic coincidence experiments in transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 14 Pages 143101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal

correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a

delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both

events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or

EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many

difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input

and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations

of elements need to be detected in a matrix of other elements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000464450200022 Publication Date 2019-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 18 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G093417 ; Horizon 2020 Framework Programme, 823717 ESTEEM3 ; Helmholtz Association, VH-NG-1327 ; Approved Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159155 Serial 5168  
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J. url  doi
openurl 
  Title Electron Bessel beam diffraction for precise and accurate nanoscale strain mapping Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 24 Pages 243501  
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)  
  Abstract Strain has a strong effect on the properties of materials and the performance of electronic devices. Their ever shrinking size translates into a constant demand for accurate and precise measurement methods with a very high spatial resolution. In this regard, transmission electron microscopes are key instruments thanks to their ability to map strain with a subnanometer resolution. Here, we present a method to measure strain at the nanometer scale based on the diffraction of electron Bessel beams. We demonstrate that our method offers a strain sensitivity better than 2.5 × 10−4 and an accuracy of 1.5 × 10−3, competing with, or outperforming, the best existing methods with a simple and easy to use experimental setup.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472599100019 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 17 Open Access OpenAccess  
  Notes Deutsche Forschungsgemeinschaft, RO2057/12-2 ; Fonds Wetenschappelijk Onderzoek, G.0934.17N ; Approved Most recent IF: 3.411  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160119 Serial 5181  
Permanent link to this record
 

 
Author Gao, C.; Hofer, C.; Jannis, D.; Béché, A.; Verbeeck, J.; Pennycook, T.J. pdf  url
doi  openurl
  Title Overcoming contrast reversals in focused probe ptychography of thick materials: An optimal pipeline for efficiently determining local atomic structure in materials science Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 121 Issue 8 Pages 081906  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ptychography provides highly efficient imaging in scanning transmission electron microscopy (STEM), but questions have remained over its applicability to strongly scattering samples such as those most commonly seen in materials science. Although contrast reversals can appear in ptychographic phase images as the projected potentials of the sample increase, we show here how these can be easily overcome by a small amount of defocus. The amount of defocus is small enough that it not only can exist naturally when focusing using the annular dark field (ADF) signal but can also be adjusted post acquisition. The ptychographic images of strongly scattering materials are clearer at finite doses than other STEM techniques and can better reveal light atomic columns within heavy lattices. In addition, data for ptychography can now be collected simultaneously with the fastest of ADF scans. This combination of sensitivity and interpretability presents an ideal workflow for materials science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000844403300006 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 9 Open Access OpenAccess  
  Notes European Research Council, 802123-HDEM ; HORIZON EUROPE European Research Council, 823717-ESTEEM3 ; Fonds Wetenschappelijk Onderzoek, G042920N ; Fonds Wetenschappelijk Onderzoek, G042820N ; Horizon 2020 Framework Programme, 101017720 ; Fonds Wetenschappelijk Onderzoek, G013122N ; esteem3reported; esteem3jra Approved Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:190670 Serial 7120  
Permanent link to this record
 

 
Author Guzzinati, G.; Ghielens, W.; Mahr, C.; Béché, A.; Rosenauer, A.; Calders, T.; Verbeeck, J. doi  openurl
  Title Electron Bessel beam diffraction patterns, line scan of Si/SiGe multilayer Type Dataset
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; ADReM Data Lab (ADReM); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:169114 Serial 6865  
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; McGrouther, D.; Verbeeck, J. doi  openurl
  Title Rotation of electron beams in the presence of localised, longitudinal magnetic fields Type Dataset
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract Electron Bessel beams have been generated by inserting an annular aperture in the illumination system of a TEM. These beams have passed through a localised magnetic field. As a result a low amount of image rotation (which is expected to be proportional to the longitudinal component of the magnetic field) is observed in the far field. A measure of this rotation should give access to the magneti field. The two datasets have been acquired in a FEI Titan3 microscope, operated at 300kV. The file focalseries.tif contains a series of images acquired varying the magnetic field through the objective lens. The file lineprofile.ser contains a series of images acquired by scanning the beam over a sample with several magnetised nanopillars. For reference, check the associated publication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:169135 Serial 6883  
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J. doi  openurl
  Title Spectrocopic coincidence experiment in transmission electron microscopy Type Dataset
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset contains individual EEL and EDX events where for every event (electron or X-ray), their energy and time of arrival is stored. The experiment was performed in a transmission electron microscope (Tecnai Osiris) at 200 keV. The material investigated is an Al-Mg-Si-Cu alloy. The 'full_dataset.mat' contains the full dataset and the 'subset.mat' has the first five frames of the full dataset. The attached 'EELS-EDX.ipynb' is a jupyter notebook file. This file describes the data processing in order to observe the temporal correlation between the electrons and X-rays.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:169112 Serial 6888  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: