|   | 
Details
   web
Records
Author Vanmeert, M.; Razzokov, J.; Mirza, M.U.; Weeks, S.D.; Schepers, G.; Bogaerts, A.; Rozenski, J.; Froeyen, M.; Herdewijn, P.; Pinheiro, V.B.; Lescrinier, E.
Title Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins Type A1 Journal article
Year 2019 Publication Nucleic acids research Abbreviated Journal Nucleic Acids Res
Volume 47 Issue 13 Pages 7130-7142
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000490556600047 Publication Date 2019-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-1048 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.162 Times cited 1 Open Access
Notes European Research Council, FP7/2007-2013 ERC-2012-ADG 20120216/320683 ; KU Leuven, OT/14/128 ; Biotechnology and Biosciences Research Council, BB/N01023X/1 BB/N010221/1 ; Authors are grateful to Prof. Dr A.M.J.J. (Alexandre) Bonvin from the University of Utrecht and the WeNMR institute for his expert contribution. We have greatly benefited from discussions and help from numerous postdocs over the years (in particular, Dr E. Groaz, Dr E. Eremeeva, Dr J. Masschelein, Dr S. Xiaoping and Dr M. Renders) as well as graduate student D. Kestemont and undergraduate student M. Abdel Fattah Ismail. We express our gratitude to L. Margamuljana for helpful discussions and excellent technical assistance on in vitro experiments. Approved Most recent IF: 10.162
Call Number PLASMANT @ plasmant @c:irua:162105 Serial 5359
Permanent link to this record
 

 
Author Zhang, Z.; Chen, X.; Shi, X.; Hu, Y.; Huang, J.; Liu, S.; Ren, Z.; Huang, H.; Han, G.; Van Tendeloo, G.; Tian, H.
Title Morphotropic phase boundary in pure perovskite lead titanate at room temperature Type A1 Journal article
Year 2022 Publication Materials Today Nano Abbreviated Journal
Volume 20 Issue Pages 100275-5
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract For many decades, great efforts have been devoted to pursue a large piezoelectric response by an intelligent design of morphotropic phase boundaries (MPB) in solid solutions, where tetragonal (T) and rhombohedral (R) structures coexist. For example, classical PbZrxTi1-xO3 and Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals demonstrate a giant piezoelectric response near MPB. However, as the end member of these solids, perovskite-structured PbTiO3 always adopts the T phase at room temperature. Here, we report a pathway to create room temperature MPB in a single-phase PbTiO3. The uniaxial stress along the c-axis drives a T-R phase transition bridged by a monoclinic (M) phase, which facilitates a polarization rotation in the monodomain PbTiO3. Meanwhile, we demonstrate that the coexistence of T and R phases at room temperature can be achieved via an extremely mismatched heterointerface system. The uniaxial pressure is proved as an efficient way to break the inherent symmetry and able to substantially tailor the phase transition temperature Tc. These findings provide new insights into MPB, offering the opportunity to explore the giant piezoelectric response in single-phase materials. (c) 2022 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000906548600002 Publication Date 2022-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2588-8420 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.3
Call Number UA @ admin @ c:irua:193477 Serial 7324
Permanent link to this record
 

 
Author Osorio-Tejada, J.; van't Veer, K.; Long, N.V.D.; Tran, N.N.; Fulcheri, L.; Patil, B.S.; Bogaerts, A.; Hessel, V.
Title Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes Type A1 Journal article
Year 2022 Publication Energy Conversion And Management Abbreviated Journal Energ Convers Manage
Volume 269 Issue Pages 116095
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The Covid era has made us aware of the need for resilient, self-sufficient, and local production. We are likely willing to pay an extra price for that quality. Ammonia (NH3) synthesis accounts for 2 % of global energy production and is an important point of attention for the development of green energy technologies. Therefore, we propose a thermally integrated process for H2 production and NH3 synthesis using plasma technology, and we evaluate its techno-economic performance and CO2 footprint by life cycle assessment (LCA). The key is to integrate energy-wise a high-temperature plasma (HTP) process, with a (low-temperature) non-thermal plasma (NTP) process and to envision their joint economic potential. This particularly means raising the temperature of the NTP process, which is typically below 100 ◦ C, taking advantage of the heat released from the HTP process. For that purpose, we proposed the integrated process and conducted chemical kinetics simulations in the NTP section to determine the thermodynamically feasible operating window of this novel combined plasma process. The results suggest that an NH3 yield of 2.2 mol% can be attained at 302 ◦ C at an energy yield of 1.1 g NH3/kWh. Cost calculations show that the economic performance is far from commercial, mainly because of the too low energy yield of the NTP process. However, when we base our costs on the best literature value and plausible future scenarios for the NTP energy yield, we reach a cost prediction below 452 $/tonne NH3, which is competitive with conventional small-scale Haber-Bosch NH3 synthesis for distributed production. In addition, we demonstrate that biogas can be used as feed, thus allowing the proposed integrated reactor concept to be part of a biogas-to-ammonia circular concept. Moreover, by LCA we demonstrate the environmental benefits of the pro­posed plant, which could cut by half the carbon emissions when supplied by photovoltaic electricity, and even invert the carbon balance when supplied by wind power due to the avoided emissions of the carbon black credits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000880662100007 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-8904 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.4 Times cited Open Access OpenAccess
Notes European Research Council; European Commission, 810182 ; The authors acknowledge support from the ERC Synergy Grant “Surface-COnfined fast modulated Plasma for process and Energy intensification” (SCOPE), from the European Commission, with Grant No. 810182. Approved Most recent IF: 10.4
Call Number PLASMANT @ plasmant @c:irua:191785 Serial 7103
Permanent link to this record
 

 
Author Manaigo, F.; Rouwenhorst, K.; Bogaerts, A.; Snyders, R.
Title Feasibility study of a small-scale fertilizer production facility based on plasma nitrogen fixation Type A1 Journal Article
Year 2024 Publication Energy Conversion and Management Abbreviated Journal Energy Conversion and Management
Volume 302 Issue Pages 118124
Keywords A1 Journal Article; Plasma-based nitrogen fixation Haber-Bosch Feasibility study Fertilizer production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001171038200001 Publication Date 2024-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-8904 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) 10.4 Times cited Open Access Not_Open_Access
Notes This research is supported by the FNRS-FWO project ‘‘NITROPLASM’’, EOS O005118F. The authors thank Dr. L. Hollevoet (KU Leuven) for the draft reviewing and for providing additional information on the lean NO???? trap. Approved Most recent IF: 10.4; 2024 IF: 5.589
Call Number PLASMANT @ plasmant @c:irua:204351 Serial 8992
Permanent link to this record
 

 
Author Vasilakou, K.; Billen, P.; Van Passel, S.; Nimmegeers, P.
Title A Pareto aggregation approach for environmental-economic multi-objective optimization applied on a second-generation bioethanol production model Type A1 Journal article
Year 2024 Publication Energy conversion and management Abbreviated Journal
Volume 303 Issue Pages 118184-11
Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Multi-objective optimization is an important decision-making tool for energy processes, as multiple targets need to be achieved. These objectives are usually conflicting since a single solution cannot be optimal for all objectives, resulting in a set of Pareto-optimal solutions. Multiple indicators might be available to describe a sustainability objective, such as the environmental impact which is commonly evaluated by performing a life cycle assessment. In this study, Pareto aggregation is proposed as a method which employs a novel multi-objective optimization-based approach as an alternative to the classically used aggregation in life cycle assessment. This method identifies conflicting environmental indicators and performs an aggregation among those that require a trade-off. An environmental-economic optimization of a second-generation bioethanol plant is used to illustrate and evaluate the proposed method. Process parameters from a biochemical conversion pathway flowsheet simulation model are chosen as optimization variables. To reduce the computational time, surrogate models, based on artificial neural networks, are used. Out of the eighteen ReCiPe Midpoint environmental indicators, five were identified as conflicting, resulting in an aggregated environmental objective, which was then traded off with the economic objective function, chosen as the levelized cost of ethanol. Comparison with the widely used single-score EcoIndicator99 showed that the Pareto aggregation method can reduce most of the environmental indicators by up to 6.5%. This research provides an insight on non-redundant objective functions, aiming at reducing the dimensionality of multi-objective optimization problems, while taking into consideration decision-makers’ preferences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001185718400001 Publication Date 2024-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-8904; 1879-2227 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) 10.4 Times cited Open Access
Notes Approved Most recent IF: 10.4; 2024 IF: 5.589
Call Number UA @ admin @ c:irua:203046 Serial 9216
Permanent link to this record
 

 
Author de Backer, W.; Vos, W.; Van Holsbeke, C.; Vinchurkar, S.; Claes, R.; Hufkens, A.; Parizel, P.M.; Bedert, L.; de Backer, J.
Title The effect of roflumilast in addition to LABA/LAMA/ICS treatment in COPD patients Type L1 Letter to the editor
Year 2014 Publication European Respiratory Journal Abbreviated Journal Eur Respir J
Volume 44 Issue 2 Pages 527-529
Keywords L1 Letter to the editor; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000340017300029 Publication Date 2014-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0903-1936;1399-3003; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.569 Times cited 26 Open Access
Notes ; ; Approved Most recent IF: 10.569; 2014 IF: 7.636
Call Number UA @ lucian @ c:irua:117335 Serial 832
Permanent link to this record
 

 
Author De Backer, L.A.; Vos, W.; de Backer, J.; Van Holsbeke, C.; Vinchurkar, S.; de Backer, W.
Title The acute effect of budesonide/formoterol in COPD : a multi-slice computed tomography and lung function study Type A1 Journal article
Year 2012 Publication European Respiratory Journal Abbreviated Journal Eur Respir J
Volume 40 Issue 2 Pages 298-305
Keywords A1 Journal article; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract The Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification of chronic obstructive pulmonary disease (COPD) does not always match with other clinical disease descriptors such as exacerbation frequency and quality of life, indicating that forced expiratory volume in 1 s (FEV1) is not a perfect descriptor of the disease. The aim of this study was to find out whether changes in airway geometry after inhalation of the most commonly used inhalation therapy in severe COPD can more adequately be described with an image-based approach than with spirometry. 10 COPD GOLD stage III patients were assessed in a double-blind crossover study. Airway volumes were analysed using segmentation of multi-slice computed tomography (MSCT) images; airway resistance was determined using computational fluid dynamics (CFD). Distal airway volume significantly increased (p=0.011) in patients 4 h after receiving a budesonide/formoterol combination from 9.6+/-4.67 cm(3) to 10.14+/-4.81 cm(3). Also CFD-determined airway resistance significantly decreased (p=0.047) from 0.051+/-0.021 kPa.s.L-1 to 0.043+/- 0.019 kPa.s.L-1. None of the lung function parameters showed a significant change. Only functional residual capacity (FRC) showed a trend to decline (p=0.056). Only the image-based parameters were able to predict the visit at which the combination product was administered. This study showed that imaging is a sensitive, complementary tool to describe changes in airway structure.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000307291700006 Publication Date 2011-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0903-1936;1399-3003; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.569 Times cited 37 Open Access
Notes ; ; Approved Most recent IF: 10.569; 2012 IF: 6.355
Call Number UA @ lucian @ c:irua:101113 Serial 3568
Permanent link to this record
 

 
Author Ennaert, T.; Geboers, J.; Gobechiya, E.; Courtin, C.M.; Kurttepeli, M.; Houthoofd, K.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Bals, S.; Jacobs, P.A.; Sels, B.F.
Title Conceptual frame rationalizing the self-stabilization of H-USY zeolites in hot liquid water Type A1 Journal article
Year 2015 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 5 Issue 5 Pages 754-768
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The wide range of liquid-phase reactions required for the catalytic conversion of biomass compounds into new bioplatform molecules defines a new set of challenges for the development of active, selective, and stable catalysts. The potential of bifunctional Ru/H-USY catalysts for conversions in hot liquid water (HLW) is assessed in terms of physicochemical stability and long-term catalytic performance of acid sites and noble metal functionality, as probed by hydrolytic hydrogenation of cellulose. It is shown that zeolite desilication is the main zeolite degradation mechanism in HLW. USY zeolite stability depends on two main parameters, viz., framework and extra-framework aluminum content. The former protects the zeolite lattice by counteracting hydrolysis of framework bonds, and the latter, when located at the external crystal surface, prevents solubilization of the zeolite framework which is the result of its low water-solubility. Hence, the hot liquid water stability of commercial H-USY zeolites, in contrast to their steam stability, increased with decreasing Si/AI ratio. As a result, mildly steamed USY zeolites containing a high amount of both Al species exhibit the highest resistance to HLW. During an initial period of transformations, Al-rich zeolites form additional protective extra-framework Al species at the outer surface, self-stabilizing the framework. A critical bulk Si/AI ratio of 3 was determined whereby USY zeolites with a lower Si/AI ratio will self-stabilize over time. Besides, due to the initial transformation period, the accessibility of the catalytic active sites is extensively enhanced resulting in a material that is more stable and drastically more accessible to large substrates than the original zeolite. When these findings are applied in the hydrolytic hydrogenation of cellulose, unprecedented nearly quantitative hexitol yields were obtained with a stable catalytic system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000349275300031 Publication Date 2014-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 65 Open Access OpenAccess
Notes 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 10.614; 2015 IF: 9.312
Call Number c:irua:125288 Serial 474
Permanent link to this record
 

 
Author Mei, B.; Wiktor, C.; Turner, S.; Pougin, A.; Van Tendeloo, G.; Fischer, R.A.; Muhler, M.; Strunk, J.
Title Evidence for metalsupport interactions in Au modified TiOx/SBA-15 materials prepared by photodeposition Type A1 Journal article
Year 2013 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 3 Issue 12 Pages 3041-3049
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Gold nanoparticles have been efficiently photodeposited onto titanate-loaded SBA-15 (Ti(x)/SBA-15) with different titania coordination. Transmission electron microscopy shows that relatively large Au nanoparticles are photodeposited on the outer surface of the Ti(x)/SBA-15 materials and that TiOx tends to form agglomerates in close proximity to the Au nanoparticles, often forming coreshell Au/TiOx structures. This behavior resembles typical processes observed due to strong-metal support interactions. In the presence of gold, the formation of hydrogen on Ti(x)/SBA-15 during the photodeposition process and the performance in the hydroxylation of terephthalic acid is greatly enhanced. The activity of the Au/Ti(x)/SBA-15 materials is found to depend on the TiOx loading, increasing with a larger amount of initially isolated TiO4 tetrahedra. Samples with initially clustered TiOx species show lower photocatalytic activities. When isolated zinc oxide (ZnOx) species are present on Ti(x)/SBA-15, gold nanoparticles are smaller and well dispersed within the pores. Agglomeration of TiOx species and the formation of Au/TiOx structures is negligible. The dispersion of gold and the formation of Au/TiOx in the SBA-15 matrix seem to depend on the mobility of the TiOx species. The mobility is determined by the initial degree of agglomeration of TiOx. Effective hydrogen evolution requires Au/TiOx coreshell composites as in Au/Ti(x)/SBA-15, whereas hydroxylation of terephthalic acid can also be performed with Au/ZnOx/TiOx/SBA-15 materials. However, isolated TiOx species have to be grafted onto the support prior to the zinc oxide species, providing strong evidence for the necessity of TiOSi bridges for high photocatalytic activity in terephthalic acid hydroxylation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328231400044 Publication Date 2013-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435;2155-5435; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 22 Open Access
Notes 262348 ESMI; FWO; 246791 COUNTATOMS; IAP-PAI; Hercules Approved Most recent IF: 10.614; 2013 IF: 7.572
Call Number UA @ lucian @ c:irua:112502 Serial 1094
Permanent link to this record
 

 
Author Geboes, B.; Ustarroz, J.; Sentosun, K.; Vanrompay, H.; Hubin, A.; Bals, S.; Breugelmans, T.
Title Electrochemical behavior of electrodeposited nanoporous Pt catalysts for the oxygen reduction reaction Type A1 Journal article
Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 6 Issue 6 Pages 5856-5864
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nanoporous Pt based nanoparticles (NP's) are promising fuel cell catalysts due to their high surface area and increased electrocatalytic activity toward the ORR In this work a direct double-pulse electrodeposition procedure at room temperature is applied to obtain dendritic Pt structures (89 nm diameter) with a high level of porosity (ca. 25%) and nanopores of 2 nm protruding until the center of the NP's. The particle morphology is characterized using aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and electron tomography (ET) combined with field emission scanning electron microscopy (FESEM) and macroscopic electrochemical measurements to assess their activity and stability toward the ORR. Macroscopic determination of the active surface area through hydrogen UPD measurements in combination with FESEM and ET showed that a considerable amount of the active sites inside the pores of the low overpotential NP's were accessible to oxygen species. As a result of this accessibility, up to a 9-fold enhancement of the Pt mass corrected ORR activity at 0.85 V vs RHE was observed at the highly porous structures. After successive potential cycling upward to 1.5 V vs RHE in a deaerated HClO4 solution a negative shift of 71 mV in half-wave potential occurred. This decrease in ORR activity could be correlated to the partial collapse of the nanopores, visible in both the EASA values and 3D ET reconstructions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000382714000025 Publication Date 2016-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 48 Open Access OpenAccess
Notes ; The Quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish Government. The authors acknowledge financial support from the Fonds Wetenschappelijk Onderzoek in Flanders (FWOAL708). S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_Sara Approved Most recent IF: 10.614
Call Number UA @ lucian @ c:irua:135703 Serial 4302
Permanent link to this record
 

 
Author Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E.M.; Bals, S.; Kirschhock, C.E.A.; De Vos, D.E.
Title PdPb-catalyzed decarboxylation of proline to pyrrolidine : highly selective formation of a biobased amine in water Type A1 Journal article
Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 6 Issue 6 Pages 7303-7310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Amino acids have huge potential as platform chemicals in the biobased industry. Pd-catalyzed decarboxylation is a very promising route for the valorization of these natural compounds derived from protein waste or fermentation. We report that the highly abundant and nonessential amino acid L-proline is very reactive in the Pd-catalyzed decarboxylation. Full conversions are obtained with Pd/C and different Pd/MeOx catalysts; this allowed the identification of the different side reactions and the mapping of the reaction network. Due to the high reactivity of pyrrolidine, the selectivity for pyrrolidine was initially low. By carefully modifying Pd/ZrO2 with Pb in a controlled manner-via two incipient wetness impregnation steps-the selectivity increased remarkably. Finally, a thorough investigation of the reaction parameters resulted in an increased activity of this modified catalyst and an even further enhanced selectivity under a low H-2 pressure of 4 bar at 235 degrees C in water. This results in a very selective and sustainable production route for the highly interesting pyrrolidine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000387306100005 Publication Date 2016-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 27 Open Access OpenAccess
Notes ; J.V. and F.D.S. thank Fonds Wetenschappelijk Onderzoek (FWO) and Agency for Innovation by Science and Technology (IWT) for doctoral fellowships. D.D.V. acknowledges IWT and FWO for research project funding. D.D.V. and C.E.A.K. acknowledge the Flemish government for long-term structural funding through Methusalem. D.D.V. and S.B. acknowledge Belspo (IAP-PAI 7/05) for financial support. S.B. is grateful for funding by the European Research Council (ERC starting grant no. 335078-COLOURATOMS). The authors also thank the Department of Chemistry, University of Cologne, Germany for use of their XRD equipment. Finally, the assistance of Karel Duerinckx, Werner Wouters, Walter Vermandel, Ivo Stassen, Dries Jonckheere, Sabina Accardo and Bart Bueken with 11-1 NMR, pressure reactors, CO chemisorption, N<INF>2</INF> physisorption, SEM, gas phase FTIR and high-throughput XRD, respectively, is very much appreciated. ; ecas_Sara Approved Most recent IF: 10.614
Call Number UA @ lucian @ c:irua:139171 Serial 4445
Permanent link to this record
 

 
Author Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.-L.; Liu, C.-jun
Title Catalyst preparation with plasmas : how does it work? Type A1 Journal article
Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 8 Issue 3 Pages 2093-2110
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Catalyst preparation with plasmas is increasingly attracting interest. A plasma is a partially ionized gas, consisting of electrons, ions, molecules, radicals, photons, and excited species, which are all active species for catalyst preparation and treatment. Under the influence of plasma, nucleation and crystal growth in catalyst preparation can be very different from those in the conventional thermal approach. Some thermodynamically unfavorable reactions can easily take place with plasmas. Compounds such as sulfides, nitrides, and phosphides that are produced under harsh conditions can be synthesized by plasma under mild conditions. Plasmas can produce catalysts with smaller particle sizes and controllable structure. Plasma is also a facile tool for reduction, oxidation, doping, etching, coating, alloy formation, surface treatment, and surface cleaning in a simple and direct way. A rapid and convenient plasma template removal has thus been established for zeolite synthesis. It can operate at room temperature and allows the catalyst preparation on temperature-sensitive supporting materials. Plasma is typically effective for the production of various catalysts on metallic substrates. In addition, plasma-prepared transition-metal catalysts show enhanced low-temperature activity with improved stability. This provides a useful model catalyst for further improvement of industrial catalysts. In this review, we aim to summarize the recent advances in catalyst preparation with plasmas. The present understanding of plasma-based catalyst preparation is discussed. The challenges and future development are addressed.
Address
Corporate Author Thesis
Publisher Amer chemical soc Place of Publication Washington Editor
Language Wos 000426804100055 Publication Date 2018-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 81 Open Access Not_Open_Access
Notes Approved Most recent IF: 10.614
Call Number UA @ lucian @ c:irua:150880 Serial 4963
Permanent link to this record
 

 
Author Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Dharanipragada, N.V.R.A.; Longo, A.; Meledina, M.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
Title Fe-containing magnesium aluminate support for stability and carbon control during methane reforming Type A1 Journal article
Year 2018 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 8 Issue 7 Pages 5983-5995
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report a MgFexAl2-xO4 synthetic spinel, where x varies from 0 to 0.26, as support for Ni-based catalysts, offering stability and carbon control under various conditions of methane reforming. By incorporation of Fe into a magnesium aluminate spine!, a support is created with redox functionality and high thermal stability, as concluded from temporal analysis of products (TAP) experiments and redox cycling, respectively. A diffusion coefficient of 3 x 10(-17) m(2) s(-1) was estimated for lattice oxygen at 993 K from TAP experiments. X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) modeling identified that the incorporation of iron occurs as Fe3+ in the octahedral sites of the spinel lattice, replacing aluminum. Simulation of the X-ray absorption near edge structure (XANES) spectrum of the reduced support showed that 60 +/- 10% of iron was reduced from 3+ to 2+ at 1073 K, while there was no formation of metallic iron. A series of Ni/MgFexAl2-xO4 catalysts, where x varies from 0 to 0.26, was synthesized and reduced, yielding a supported Ni-Fe alloy. The evolution of the catalyst structure during H-2 temperature-programmed reduction (TPR) and CO2 temperature-programmed oxidation (TPO) was examined using time-resolved in situ XRD and XANES. During reforming, iron in both the support and alloy keeps control of carbon accumulation, as confirmed by O-2-TPO on the spent catalysts. By fine tuning the amount of Fe in MgFexAl2-xO4, a supported alloy was obtained with a Ni/Fe molar ratio of similar to 10, which was active for reforming and stable. By comparison of the performance of Ni-based catalysts with Fe either incorporated into or deposited onto the support, the location of Fe within the support proved crucial for the stability and carbon mitigation under reforming conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000438475100034 Publication Date 2018-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 18 Open Access OpenAccess
Notes ; This work was supported by the FAST industrialization by Catalyst Research and Development (FASTCARD) project, which is a Large Scale Collaborative Project supported by the European Commission in the 7th Framework Programme (GA no 604277), the “Long Term Structural Methusalem Funding by the Flemish Government”, the Interuniversity Attraction Poles Programme, IAP7/5, Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) in supplying financing of travel costs and beam time at the DUBBLE beamline of the ESRF. The authors acknowledge the assistance from the DUBBLE (ESRF, XAS campaign 26-01-1048) and ROCK staff (SOLEIL, proposal 201502561). The authors equally acknowledge support from a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d'Avenir” program (reference: ANR-10-EQPX-45) for the ROCK beamline and from Lukas Buelens and Rakesh Batchu (Laboratory for Chemical Technology, Ghent University) for the STEM measurements and TAP experiments, respectively. ; Approved Most recent IF: 10.614
Call Number UA @ lucian @ c:irua:153178 Serial 5102
Permanent link to this record
 

 
Author Benito, P.; de Nolf, W.; Nuyts, G.; Janssens, K.; et al.
Title Role of coating-metallic support interaction in the properties of electrosynthesized Rh-based structured catalysts Type A1 Journal article
Year 2014 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 4 Issue 10 Pages 3779-3790
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Rh-structured catalysts for the catalytic partial oxidation of CH4 to syngas were prepared by electrosynthesis of Rh-containing hydrotalcite-type (HT) compounds on FeCrAlloy foams followed by calcination at 900 degrees C. During the calcination the simultaneous decomposition of the layered HT structure and formation of the protective FeCrAlloy outer shell in alumina occurred. Here, we studied the role of the coating-metallic support interaction in the properties of the catalysts after calcination, H-2 reduction, and catalytic tests, by a combination of electron (FEG-SEM/EDS) and synchrotron X-ray (XRF/XRPD and XRF/XANES) microscopic techniques. The characterization of crystalline phases in the metallic support and coating and distribution of Rh active species was carried out on several samples prepared by modifying the Rh content in the electrolytic solution (Rh/Mg/Al = 11.0/70.0/19.0, 5.0/70.0/25.0, 0/70.0/30.0 atomic ratio). A sample was also prepared with no aluminum in the electrolytic solution (Rh/Mg/Al = 13.6/86.4/0.0 atomic ratio) and calcined at 550 and 900 degrees C. The interaction between the elements of the metallic support and the catalytic coating increased the film adhesion during the thermal treatment and catalytic tests and modified the catalyst crystalline phases. A chemical reaction between Al corning from the foam and Mg in the coating occurred during calcination at high temperature leading to the formation of spinel phases in which rhodium is solved, together with some Rh2O3 and Rh. The metallic support was oxidized forming the corundum scale and chromium oxides, moreover t-Al2O3 was identified. For the Rh11.0Mg70.0Al19.0 catalyst the inclusion of Rh in the spinel phase decreased its reducibility in the H-2 pretreatment. The reduction continued during catalytic tests by feeding diluted CH4/O-2/He gas mixtures, evidenced by the catalyst activation. While under concentrated gas mixtures the deactivation occurred, probably by oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345735200053 Publication Date 2014-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 13 Open Access
Notes ; The authors thank the scientists who assisted during the conducted experiments: D. Grolimund and C. N. Borca for the mu XRF/XRPD experiments performed at MicroXAS Beamline of SLS, M. Janousch for the mu XRF/XANES experiments at Phoenix Beamline of the SLS, M. Salome for the mu XRE/XANES experiments at ID21 Beamline of the ESRF, and I. Guerra for the FEG-SEM/EDS experiments at Granada University. Thanks must go to Porvair for supplying FeCrAlloy foams. The financial support from the Ministero per l'Istruzione, l'Universita e la Ricerca (MIUR, Roma, I) is gratefully acknowledged. ; Approved Most recent IF: 10.614; 2014 IF: 9.312
Call Number UA @ admin @ c:irua:122215 Serial 5820
Permanent link to this record
 

 
Author Tang, Z.; Liu, P.; Cao, H.; Bals, S.; Heeres, H.J.; Pescarmona, P.P.
Title Pr/ZrO2 prepared by atomic trapping : an efficient catalyst for the conversion of glycerol to lactic acid with concomitant transfer hydrogenation of cyclohexene Type A1 Journal article
Year 2019 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume 9 Issue 9 Pages 9953-9963
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of heterogeneous catalysts consisting of highly dispersed Pt nanoparticles supported on nanosized ZrO2 (20 to 60 nm) was synthesized and investigated for the one-pot transfer hydrogenation between glycerol and cyclohexene to produce lactic acid and cyclohexane, without any additional H-2. Different preparation methods were screened, by varying the calcination and reduction procedures with the purpose of optimizing the dispersion of Pt species (i.e., as single-atom sites or extra-fine Pt nanoparticles) on the ZrO2 support. The Pt/ZrO2 catalysts were characterized by means of transmission electron microscopy techniques (HAADF-STEM, TEM), elemental analysis (ICP-OES, EDX mapping), N-2-physisorption, H-2 temperature-programmed-reduction (H-2-TPR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Based on this combination of techniques it was possible to correlate the temperature of the calcination and reduction treatments with the nature of the Pt species. The best catalyst consisted of subnanometer Pt clusters (<1 nm) and atomically dispersed Pt (as Pt2+ and Pt4+) on the ZrO2 support, which were converted into extra-fine Pt nanoparticles (average size = 1.4 nm) upon reduction. These nanoparticles acted as catalytic species for the transfer hydrogenation of glycerol with cyclohexene, which gave an unsurpassed 95% yield of lactic acid salt at 96% glycerol conversion (aqueous glycerol solution, NaOH as promoter, 160 degrees C, 4.5 h, at 20 bar N-2). This is the highest yield and selectivity of lactic acid (salt) reported in the literature so far. Reusability experiments showed a partial and gradual loss of activity of the Pt/ZrO2 catalyst, which was attributed to the experimentally observed aggregation of Pt nanoparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000494549700025 Publication Date 2019-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 46 Open Access OpenAccess
Notes Zhenchen Tang acknowledges the financial support from the China Scholarship Council for his Ph.D. grant. All the authors are grateful for the technical support from Erwin Wilbers, Anne Appeldoorn, and Marcel de Vries, the TEM support from Dr. Marc Stuart, and the ICP-OES support from Johannes van der Velde. Pei Liu and Sara Bals acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of grant agreement No. 731019 EUSMI. Approved Most recent IF: 10.614
Call Number UA @ admin @ c:irua:164643 Serial 6326
Permanent link to this record
 

 
Author Yi, Y.; Wang, X.; Jafarzadeh, A.; Wang, L.; Liu, P.; He, B.; Yan, J.; Zhang, R.; Zhang, H.; Liu, X.; Guo, H.; Neyts, E.C.; Bogaerts, A.
Title Plasma-Catalytic Ammonia Reforming of Methane over Cu-Based Catalysts for the Production of HCN and H2at Reduced Temperature Type A1 Journal article
Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 11 Issue 3 Pages 1765-1773
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Industrial production of HCN from NH3 and CH4 not only uses precious Pt or Pt−Rh catalysts but also requires extremely high temperatures (∼1600 K). From an energetic, operational, and safety perspective, a drastic decrease in temperature is highly desirable. Here, we report ammonia reforming of methane for the production of HCN and H2 at 673 K by the combination of CH4/NH3 plasma and a supported Cu/silicalite-1 catalyst. 30% CH4 conversion has been achieved with 79% HCN selectivity. Catalyst characterization and plasma diagnostics reveal that the excellent reaction performance is attributed to metallic Cu active sites. In addition, we propose a possible reaction pathway, viz. E-R reactions with N, NH, NH2, and CH radicals produced in the plasma, for the production of HCN, based on density functional theory calculations. Importantly, the Cu/silicalite-1 catalyst costs less than 5% of the commercial Pt mesh catalyst.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000618540300057 Publication Date 2021-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited Open Access OpenAccess
Notes Universiteit Antwerpen, 32249 ; China Postdoctoral Science Foundation, 2015M580220 2016T90217 ; PetroChina Innovation Foundation, 2018D-5007-0501 ; National Natural Science Foundation of China, 21503032 ; We acknowledge financial support from the National Natural Science Foundation of China [21503032], the China Postdoctoral Science Foundation [grant numbers 2015M580220 and 2016T90217, 2016], the PetroChina Innovation Foundation [2018D-5007-0501], and the TOP research project of the Research Fund of the University of Antwerp [grant ID 32249]. Approved Most recent IF: 10.614
Call Number PLASMANT @ plasmant @c:irua:175880 Serial 6675
Permanent link to this record
 

 
Author Coeck, R.; Meeprasert, J.; Li, G.; Altantzis, T.; Bals, S.; Pidko, E.A.; De Vos, D.E.
Title Gold and silver-catalyzed reductive amination of aromatic carboxylic acids to benzylic amines Type A1 Journal article
Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 11 Issue 13 Pages 7672-7684
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract The reductive amination of benzoic acid and its derivatives would be an effective addition to current synthesis methods for benzylamine. However, with current technology it is very difficult to keep the aromaticity intact when starting from benzoic acid, and salt wastes are often generated in the process. Here, we report a heterogeneous catalytic system for such a reductive amination, requiring solely H-2 and NH3 as the reactants. The Ag/TiO2 or Au/TiO2 catalysts can be used multiple times, and very little noble metal is required, only 0.025 mol % Au. The catalysts are bifunctional: the support catalyzes the dehydration of both the ammonium carboxylate to the amide and of the amide to the nitrile, while the sites at the metal-support interface promote the hydrogenation of the in situ generated nitrile. Yields of up to 92% benzylamine were obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000670659900005 Publication Date 2021-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited 16 Open Access OpenAccess
Notes R.C. thanks the FWO for his SB PhD fellowship. D.E.D.V. acknowledges FWO for research project funding, as well as KU Leuven for funding in the Metusalem program Casas. S.B. acknowledges support from the European Research Council (ERC Consolidator grant #815128 REALNANO). T.A. acknowledges funding from the University of Antwerp Research fund (BOF). E.A.P. acknowledges the support from the European Research Council (ERC Consolidator grant #725686 DeliCAT). J.M. acknowledges financial support through the Royal Thai Government Scholarship. DFT calculations on SURFsara supercomputer facilities were performed with support from the Netherlands Organization for Scientific Research (NWO).; sygmaSB Approved Most recent IF: 10.614
Call Number UA @ admin @ c:irua:179851 Serial 6840
Permanent link to this record
 

 
Author Zhang, T.; Schilling, W.; Khan, S.U.; Ching, H.Y.V.; Lu, C.; Chen, J.; Jaworski, A.; Barcaro, G.; Monti, S.; De Wael, K.; Slabon, A.; Das, S.
Title Atomic-level understanding for the enhanced generation of hydrogen peroxide by the introduction of an aryl amino group in polymeric carbon nitrides Type A1 Journal article
Year 2021 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 11 Issue 22 Pages 14087-14101
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY); Applied Electrochemistry & Catalysis (ELCAT); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Heterogeneous catalysts are often & ldquo;black boxes & rdquo; due to the insufficient understanding of the detailed mechanisms at the catalytic sites. An atomic-level elucidation of the processes taking place in those regions is, thus, mandatory to produce robust and selective heterogeneous catalysts. We have improved the description of the whole reactive scenario for polymeric carbon nitrides (PCN) by combining atomic-level characterizations with magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, classical reactive molecular dynamics (RMD) simulations, and quantum chemistry (QC) calculations. We disclose the structure & minus;property relationships of an ad hoc modified PCN by inserting an aryl amino group that turned out to be very efficient for the production of H2O2. The main advancement of this work is the development of a difluoromethylene-substituted aryl amino PCN to generate H2O2 at a rate of 2.0 mM & middot;h & minus;1 under the irradiation of household blue LEDs and the identification of possible active catalytic sites with the aid of 15N and 19F MAS solid-state NMR without using any expensive labeling reagent. RMD simulations and QC calculations confirm and further extend the experimental descriptions by revealing the role and locations of the identified functionalities, namely, NH linkers, & minus;NH2 terminal groups, and difluoromethylene units, reactants, and products. <comment>Superscript/Subscript Available</comment
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000758012900020 Publication Date 2021-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.614 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.614
Call Number UA @ admin @ c:irua:187276 Serial 7534
Permanent link to this record
 

 
Author Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M.
Title Double moiré with a twist : supermoiré in encapsulated graphene Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 2 Pages 979
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract A periodic spatial modulation, as created by a moire pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moire patterns, resulting in a so-called supermoire (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000514255400021 Publication Date 2020-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 48 Open Access OpenAccess
Notes ; This work was funded by FLAGERA project TRANS2DTMD and the Flemish Science Foundation (FWO-Vl) through a postdoc fellowship for S.P.M. The authors acknowledge useful discussions with W. Zihao and K. Novoselov. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:168685 Serial 6490
Permanent link to this record
 

 
Author Bekaert, J.; Khestanova, E.; Hopkinson, D.G.; Birkbeck, J.; Clark, N.; Zhu, M.; Bandurin, D.A.; Gorbachev, R.; Fairclough, S.; Zou, Y.; Hamer, M.; Terry, D.J.; Peters, J.J.P.; Sanchez, A.M.; Partoens, B.; Haigh, S.J.; Milošević, M.V.; Grigorieva, I., V
Title Enhanced superconductivity in few-layer TaS₂ due to healing by oxygenation Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 5 Pages 3808-3818
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract When approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS2). Our first-principles calculations show that incorporation of oxygen into the TaS2 crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS2. Strikingly, this leads to a strong enhancement of the electron-phonon coupling, by up to 80% in the highly oxygenated limit. Using transport measurements on fresh and aged (oxygenated) few-layer TaS2, we found a marked increase of the superconducting critical temperature (T-c) upon aging, in agreement with our theory, while concurrent electron microscopy and electron-energy loss spectroscopy confirmed the presence of sulfur vacancies in freshly prepared TaS2 and incorporation of oxygen into the crystal lattice with time. Our work thus reveals the mechanism by which certain atomic-scale defects can be beneficial to superconductivity and opens a new route to engineer T-c in ultrathin materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535255300114 Publication Date 2020-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 16 Open Access
Notes ; This work was supported by Research Foundation-Flanders (FWO). J.Be. acknowledges support of a postdoctoral fellowship of the FWO. The computational resources and services used for the first-principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. S.J.H., D.H., and S.F. would like to thank the Engineering and Physical Sciences Research Council (EPSRC) U.K (grants EP/R031711/1, EP/P009050/1 and the Graphene NOWNANO CDT) and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement ERC-2016-STG-EvoluTEM-715502, the Hetero2D Synergy grant and EC-FET Graphene Flagship) for funding. We thank Diamond Light Source for access and support in use of the electron Physical Science Imaging Centre (Instrument E02 and proposal numbers EM19315 and MG21597) that contributed to the results presented here. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:170264 Serial 6507
Permanent link to this record
 

 
Author Lu, Y.; Liu, X.-L.; He, L.; Zhang, Y.-X.; Hu, Z.-Y.; Tian, G.; Cheng, X.; Wu, S.-M.; Li, Y.-Z.; Yang, X.-H.; Wang, L.-Y.; Liu, J.-W.; Janiak, C.; Chang, G.-G.; Li, W.-H.; Van Tendeloo, G.; Yang, X.-Y.; Su, B.-L.
Title Spatial heterojunction in nanostructured TiO₂ and its cascade effect for efficient photocatalysis Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 5 Pages 3122-3129
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A highly efficient photoenergy conversion is strongly dependent on the cumulative cascade efficiency of the photogenerated carriers. Spatial heterojunctions are critical to directed charge transfer and, thus, attractive but still a challenge. Here, a spatially ternary titanium-defected TiO2@carbon quantum dots@reduced graphene oxide (denoted as V-Ti@CQDs@rGO) in one system is shown to demonstrate a cascade effect of charges and significant performances regarding the photocurrent, the apparent quantum yield, and photocatalysis such as H-2 production from water splitting and CO2 reduction. A key aspect in the construction is the technologically irrational junction of Ti-vacancies and nanocarbons for the spatially inside-out heterojunction. The new “spatial heterojunctions” concept, characteristics, mechanism, and extension are proposed at an atomic- nanoscale to clarify the generation of rational heterojunctions as well as the cascade electron transfer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000535255300024 Publication Date 2020-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 5 Open Access Not_Open_Access
Notes ; This work was supported by the joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft (NSFC-DFG) project (NSFC grant 51861135313, DFG JA466/39-1), Fundamental Research Funds for the Central Universities (19lgpy113, 19lgzd16), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) and Jilin Province Science and Technology Development Plan (20180101208JC). ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:170263 Serial 6608
Permanent link to this record
 

 
Author Wang, H.; Su, L.; Yagmurcukardes, M.; Chen, J.; Jiang, Y.; Li, Z.; Quan, A.; Peeters, F.M.; Wang, C.; Geim, A.K.; Hu, S.
Title Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 12 Pages 8634-8639
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 angstrom in diameter with an estimated density of about 10(12) cm(-2). The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000599507100032 Publication Date 2020-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 43 Open Access
Notes ; The authors acknowledge supported from National Key Research and Development Program of China (2019YFA0705400, 2018YFA0209500), and National Natural Science Foundation of China (21972121, 21671162). M. Y. acknowledges the Flemish Science Foundation (FWO-Vl) postdoctoral fellowship. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:175048 Serial 6685
Permanent link to this record
 

 
Author Achari, A.; Bekaert, J.; Sreepal, V.; Orekhov, A.; Kumaravadivel, P.; Kim, M.; Gauquelin, N.; Pillai, P.B.; Verbeeck, J.; Peeters, F.M.; Geim, A.K.; Milošević, M.V.; Nair, R.R.
Title Alternating superconducting and charge density wave monolayers within bulk 6R-TaS₂ Type A1 Journal article
Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue 15 Pages 6268-6275
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 degrees C in an inert atmosphere. Its superconducting transition (T-c) is found at 2.6 K, exceeding the T-c of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831832100001 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 12 Open Access OpenAccess
Notes This work was supported by the Royal Society, the Leverhulme Trust (PLP-2018-220), the Engineering and Physical Sciences Research Council (EP/N005082/1), and European Research Council (contract 679689). The authors acknowledge the use of the facilities at the Henry Royce Institute and associated support services. J.B. is a postdoctoral fellow of Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. This work was also performed under a transnational access provision funded by the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717 − ESTEEM3; esteem3reported; esteem3jra Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:189495 Serial 7077
Permanent link to this record
 

 
Author Chowdhury, M.S.; Rösch, E.L.; Esteban, D.A.; Janssen, K.-J.; Wolgast, F.; Ludwig, F.; Schilling, M.; Bals, S.; Viereck, T.; Lak, A.
Title Decoupling the Characteristics of Magnetic Nanoparticles for Ultrahigh Sensitivity Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 1 Pages 58-65
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Immunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions. We provide insights into how to decouple physical properties of these MNCs to achieve ultrahigh sensitivity. We find that tri-component-based Zn0.06 Co0.80Fe2.14 O4 particles, with out-of-phase to initial magnetic susceptibility χ /χ ratio of 0.47 out of 0.50 for magnetically blocked ideal particles, show the ultrahigh magnetic sensitivity by providing rich magnetic particle spectroscopy (MPS) harmonics spectrum despite bearing lower saturation magnetization than di-component Zn0.1Fe2.9O4 having high saturation magnetization. The Zn0.06Co0.80Fe2.14O4 MNCs, coated with catechol-based polyethylene glycol ligands, measured by our benchtop MPS show three orders of magnitude better particle LOD than that of commercial nanoparticles of comparable size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000907816300001 Publication Date 2023-01-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 1 Open Access OpenAccess
Notes Deutsche Forschungsgemeinschaft, DFG RTG 1952 ; Joachim Herz Stiftung; H2020 Research Infrastructures, 823717 ; Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number EMAT @ emat @c:irua:193406 Serial 7248
Permanent link to this record
 

 
Author Gobato, Y.G.; de Brito, C.S.; Chaves, A.; Prosnikov, M.A.; Wozniak, T.; Guo, S.; Barcelos, I.D.; Milošević, M.V.; Withers, F.; Christianen, P.C.M.
Title Distinctive g-factor of Moire-confined excitons in van der Waals heterostructures Type A1 Journal article
Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue 21 Pages 8641-8641
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We investigated the valley Zeeman splitting of excitonic peaks in the microphotoluminescence (mu PL) spectra of high-quality hBN/WS2/MoSe2/hBN heterostructures under perpendicular magnetic fields up to 20 T. We identify two neutral exciton peaks in the mu PL spectra; the lower-energy peak exhibits a reduced g-factor relative to that of the higher energy peak and much lower than the recently reported values for interlayer excitons in other van der Waals (vdW) heterostructures. We provide evidence that such a discernible g-factor stems from the spatial confinement of the exciton in the potential landscape created by the moire pattern due to lattice mismatch or interlayer twist in heterobilayers. This renders magneto-mu PL an important tool to reach a deeper understanding of the effect of moire patterns on excitonic confinement in vdW heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000877287800001 Publication Date 2022-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 3 Open Access OpenAccess
Notes Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:192166 Serial 7298
Permanent link to this record
 

 
Author Rivas-Murias, B.; Testa-Anta, M.; Skorikov, A.S.; Comesana-Hermo, M.; Bals, S.; Salgueirino, V.
Title Interfaceless exchange bias in CoFe₂O₄ nanocrystals Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 5 Pages 1688-1695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Oxidized cobalt ferrite nanocrystals with a modified distribution of the magnetic cations in their spinel structure give place to an unusual exchange-coupled system with a double reversal of the magnetization, exchange bias, and increased coercivity, but without the presence of a clear physical interface that delimits two well-differentiated magnetic phases. More specifically, the partial oxidation of cobalt cations and the formation of Fe vacancies at the surface region entail the formation of a cobalt-rich mixed ferrite spinel, which is strongly pinned by the ferrimagnetic background from the cobalt ferrite lattice. This particular configuration of exchange-biased magnetic behavior, involving two different magnetic phases but without the occurrence of a crystallographically coherent interface, revolu-tionizes the established concept of exchange bias phenomenology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000940892000001 Publication Date 2023-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 4 Open Access OpenAccess
Notes M.T.-A. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovaci?n under grant FJC2021- 046680-I. S.B. acknowledges funding from the European Research Council under the European Union?s Horizon 2020 research and innovation program (ERC Consolidator Grant N o 815128 REALNANO) . V.S. acknowledges the financial support from the Spanish Ministerio de Ciencia e Innovaci?n under project PID2020-119242-I00 and from the European Union under project H2020-MSCA-RISE-2019 PEPSA-MATE (project number 872233) . Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number UA @ admin @ c:irua:195186 Serial 7315
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.; Barry, D.; Xin, B.; Huang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Photoaccelerated water dissociation across one-atom-thick electrodes Type A1 Journal article
Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue 23 Pages 9566-9570
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recent experiments demonstrated that interfacial water dissociation (H2O ⇆ H+ + OH-) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields. The found photoeffect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect, which occurs in synchrony with the water dissociation reaction. Our findings provide fundamental insights into ion dynamics near atomically thin proton-selective interfaces and suggest that strong interfacial fields can enhance and tune very fast ionic processes, which is of relevance for applications in photocatalysis and designing reconfigurable materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000892112200001 Publication Date 2022-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 3 Open Access OpenAccess
Notes Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:192759 Serial 7330
Permanent link to this record
 

 
Author Torun, E.; Paleari, F.; Milošević, M.V.; Wirtz, L.; Sevik, C.
Title Intrinsic control of interlayer exciton generation in Van der Waals materials via Janus layers Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 8 Pages 3159-3166
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We demonstrate the possibility of engineering the optical properties of transition metal dichalcogenide heterobilayers when one of the constitutive layers has a Janus structure. We investigate different MoS2@Janus layer combinations using first-principles methods including excitons and exciton-phonon coupling. The direction of the intrinsic electric field from the Janus layer modifies the electronic band alignments and, consequently, the energy separation between dark interlayer exciton states and bright in-plane excitons. We find that in-plane lattice vibrations strongly couple the two states, so that exciton-phonon scattering may be a viable generation mechanism for interlayer excitons upon light absorption. In particular, in the case of MoS2@WSSe, the energy separation of the low-lying interlayer exciton from the in-plane exciton is resonant with the transverse optical phonon modes (40 meV). We thus identify this heterobilayer as a prime candidate for efficient generation of charge-separated electron-hole pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000969732100001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number UA @ admin @ c:irua:196034 Serial 8118
Permanent link to this record
 

 
Author Gauquelin, N.; Forte, F.; Jannis, D.; Fittipaldi, R.; Autieri, C.; Cuono, G.; Granata, V.; Lettieri, M.; Noce, C.; Miletto-Granozio, F.; Vecchione, A.; Verbeeck, J.; Cuoco, M.
Title Pattern Formation by Electric-Field Quench in a Mott Crystal Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The control of Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2 RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron

microscopy. The nanotexture depends on the orientation of the electric field, it is non-volatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of non-volatile electronics based on voltage-controlled nanometric phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001012061600001 Publication Date 2023-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited 2 Open Access OpenAccess
Notes This project has received funding from the European Union’s Horizon 2020 research and innova- tion programme under grant agreement No 823717 – ESTEEM3. The Merlin camera used in the experiment received funding from the FWO-Hercules fund G0H4316N ’Direct electron detector 15for soft matter TEM’. C. A. and G. C. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. and G. C. acknowledge the access to the computing facil- ities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. GB84-0, GB84-1 and GB84-7 and GB84-7 and Poznan Supercomputing and Networking Center Grant No. 609.. C. A. and G. C. acknowledge the CINECA award under the ISCRA initiative IsC85 “TOP- MOST” Grant, for the availability of high-performance computing resources and support. We acknoweldge A. Guarino and C. Elia for providing support about the electrical characterization of the sample. M.C., R.F., and A.V. acknowledge support from the EU’s Horizon 2020213 research and innovation program under Grant Agreement No. 964398 (SUPERGATE). Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number EMAT @ emat @c:irua:196970 Serial 8789
Permanent link to this record
 

 
Author Ying, J.; Xiao, Y.; Chen, J.; Hu, Z.-Y.; Tian, G.; Van Tendeloo, G.; Zhang, Y.; Symes, M.D.D.; Janiak, C.; Yang, X.-Y.
Title Fractal design of hierarchical PtPd with enhanced exposed surface atoms for highly catalytic activity and stability Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume 23 Issue 16 Pages 7371-7378
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hierarchicalassembly of arc-like fractal nanostructures not onlyhas its unique self-similarity feature for stability enhancement butalso possesses the structural advantages of highly exposed surface-activesites for activity enhancement, remaining a great challenge for high-performancemetallic nanocatalyst design. Herein, we report a facile strategyto synthesize a novel arc-like hierarchical fractal structure of PtPdbimetallic nanoparticles (h-PtPd) by using pyridinium-type ionic liquidsas the structure-directing agent. Growth mechanisms of the arc-likenanostructured PtPd nanoparticles have been fully studied, and precisecontrol of the particle sizes and pore sizes has been achieved. Dueto the structural features, such as size control by self-similaritygrowth of subunits, structural stability by nanofusion of subunits,and increased numbers of exposed active atoms by the curved homoepitaxialgrowth, h-PtPd displays outstanding electrocatalytic activity towardoxygen reduction reaction and excellent stability during hydrothermaltreatment and catalytic process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001042181100001 Publication Date 2023-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 10.8 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number UA @ admin @ c:irua:198408 Serial 8870
Permanent link to this record