toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Benito, P.; de Nolf, W.; Nuyts, G.; Janssens, K.; et al. pdf  url
doi  openurl
  Title Role of coating-metallic support interaction in the properties of electrosynthesized Rh-based structured catalysts Type A1 Journal article
  Year (down) 2014 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 4 Issue 10 Pages 3779-3790  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Rh-structured catalysts for the catalytic partial oxidation of CH4 to syngas were prepared by electrosynthesis of Rh-containing hydrotalcite-type (HT) compounds on FeCrAlloy foams followed by calcination at 900 degrees C. During the calcination the simultaneous decomposition of the layered HT structure and formation of the protective FeCrAlloy outer shell in alumina occurred. Here, we studied the role of the coating-metallic support interaction in the properties of the catalysts after calcination, H-2 reduction, and catalytic tests, by a combination of electron (FEG-SEM/EDS) and synchrotron X-ray (XRF/XRPD and XRF/XANES) microscopic techniques. The characterization of crystalline phases in the metallic support and coating and distribution of Rh active species was carried out on several samples prepared by modifying the Rh content in the electrolytic solution (Rh/Mg/Al = 11.0/70.0/19.0, 5.0/70.0/25.0, 0/70.0/30.0 atomic ratio). A sample was also prepared with no aluminum in the electrolytic solution (Rh/Mg/Al = 13.6/86.4/0.0 atomic ratio) and calcined at 550 and 900 degrees C. The interaction between the elements of the metallic support and the catalytic coating increased the film adhesion during the thermal treatment and catalytic tests and modified the catalyst crystalline phases. A chemical reaction between Al corning from the foam and Mg in the coating occurred during calcination at high temperature leading to the formation of spinel phases in which rhodium is solved, together with some Rh2O3 and Rh. The metallic support was oxidized forming the corundum scale and chromium oxides, moreover t-Al2O3 was identified. For the Rh11.0Mg70.0Al19.0 catalyst the inclusion of Rh in the spinel phase decreased its reducibility in the H-2 pretreatment. The reduction continued during catalytic tests by feeding diluted CH4/O-2/He gas mixtures, evidenced by the catalyst activation. While under concentrated gas mixtures the deactivation occurred, probably by oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345735200053 Publication Date 2014-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 13 Open Access  
  Notes ; The authors thank the scientists who assisted during the conducted experiments: D. Grolimund and C. N. Borca for the mu XRF/XRPD experiments performed at MicroXAS Beamline of SLS, M. Janousch for the mu XRF/XANES experiments at Phoenix Beamline of the SLS, M. Salome for the mu XRE/XANES experiments at ID21 Beamline of the ESRF, and I. Guerra for the FEG-SEM/EDS experiments at Granada University. Thanks must go to Porvair for supplying FeCrAlloy foams. The financial support from the Ministero per l'Istruzione, l'Universita e la Ricerca (MIUR, Roma, I) is gratefully acknowledged. ; Approved Most recent IF: 10.614; 2014 IF: 9.312  
  Call Number UA @ admin @ c:irua:122215 Serial 5820  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: