|   | 
Details
   web
Records
Author van den Bos, K.H.W.; Altantzis, T.; De Backer, A.; Van Aert, S.; Bals, S.
Title Recent breakthroughs in scanning transmission electron microscopy of small species Type A1 Journal article
Year 2018 Publication Advances in Physics: X Abbreviated Journal Advances in Physics: X
Volume 3 Issue 3 Pages 1480420
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Over the last decade, scanning transmission electron microscopy has become one of the most powerful tools to characterise nanomaterials at the atomic scale. Often, the ultimate goal is to retrieve the three-dimensional structure, which is very challenging since small species are typically sensitive to electron irradiation. Nevertheless, measuring individual atomic positions is crucial to understand the relation between the structure and physicochemical properties of these (nano)materials. In this review, we highlight the latest approaches that are available to reveal the 3D atomic structure of small species. Finally, we will provide an outlook and will describe future challenges where the limits of electron microscopy will be pushed even further.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441619500001 Publication Date 2018-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2374-6149 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 8 Open Access OpenAccess
Notes This work was supported by the Research Foundation Flanders (FWO, Belgium) under Grant G.0368.15N, G.0369.15N, and G.0267.18N, by personal FWO Grants to K. H. W. van den Bos, T. Altantzis, and A. De Backer, and the European Research Council under Grant 335078 COLOURATOM to S. Bals. The authors would like to thank the colleagues who have contributed to this work over the years, including A. M. Abakumov, K. J. Batenburg, E. Countiño-Gonzalez, C. de Mello Donega, R. Erni, J. J. Geuchies, B. Goris, J. Hofkens, L. Jones, P. Lievens, L. M. Liz-Marzán, I. Lobato, G. T. Martinez, P. D. Nellist, B. Partoens, M. B. J. Roeffaers, M.D. Rossell, B. Schoeters, M. J. Van Bael, W. van der Stam, M. van Huis, G. Van Tendeloo, D. Vanmaekelbergh, and N. Winckelmans. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:152820UA @ admin @ c:irua:152820 Serial 5007
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D.
Title Berry phase engineering at oxide interfaces Type A1 Journal article
Year 2020 Publication Abbreviated Journal Phys. Rev. Research
Volume 2 Issue 2 Pages 023404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000603642700008 Publication Date 2020-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2643-1564 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 58 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:172462 Serial 6401
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S.
Title Atom column detection Type H2 Book chapter
Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 177-214
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract By combining statistical parameter estimation and model-order selection using a Bayesian framework, the maximum a posteriori (MAP) probability rule is proposed in this chapter as an objective and quantitative method to detect atom columns from high-resolution scanning transmission electron microscopy (HRSTEM) images. The validity and usefulness of this approach is demonstrated to both simulated and experimental annular dark-field (ADF) STEM images, but also to simultaneously acquired annular bright-field (ABF) and ADF STEM image data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177531 Serial 6775
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Atom counting Type H2 Book chapter
Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 91-144
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this chapter, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. We show that this method can be applied to nanocrystals of arbitrary shape, size, and atom type. The validity of the atom-counting results is confirmed by means of detailed image simulations and it is shown that the high sensitivity of our method enables us to count atoms with single atom sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177529 Serial 6776
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Efficient fitting algorithm Type H2 Book chapter
Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 73-90
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)
Abstract An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic-resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighboring columns, enabling the analysis of a large field of view. To provide end-users with this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. In this chapter, this efficient algorithm is applied to three different nanostructures for which the analysis of a large field of view is required.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177528 Serial 6778
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title General conclusions and future perspectives Type H2 Book chapter
Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 243-253
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract This chapter provides an overview of statistical and quantitative methodologies that have pushed (scanning) transmission electron microscopy ((S)TEM) toward accurate and precise measurements of unknown structure parameters for understanding the relation between the structure of a material and its properties. Hereby, statistical parameter estimation theory has extensively been used which enabled not only measuring atomic column positions, but also quantifying the number of atoms, and detecting atomic columns as accurately and precisely as possible from experimental images. As a general conclusion, it can be stated that advanced statistical techniques are ideal tools to perform quantitative electron microscopy at the atomic scale. In the future, statistical methods will continue to be developed and novel quantification procedures will open up new possibilities for studying material structures at the atomic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177533 Serial 6781
Permanent link to this record
 

 
Author Fatermans, J.; de Backer, A.; den Dekker, A.J.; Van Aert, S.
Title Image-quality evaluation and model selection with maximum a posteriori probability Type H2 Book chapter
Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 215-242
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract The maximum a posteriori (MAP) probability rule for atom column detection can also be used as a tool to evaluate the relation between scanning transmission electron microscopy (STEM) image quality and atom detectability. In this chapter, a new image-quality measure is proposed that correlates well with atom detectability, namely the integrated contrast-to-noise ratio (ICNR). Furthermore, the working principle of the MAP probability rule is described in detail showing a close relation to the principles of model-selection methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177532 Serial 6782
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Introduction Type H2 Book chapter
Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 1-28
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177525 Serial 6784
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Optimal experiment design for nanoparticle atom counting from ADF STEM images Type H2 Book chapter
Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 145-175
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this chapter, the principles of detection theory are used to quantify the probability of error for atom counting from high-resolution scanning transmission electron microscopy (HRSTEM) images. Binary and multiple hypothesis testing have been investigated in order to determine the limits to the precision with which the number of atoms in a projected atomic column can be estimated. The probability of error has been calculated when using STEM images, scattering cross-sections or peak intensities as a criterion to count atoms. Based on this analysis, we conclude that scattering cross-sections perform almost equally well as images and perform better than peak intensities. Furthermore, the optimal STEM detector design can be derived for atom counting using the expression of the probability of error. We show that for very thin objects the low-angle annular dark-field (LAADF) regime is optimal and that for thicker objects the optimal inner detector angle increases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177530 Serial 6785
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S.
Title Statistical parameter estimation theory : principles and simulation studies Type H2 Book chapter
Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal
Volume Issue Pages 29-72
Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab
Abstract In this chapter, the principles of statistical parameter estimation theory for a quantitative analysis of atomic-resolution electron microscopy images are introduced. Within this framework, electron microscopy images are described by a parametric statistical model. Here, parametric models are introduced for different types of electron microscopy images: reconstructed exit waves, annular dark-field (ADF) scanning transmission electron microscopy (STEM) images, and simultaneously acquired ADF and annular bright-field (ABF) STEM images. Furthermore, the Cramér-Rao lower bound (CRLB) is introduced, i.e. a theoretical lower bound on the variance of any unbiased estimator. This CRLB is used to quantify the precision of the structure parameters of interest, such as the atomic column positions and the integrated atomic column intensities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2021-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume 217 Series Issue Edition
ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record
Impact Factor (up) Times cited Open Access Not_Open_Access
Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:177527 Serial 6788
Permanent link to this record
 

 
Author Arslan Irmak, E.; Liu, P.; Bals, S.; Van Aert, S.
Title 3D Atomic Structure of Supported Metallic Nanoparticles Estimated from 2D ADF STEM Images: A Combination of Atom – Counting and a Local Minima Search Algorithm Type A1 Journal article
Year 2021 Publication Small methods Abbreviated Journal Small Methods
Volume Issue Pages 2101150
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Determining the three-dimensional (3D) atomic structure of nanoparticles (NPs) is critical to understand their structure-dependent properties. It is hereby important to perform such analyses under conditions relevant for the envisioned application. Here, we investigate the 3D structure of supported Au NPs at high temperature, which is of importance to understand their behavior during catalytic reactions. To overcome limitations related to conventional high-resolution electron tomography at high temperature, 3D characterization of NPs with atomic resolution has been performed by applying atom-counting using atomic resolution annular darkfield scanning transmission electron microscopy (ADF STEM) images followed by structural relaxation. However, at high temperatures, thermal displacements, which affect the ADF STEM intensities, should be taken into account. Moreover, it is very likely that the structure of a NP investigated at elevated temperature deviates from a ground state configuration, which is difficult to determine using purely computational energy minimization approaches. In this paper, we therefore propose an optimized approach using an iterative local minima search algorithm followed by molecular dynamics (MD) structural relaxation of candidate structures associated with each local minimum. In this manner, it becomes possible to investigate the 3D atomic structure of supported NPs, which may deviate from their ground state configuration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000716511600001 Publication Date 2021-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 12 Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 815128 REALNANO to SB, Grant 770887 PICOMETRICS to SVA, Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0267.18N, G.0502.18N, G.0346.21N).; sygmaSB; esteem3jra; esteem3reported Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:183289 Serial 6820
Permanent link to this record
 

 
Author Zheng, Y.-R.; Vernieres, J.; Wang, Z.; Zhang, K.; Hochfilzer, D.; Krempl, K.; Liao, T.-W.; Presel, F.; Altantzis, T.; Fatermans, J.; Scott, S.B.; Secher, N.M.; Moon, C.; Liu, P.; Bals, S.; Van Aert, S.; Cao, A.; Anand, M.; Nørskov, J.K.; Kibsgaard, J.; Chorkendorff, I.
Title Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts Type A1 Journal article
Year 2021 Publication Nature Energy Abbreviated Journal Nat Energy
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Development of low-cost and high-performance oxygen evolution reaction catalysts is key to implementing polymer electrolyte membrane water electrolyzers for hydrogen production. Iridium-based oxides are the state-of-the-art acidic oxygen evolution reactio catalysts but still suffer from inadequate activity and stability, and iridium's scarcity motivates the discovery of catalysts with lower iridium loadings. Here we report a mass-selected iridium-tantalum oxide catalyst prepared by a magnetron-based cluster source with considerably reduced noble-metal loadings beyond a commercial IrO2 catalyst. A sensitive electrochemistry/mass-spectrometry instrument coupled with isotope labelling was employed to investigate the oxygen production rate under dynamic operating conditions to account for the occurrence of side reactions and quantify the number of surface active sites. Iridium-tantalum oxide nanoparticles smaller than 2 nm exhibit a mass activity of 1.2 ± 0.5 kA “g” _“Ir” ^“-1” and a turnover frequency of 2.3 ± 0.9 s-1 at 320 mV overpotential, which are two and four times higher than those of mass-selected IrO2, respectively. Density functional theory calculations reveal that special iridium coordinations and the lowered aqueous decomposition free energy might be responsible for the enhanced performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000728458000001 Publication Date 2021-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2058-7546 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited 95 Open Access OpenAccess
Notes Y.-R.Z. and Z.W acknowledge funding from the Toyota Research Institute. This project has received funding from VILLUM FONDEN (grant no. 9455) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grants no. 741860-CLUNATRA, no. 815128−REALNANO and no. 770887−PICOMETRICS). S.B. and S.V.A. acknowledge funding from the Research Foundation Flanders (FWO, G026718N and G050218N). T.A. acknowledges the University of Antwerp Research Fund (BOF). STEM measurements were supported by the European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3.; sygmaSB Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:184794 Serial 6903
Permanent link to this record
 

 
Author De Backer, A.; Van Aert, S.; Faes, C.; Arslan Irmak, E.; Nellist, P.D.; Jones, L.
Title Experimental reconstructions of 3D atomic structures from electron microscopy images using a Bayesian genetic algorithm Type A1 Journal article
Year 2022 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater
Volume 8 Issue 1 Pages 216
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We introduce a Bayesian genetic algorithm for reconstructing atomic models of monotype crystalline nanoparticles from a single projection using Z-contrast imaging. The number of atoms in a projected atomic column obtained from annular dark field scanning transmission electron microscopy images serves as an input for the initial three-dimensional model. The algorithm minimizes the energy of the structure while utilizing a priori information about the finite precision of the atom-counting results and neighbor-mass relations. The results show promising prospects for obtaining reliable reconstructions of beam-sensitive nanoparticles during dynamical processes from images acquired with sufficiently low incident electron doses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000866500900001 Publication Date 2022-10-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A. and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B. L.J. acknowledges Science Foundation Ireland (SFI – grant number URF/RI/191637), the Royal Society, and the AMBER Centre. The authors acknowledge Aakash Varambhia for his assistance and expertise with the experimental recording and use of characterization facilities within the David Cockayne Centre for Electron Microscopy, Department of Materials, University of Oxford, and in particular the EPSRC (EP/K040375/1 South of England Analytical Electron Microscope).; esteem3reported; esteem3JRA Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:191398 Serial 7114
Permanent link to this record
 

 
Author Lobato, I.; Friedrich, T.; Van Aert, S.
Title Deep convolutional neural networks to restore single-shot electron microscopy images Type A1 Journal Article
Year 2024 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater
Volume 10 Issue 1 Pages 10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Advanced electron microscopy techniques, including scanning electron microscopes (SEM), scanning transmission electron microscopes (STEM), and transmission electron microscopes (TEM), have revolutionized imaging capabilities. However, achieving high-quality experimental images remains a challenge due to various distortions stemming from the instrumentation and external factors. These distortions, introduced at different stages of imaging, hinder the extraction of reliable quantitative insights. In this paper, we will discuss the main sources of distortion in TEM and S(T)EM images, develop models to describe them, and propose a method to correct these distortions using a convolutional neural network. We validate the effectiveness of our method on a range of simulated and experimental images, demonstrating its ability to significantly enhance the signal-to-noise ratio. This improvement leads to a more reliable extraction of quantitative structural information from the images. In summary, our findings offer a robust framework to enhance the quality of electron microscopy images, which in turn supports progress in structural analysis and quantification in materials science and biology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001138183000001 Publication Date 2024-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N, G0A7723N and EOS 40007495). S.V.A. acknowledges funding from the University of Antwerp Research Fund (BOF). The authors thank Lukas Grünewald for data acquisition and support for Fig. 7. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:202714 Serial 8994
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; Croitoru, M.
Title Atomic resolution electron tomography: a dream? Type A1 Journal article
Year 2006 Publication International journal of materials research Abbreviated Journal Int J Mater Res
Volume 97 Issue 7 Pages 872-879
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000239916700003 Publication Date 2013-12-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-5282;2195-8556; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 0.681 Times cited 6 Open Access
Notes Approved Most recent IF: 0.681; 2006 IF: NA
Call Number UA @ lucian @ c:irua:60965 Serial 176
Permanent link to this record
 

 
Author Schryvers, D.; Van Aert, S.; Delville, R.; Idrissi, H.; Turner, S.; Salje, E.K.H.
Title Dedicated TEM on domain boundaries from phase transformations and crystal growth Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 1 Pages 15-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Investigating domain boundaries and their effects on the behaviour of materials automatically implies the need for detailed knowledge on the structural aspects of the atomic configurations at these interfaces. Not only in view of nearest neighbour interactions but also at a larger scale, often surpassing the unit cell, the boundaries can contain structural elements that do not exist in the bulk. In the present contribution, a number of special boundaries resulting from phase transformations or crystal growth and those recently investigated by advanced transmission electron microscopy techniques in different systems will be reviewed. These include macrotwins between microtwinned martensite plates in NiAl, austenite-single variant martensite habit planes in low hysteresis NiTiPd, nanotwins in non-textured nanostructured Pd and ferroelastic domain boundaries in CaTiO3. In all discussed cases these boundaries play an essential role in the properties of the respective materials.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000312586700003 Publication Date 2012-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.06 Times cited Open Access
Notes Fwo; Iap Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:101222 Serial 612
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Ding, X.; Salje, E.K.H.
Title Functional twin boundaries Type A1 Journal article
Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit
Volume 86 Issue 11 Pages 1052-1059
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Functional interfaces are at the core of research in the emerging field of domain boundary engineering where polar, conducting, chiral, and other interfaces and twin boundaries have been discovered. Ferroelectricity was found in twin walls of paraelectric CaTiO3. We show that the effect of functional interfaces can be optimized if the number of twin boundaries is increased in densely twinned materials. Such materials can be produced by shear in the ferroelastic phase rather than by rapid quench from the paraelastic phase.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000327475900002 Publication Date 2013-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.06 Times cited 5 Open Access
Notes Approved Most recent IF: 1.06; 2013 IF: 1.044
Call Number UA @ lucian @ c:irua:107344 Serial 1304
Permanent link to this record
 

 
Author Lu, J.; Martinez, G.T.; Van Aert, S.; Schryvers, D.
Title Lattice deformations in quasi-dynamic strain glass visualised and quantified by aberration corrected electron microscopy Type A1 Journal article
Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 251 Issue 10 Pages 2034-2040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Advanced transmission electron microscopy and statistical parameter estimated quantification procedures were applied to study the room temperature quasi-dynamical strain glass state in NiTi alloys. Nanosized strain pockets are visualised and the displacements of the atom columns are quantified. A comparison is made with conventional high-resolution transmission electron microscopy images of point defect induced strains in NiAl alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000344360000009 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.674 Times cited 2 Open Access
Notes Fwo Approved Most recent IF: 1.674; 2014 IF: 1.489
Call Number UA @ lucian @ c:irua:120471 Serial 1801
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Bals, S.; Erni, R.; van Dyck, D.; Van Tendeloo, G.
Title Atomic resolution mapping using quantitative high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue S:2 Pages 464-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000208119100230 Publication Date 2009-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.891 Times cited 1 Open Access
Notes Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:96555UA @ admin @ c:irua:96555 Serial 178
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.; Zhang, L.; Haiyan, T.; Schattschneider, P.; Rosenauer, A.
Title Computational aspects in quantitative EELS Type A1 Journal article
Year 2010 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 16 Issue S:2 Pages 240-241
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2010-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor (up) 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2010 IF: 3.259
Call Number UA @ lucian @ c:irua:96556UA @ admin @ c:irua:96556 Serial 454
Permanent link to this record
 

 
Author van den Broek, W.; Van Aert, S.; van Dyck, D.
Title Fully automated measurement of the modulation transfer function of charge-coupled devices above the Nyquist frequency Type A1 Journal article
Year 2012 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 18 Issue 2 Pages 336-342
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The charge-coupled devices used in electron microscopy are coated with a scintillating crystal that gives rise to a severe modulation transfer function (MTF). Exact knowledge of the MTF is imperative for a good correspondence between image simulation and experiment. We present a practical method to measure the MTF above the Nyquist frequency from the beam blocker's shadow image. The image processing has been fully automated and the program is made public. The method is successfully tested on three cameras with various beam blocker shapes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000302084700011 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.891 Times cited 15 Open Access
Notes Fwo Approved Most recent IF: 1.891; 2012 IF: 2.495
Call Number UA @ lucian @ c:irua:96557 Serial 1297
Permanent link to this record
 

 
Author van Dyck, D.; Van Aert, S.; den Dekker, A.J.
Title Physical limits on atomic resolution Type A1 Journal article
Year 2004 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 10 Issue Pages 153-157
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000188882100022 Publication Date 2004-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.891 Times cited 14 Open Access
Notes Approved Most recent IF: 1.891; 2004 IF: 2.389
Call Number UA @ lucian @ c:irua:47515 Serial 2616
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.
Title Structural, chemical and electronic characterization of ceramic materials using quantitative (scanning) transmission electron microscopy Type A1 Journal article
Year 2007 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 13 Issue S:3 Pages 332-333
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2008-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor (up) 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2007 IF: 1.941
Call Number UA @ lucian @ c:irua:96553 Serial 3224
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Van Aert, S.; Roelandts, T.; Sijbers, J.
Title Ultra-high resolution electron tomography for materials science : a roadmap Type A1 Journal article
Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 17 Issue S:2 Pages 934-935
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2011-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor (up) 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2011 IF: 3.007
Call Number UA @ lucian @ c:irua:96554 Serial 3792
Permanent link to this record
 

 
Author Jones, L.; Martinez, G.T.; Béché, A.; Van Aert, S.; Nellist, P.D.
Title Getting the best from an imperfect detector : an alternative normalisation procedure for quantitative HAADF STEM Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue S3 Pages 126-127
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record
Impact Factor (up) 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:136445 Serial 4500
Permanent link to this record
 

 
Author Martinez, G.T.; de Backer, A.; Rosenauer, A.; Verbeeck, J.; Van Aert, S.
Title The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images Type A1 Journal article
Year 2014 Publication Micron Abbreviated Journal Micron
Volume 63 Issue Pages 57-63
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338402500011 Publication Date 2014-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.98 Times cited 25 Open Access
Notes FWO (G.0393.11; G.0064.10; G.0374.13; G.0044.13); European Research Council under the 7th Framework Program (FP7); ERC GrantNo. 246791-COUNTATOMS and ERC Starting Grant No. 278510-VORTEX. A.R. thanks the DFG under contract number RO2057/8-1.The research leading to these results has received funding fromthe European Union 7th Framework Programme [FP7/2007-2013]under grant agreement no. 312483 (ESTEEM2).; esteem2ta ECASJO; Approved Most recent IF: 1.98; 2014 IF: 1.988
Call Number UA @ lucian @ c:irua:113857UA @ admin @ c:irua:113857 Serial 831
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van Dyck, D.
Title How to optimize the experimental design of quantitative atomic resolution TEM experiments? Type A1 Journal article
Year 2004 Publication Micron Abbreviated Journal Micron
Volume 35 Issue Pages 425-429
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000221721000005 Publication Date 2004-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.98 Times cited 14 Open Access
Notes Approved Most recent IF: 1.98; 2004 IF: 1.464
Call Number UA @ lucian @ c:irua:47514 Serial 1495
Permanent link to this record
 

 
Author Van Aert, S.; van den Broek, W.; Goos, P.; van Dyck, D.
Title Model-based electron microscopy : from images toward precise numbers for unknown structure parameters Type A1 Journal article
Year 2012 Publication Micron Abbreviated Journal Micron
Volume 43 Issue 4 Pages 509-515
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT); Vision lab
Abstract Statistical parameter estimation theory is proposed as a method to quantify electron microscopy images. It aims at obtaining precise and accurate values for the unknown structure parameters including, for example, atomic column positions and types. In this theory, observations are purely considered as data planes, from which structure parameters have to be determined using a parametric model describing the images. The method enables us to measure positions of atomic columns with a precision of the order of a few picometers even though the resolution of the electron microscope is one or two orders of magnitude larger. Moreover, small differences in averaged atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark field scanning transmission electron microscopy images. Finally, it is shown how to optimize the experimental design so as to attain the highest precision. As an example, the optimization of the probe size for nanoparticle radius measurements is considered. It is also shown how to quantitatively balance signal-to-noise ratio and resolution by adjusting the probe size.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000301702400003 Publication Date 2011-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 1.98 Times cited 7 Open Access
Notes Fwo Approved Most recent IF: 1.98; 2012 IF: 1.876
Call Number UA @ lucian @ c:irua:94114 Serial 2099
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Altantzis, T.; Heidari, H.; Van Aert, S.; Van Tendeloo, G.
Title Seeing and measuring in 3D with electrons Type A1 Journal article
Year 2014 Publication Comptes rendus : physique Abbreviated Journal Cr Phys
Volume 15 Issue 2-3 Pages 140-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Modern TEM enables the investigation of nanostructures at the atomic scale. However, TEM images are only two-dimensional (2D) projections of a three-dimensional (3D) object. Electron tomography can overcome this limitation. The technique is increasingly focused towards quantitative measurements and reaching atomic resolution in 3D has been the ultimate goal for many years. Therefore, one needs to optimize the acquisition of the data, the 3D reconstruction techniques as well as the quantification methods. Here, we will review a broad range of methodologies and examples. Finally, we will provide an outlook and will describe future challenges in the field of electron tomography.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000334013600005 Publication Date 2014-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1631-0705; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.048 Times cited 15 Open Access OpenAccess
Notes (FWO;Belgium); European Research Council under the 7th Framework Program (FP7); ERC grant No.246791 – COUNTATOMS; ERC grant No.335078 – COLOURATOMS; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.048; 2014 IF: 2.035
Call Number UA @ lucian @ c:irua:113855 Serial 2960
Permanent link to this record
 

 
Author Fatermans, J.; den Dekker, Aj.; Müller-Caspary, K.; Gauquelin, N.; Verbeeck, J.; Van Aert, S.
Title Atom column detection from simultaneously acquired ABF and ADF STEM images Type A1 Journal article
Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 219 Issue Pages 113046
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract In electron microscopy, the maximum a posteriori (MAP) probability rule has been introduced as a tool to determine the most probable atomic structure from high-resolution annular dark-field (ADF) scanning transmission electron microscopy (STEM) images exhibiting low contrast-to-noise ratio (CNR). Besides ADF imaging, STEM can also be applied in the annular bright-field (ABF) regime. The ABF STEM mode allows to directly visualize light-element atomic columns in the presence of heavy columns. Typically, light-element nanomaterials are sensitive to the electron beam, limiting the incoming electron dose in order to avoid beam damage and leading to images exhibiting low CNR. Therefore, it is of interest to apply the MAP probability rule not only to ADF STEM images, but to ABF STEM images as well. In this work, the methodology of the MAP rule, which combines statistical parameter estimation theory and model-order selection, is extended to be applied to simultaneously acquired ABF and ADF STEM images. For this, an extension of the commonly used parametric models in STEM is proposed. Hereby, the effect of specimen tilt has been taken into account, since small tilts from the crystal zone axis affect, especially, ABF STEM intensities. Using simulations as well as experimental data, it is shown that the proposed methodology can be successfully used to detect light elements in the presence of heavy elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000594768500005 Publication Date 2020-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 2.2 Times cited 9 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N, EOS 30489208). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 823717 – ESTEEM3. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. K. M. C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association (Germany) under contract VH-NG-1317. The authors thank Mark Huijben from the University of Twente (Enschede, The Netherlands) for providing the LiMn2O4 sample used in section 4.2 of this study. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. Approved Most recent IF: 2.2; 2020 IF: 2.843
Call Number EMAT @ emat @c:irua:169706 Serial 6373
Permanent link to this record