|   | 
Details
   web
Records
Author Zhang, Q.-Z.; Bogaerts, A.
Title Propagation of a plasma streamer in catalyst pores Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 3 Pages 035009
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although plasma catalysis is gaining increasing interest for various environmental applications, the underlying mechanisms are still far from understood. For instance, it is not yet clear whether and how plasma streamers can propagate in catalyst pores, and what is the minimum pore size to make this happen. As this is crucial information to ensure good plasma-catalyst interaction, we study here the mechanism of plasma streamer propagation in a catalyst pore, by means of a twodimensional particle-in-cell/Monte Carlo collision model, for various pore diameters in the nm range to μm-range. The so-called Debye length is an important criterion for plasma penetration into catalyst pores, i.e. a plasma streamer can penetrate into pores when their diameter is larger than the Debye length. The Debye length is typically in the order of a few 100 nm up to 1 μm at the conditions under study, depending on electron density and temperature in the plasma streamer. For pores in the range of ∼50 nm, plasma can thus only penetrate to some extent and at

very short times, i.e. at the beginning of a micro-discharge, before the actual plasma streamer reaches the catalyst surface and a sheath is formed in front of the surface. We can make plasma streamers penetrate into smaller pores (down to ca. 500 nm at the conditions under study) by increasing the applied voltage, which yields a higher plasma density, and thus reduces the Debye length. Our simulations also reveal that the plasma streamers induce surface charging of the catalyst pore sidewalls, causing discharge enhancement inside the pore, depending on pore diameter and depth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000427976800001 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited 16 Open Access OpenAccess
Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604) and from the Fund for Scientific Research Flanders (FWO) (Excellence of Science Program; EOS ID 30505023). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:150877 Serial 4954
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Wang, W.-Z.; Bogaerts, A.
Title Importance of surface charging during plasma streamer propagation in catalyst pores Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 6 Pages 065009
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest, but the underlying mechanisms are far from understood. Different catalyst materials will have different chemical effects, but in addition, they might also have different dielectric constants, which will affect surface charging, and thus the plasma behavior. In this work, we demonstrate that surface charging plays an important role in the streamer propagation and discharge enhancement inside catalyst pores, and in the plasma distribution along the dielectric surface, and this role greatly depends on the dielectric constant of the material. For εr50, surface charging causes the plasma to spread along the dielectric surface and inside the pores, leading to deeper plasma streamer penetration, while for εr>50 or for metallic coatings, the discharge is more localized, due to very weak surface charging. In addition, at εr=50, the significant surface charge density near the pore entrance causes a large potential drop at the sharp pore edges, which induces a strong electric field and results in most pronounced plasma enhancement near the pore entrance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000436845700002 Publication Date 2018-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited 13 Open Access OpenAccess
Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604) and from the TOP-BOF project of the University of Antwerp. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:152243 Serial 4995
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A.
Title Enhancement of plasma generation in catalyst pores with different shapes Type A1 Journal article
Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 5 Pages 055008
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000432351700002 Publication Date 2018-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited 11 Open Access OpenAccess
Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant No. G.0217.14N) and the Fundamental Research Funds for the Central Universities (Grant No. DUT17LK52). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:151546 Serial 4998
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title Three-dimensional modeling of energy transport in a gliding arc discharge in argon Type A1 Journal Article
Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 12 Pages 125011
Keywords A1 Journal Article; gliding arc discharge, sliding arc discharge, energy transport, fluid plasma model, atmospheric pressure plasmas; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract In this work we study energy transport in a gliding arc discharge with two diverging flat

electrodes in argon gas at atmospheric pressure. The discharge is ignited at the shortest electrode

gap and it is pushed downstream by a forced gas flow. The current values considered are

relatively low and therefore a non-equilibrium plasma is produced. We consider two cases, i.e.

with high and low discharge current (28 mA and 2.8mA), and a constant gas flow of 10 lmin −1 ,

with a significant turbulent component to the velocity. The study presents an analysis of the

various energy transport mechanisms responsible for the redistribution of Joule heating to the

plasma species and the moving background gas. The objective of this work is to provide a

general understanding of the role of the different energy transport mechanisms in arc formation

and sustainment, which can be used to improve existing or new discharge designs. The work is

based on a three-dimensional numerical model, combining a fluid plasma model, the shear stress

transport Reynolds averaged Navier–Stokes turbulent gas flow model, and a model for gas

thermal balance. The obtained results show that at higher current the discharge is constricted

within a thin plasma column several hundred kelvin above room temperature, while in the low-

current discharge the combination of intense convective cooling and low Joule heating prevents

discharge contraction and the plasma column evolves to a static non-moving diffusive plasma,

continuously cooled by the flowing gas. As a result, the energy transport in the two cases is

determined by different mechanisms. At higher current and a constricted plasma column, the

plasma column is cooled mainly by turbulent transport, while at low current and an unconstricted

plasma, the major cooling mechanism is energy transport due to non-turbulent gas convection. In

general, the study also demonstrates the importance of turbulent energy transport in

redistributing the Joule heating in the arc and its significant role in arc cooling and the formation

of the gas temperature profile. In general, the turbulent energy transport lowers the average gas

temperature in the arc, thus allowing additional control of thermal non-equilibrium in the

discharge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454555600005 Publication Date 2018-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited Open Access Not_Open_Access
Notes This work was supported by the European Regional Devel- opment Fund within the Operational Programme ’Science and Education for Smart Growth 2014 – 2020’ under the Project CoE ’National center of mechatronics and clean technologies’ BG05M2OP001-1.001-0008-C01, and by the Flemish Fund for Scientific Research (FWO); grant no G.0383.16N. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:155973 Serial 5140
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Bogaerts, A.
Title Capacitive electrical asymmetry effect in an inductively coupled plasma reactor Type A1 Journal Article
Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 10 Pages 105019
Keywords A1 Journal Article; electrical asymmetry effect, inductively coupled plasma, self-bias, independent control of the ion fluxes and ion energy; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The electrical asymmetry effect is realized by applying multiple frequency power sources

(13.56 MHz and 27.12 MHz) to a capacitively biased substrate electrode in a specific inductively

coupled plasma reactor. On the one hand, by adjusting the phase angle θ between the multiple

frequency power sources, an almost linear self-bias develops on the substrate electrode, and

consequently the ion energy can be well modulated, while the ion flux stays constant within a

large range of θ. On the other hand, the plasma density and ion flux can be significantly

modulated by tuning the inductive power supply, while only inducing a small change in the self-

bias. Independent control of self-bias/ion energy and ion flux can thus be realized in this specific

inductively coupled plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000448434100001 Publication Date 2018-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited 1 Open Access Not_Open_Access
Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:155506 Serial 5069
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Bogaerts, A.
Title Plasma streamer propagation in structured catalysts Type A1 Journal Article
Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 10 Pages 105013
Keywords A1 Journal Article; plasma catalysis, streamer propagation, 3D structures, PIC/MCC; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is gaining increasing interest for various environmental applications. Catalytic

material can be inserted in different shapes in the plasma, e.g., as pellets, (coated) beads, but also

as honeycomb monolith and 3DFD structures, also called ‘structured catalysts’, which have high

mass and heat transfer properties. In this work, we examine the streamer discharge propagation

and the interaction between plasma and catalysts, inside the channels of such structured catalysts,

by means of a two-dimensional particle-in-cell/Monte Carlo collision model. Our results reveal

that plasma streamers behave differently in various structured catalysts. In case of a honeycomb

structure, the streamers are limited to only one channel, with low or high plasma density when

the channels are parallel or perpendicular to the electrodes, respectively. In contrast, in case of a

3DFD structure, the streamers can distribute to different channels, causing discharge

enhancement due to surface charging on the dielectric walls of the structured catalyst, and

especially giving rise to a broader plasma distribution. The latter should be beneficial for plasma

catalysis applications, as it allows a larger catalyst surface area to be exposed to the plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000448131900002 Publication Date 2018-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited 3 Open Access Not_Open_Access
Notes We acknowledge financial support from the European Marie Skłodowska-Curie Individual Fellowship within H2020 (Grant Agreement 702604). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:155510 Serial 5068
Permanent link to this record
 

 
Author Wang, L.; Wen, D.-Q.; Zhang, Q.-Z.; Song, Y.-H.; Zhang, Y.-R.; Wang, Y.-N.
Title Disruption of self-organized striated structure induced by secondary electron emission in capacitive oxygen discharges Type A1 Journal article
Year 2019 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 28 Issue 5 Pages 055007
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Self-organized striated structure has been observed experimentally and numerically in CF4 plasmas in radio-frequency capacitively coupled plasmas recently (Liu et al 2016 Phys. Rev. Lett. 116 255002). In this work, the striated structure is investigated in a capacitively coupled oxygen discharge with the introduction of the effect from the secondary electron emission, based on a particle-in-cell/Monte Carlo collision model. As we know, the transport of positive and negative ions plays a key role in the formation of striations in electronegative gases, for which, the electronegativity needs to be large enough. As the secondary electron emission increases, electrons in the sheaths gradually contribute more ionization to the discharge. Meanwhile, the increase of the electron density, especially in the plasma bulk, leads to an increased electrical conductivity and a reduced bulk electric field, which would shield the ions' mobility. These changes result in enlarged striation gaps. And then, with more emitted electrons, obvious disruption of the striations is observed accompanied with a transition of electron heating mode. Due to the weakened field, the impact ionization in the plasma bulk is attenuated, compared with the enhanced ionization caused by secondary electrons. This would lead to the electron heating mode transition from striated (STR) mode to gamma-mode. Besides, our investigation further reveals that gamma-mode is more likely to dominate the discharge under high gas pressures or driving voltages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000467827800001 Publication Date 2019-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited 2 Open Access Not_Open_Access: Available from 13.05.2020
Notes Approved Most recent IF: 3.302
Call Number UA @ admin @ c:irua:160365 Serial 5270
Permanent link to this record
 

 
Author Kelly, S.; van de Steeg, A.; Hughes, A.; van Rooij, G.; Bogaerts, A.
Title Thermal instability and volume contraction in a pulsed microwave N2plasma at sub-atmospheric pressure Type A1 Journal article
Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 30 Issue 5 Pages 055005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied the evolution of an isolated pulsed plasma in a vortex flow stabilised microwave (MW) discharge in N2 at 25 mbar via the combination of 0D kinetics modelling, iCCD imaging and laser scattering diagnostics. Quenching of electronically excited N2 results in fast gas heating and the onset of a thermal-ionisation instability, contracting the discharge volume. The onset of a thermal-ionisation instability driven by vibrational excitation pathways is found to facilitate significantly higher N2 conversion (i.e. dissociation to atomic N2 ) compared to pre-instability conditions, emphasizing the potential utility of this dynamic in future fixation applications. The instability onset is found to be instigated by super-elastic heating of the electron energy distribution tail via vibrationally excited N2 . Radial contraction of the discharge to the skin depth is found to occur post instability, while the axial elongation is found to be temporarily contracted during the thermal instability onset. An increase in power reflection during the thermal instability onset eventually limits the destabilising effects of exothermic electronically excited N2 quenching. Translational and vibrational temperature reach a quasi-non-equilibrium after the discharge contraction, with translational temperatures reaching ∼1200 K at the pulse end, while vibrational temperatures are found in near equilibrium with the electron energy (1 eV, or ∼11 600 K). This first description of the importance of electronically excited N2 quenching in thermal instabilities gives an additional fundamental understanding of N2 plasma behaviour in pulsed MW context, and thereby brings the eventual implementation of this novel N2 fixation method one step closer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648710900001 Publication Date 2021-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited Open Access OpenAccess
Notes Stichting voor de Technische Wetenschappen, 733.000.002 ; Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; H2020 Marie Skłodowska-Curie Actions, 813393 838181 ; SK & AB acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘PENFIX’ within Horizon 2020 (Grant No. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. SK and AB would like to thank Mr Luc van ’t dack, Dr Karen Leyssens and Ing. Karel Venken for their technical assistance. AvdS, AH and GvR are grateful to Ampleon for the use of their solid-state microwave amplifier units and acknowledge financial support from the Netherlands Organisation for Scientific Research (NWO Grant No. 733.000.002) in the framework of the CO2 -to-products programme with kind support from Shell, and the ENW PPP Fund for the top sectors. This project has been partially funded by the European Union’s Horizon 2020 research and innovation programme ‘Pioneer’ under the Marie Skłodowska-Curie Grant Agreement No. 813393. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:178122 Serial 6759
Permanent link to this record
 

 
Author Bahnamiri, O.S.; Verheyen, C.; Snyders, R.; Bogaerts, A.; Britun, N.
Title Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling Type A1 Journal Article;nitrogen fixation
Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 30 Issue 6 Pages 065007
Keywords A1 Journal Article;nitrogen fixation; pulsed microwave discharge; FTIR spectroscopy; discharge modelling; vibrational excitation; NO yield; energy cost; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract A pulsed microwave surfaguide discharge operating at 2.45 GHz was used for the conversion of molecular nitrogen into valuable compounds in several gas mixtures: N2 :O2 , N2 :O2 :CO2 and N2 :CO2 . The ro-vibrational absorption bands of the molecular species were monitored by a Fourier transform infrared apparatus in the post-discharge region in order to evaluate the relative number density of species, specifically NO production. The effects of specific energy input, pulse frequency, gas flow fraction, gas admixture and gas flow rate were studied for better understanding and optimization of the NO production yield and the corresponding energy cost (EC). By both the experiment and modelling, a highest NO yield is obtained at N2 :O2 (1:1) gas ratio in N2 :O2 mixture. The NO yield reveals a small growth followed by saturation when pulse repetition frequency increases. The energy efficiency start decreasing after the energy input reaches about 5 eV/molec, whereas the NO yield rises steadily at the same time. The lowest EC of about 8 MJ mol−1 corresponding to the yield and the energy efficiency of about 7% and 1% are found, respectively, in an optimum discharge condition in our case.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000659671000001 Publication Date 2021-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.302 Times cited Open Access OpenAccess
Notes Fonds De La Recherche Scientifique—FNRS, EOS O005118F ; The research is supported by the FNRS-FWO project ‘NITROPLASM’, EOS O005118F. O Samadi also acknowledges PhD student F Manaigo for cooperation in doing the additional measurements. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:179170 Serial 6798
Permanent link to this record
 

 
Author Zhou, S.; Zhang, C.; Xu, W.; Zhang, J.; Xiao, Y.; Ding, L.; Wen, H.; Cheng, X.; Hu, C.; Li, H.; Li, X.; Peeters, F.M.
Title Observation of temperature induced phase transitions in TiO superconducting thin film via infrared measurement Type A1 Journal article
Year 2024 Publication Infrared physics and technology Abbreviated Journal
Volume 137 Issue Pages 105160-105169
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In contrast to conventional polycrystalline titanium oxide (TiO), it was found recently that the superconducting transition temperature Tc can be significantly enhanced from about 2 K to 7.4 K in cubic TiO thin films grown epitaxially on alpha-Al2O3 substrates. This kind of TiO film is also expected to have distinctive optoelectronic properties, which are still not very clear up to now. Herein, by using infrared (IR) reflection measurement we investigate the temperature-dependent optoelectronic response of a cubic TiO thin film, in which temperature induced phase transitions are observed. The semiconductor-, metallic- and semiconductor-like electronic phases of this superconducting film are found in the temperature regimes from 10 to 110 K, 110 to 220 K and above 220 K, respectively. The results obtained optically are consistent with those measured by transport experiment. Furthermore, based on an improved reflection model developed here, we extract the complex optical conductivity of the cubic TiO thin film. We are able to approximately determine the characteristic parameters (e.g., effective electron mass, carrier density, scattering time, etc.) for different electronic phases by fitting the optical conductivity with the modified Lorentz formula. These results not only deepen our understanding of the fundamental physics for cubic TiO thin films but also may find applications in optoelectronic devices based on superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001170490200001 Publication Date 2024-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 3.3 Times cited Open Access
Notes Approved Most recent IF: 3.3; 2024 IF: 1.713
Call Number UA @ admin @ c:irua:204853 Serial 9162
Permanent link to this record
 

 
Author Xiao, H.; Wen, H.; Xu, W.; Cheng, Y.; Zhang, J.; Cheng, X.; Xiao, Y.; Ding, L.; Li, H.; He, B.; Peeters, F.M.
Title Terahertz magneto-optical properties of Nitrogen-doped diamond Type A1 Journal article
Year 2024 Publication Infrared physics and technology Abbreviated Journal
Volume 138 Issue Pages 105237-105239
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nitrogen-doped diamond (N-D) is one of the most important carbon-based electronic and optical materials. Here we study the terahertz (THz) magneto-optical (MO) properties of N-D grown by microwave plasma-enhanced chemical vapor deposition. The optical microscope, SEM, XRD, Raman spectrum, FTIR spectroscopy and XPS are used for the characterization of N-D samples. Applying THz time-domain spectroscopy (TDS), in combination with the polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through N-D are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular transmission coefficients and MO conductivities for N-D are obtained accordingly. Through fitting the experimental results with theoretical formulas of the dielectric constant and MO conductivities for an electron gas, we are able to determine magneto-optically the key electronic parameters of N-D, such as the static dielectric constant epsilon b, the electron density ne, the electronic relaxation time tau, the electronic localization factor alpha and, particularly, the effective electron mass m* obtained under non-resonant condition. The dependence of these parameters upon magnetic field is examined and analyzed. We find that the MO conductivities of N-D can be described rightly by the MO Drude-Smith formulas developed by us previously. It is shown that N-doping and the presence of the magnetic field can lead towards the larger epsilon b and heavier m* in diamond, while ne/tau/alpha in N-D decreases/increases/decreases with increasing magnetic field. The results obtained from this work are benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of N-D.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001200173100001 Publication Date 2024-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Additional Links UA library record; WoS full record
Impact Factor (down) 3.3 Times cited Open Access
Notes Approved Most recent IF: 3.3; 2024 IF: 1.713
Call Number UA @ admin @ c:irua:205523 Serial 9178
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Aashuri, H.
Title Semisolid structure for M2 high speed steel prepared by cooling slope Type A1 Journal article
Year 2010 Publication Journal of materials processing technology Abbreviated Journal J Mater Process Tech
Volume 210 Issue 12 Pages 1632-1635
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Effects of cooling slope angle and the temperature of molten metal on the globular structure of M2 high speed steel after holding at the semisolid state have been investigated. The globular structure was achieved by pouring the molten metal at 1595 °C on the ceramic cooling slope with the length of 200 mm and the angle of 25°. The globular structure of M2 high speed steel in the form of rolledannealed and as cast condition after holding at semisolid state has been achieved. The size of globular grains of cooling slope sample was smaller than that of the rolledannealed and as cast samples. Solid particles of rolledannealed sample after holding at semisolid state had better roundness compared with cooling slope sample. Dissolution of carbides in the austenite phase at grain boundaries leads to formation of globular particles in the semisolid state. MC-type and M6C-type eutectic carbides reprecipitate during cooling cycle along grain boundaries.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000280498200011 Publication Date 2010-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-0136; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.147 Times cited 12 Open Access
Notes Approved Most recent IF: 3.147; 2010 IF: 1.570
Call Number UA @ lucian @ c:irua:122042 Serial 2983
Permanent link to this record
 

 
Author Sóti, V.; Jacquet, N.; Apers, S.; Richel, A.; Lenaerts, S.; Cornet, I.
Title Monitoring the laccase reaction of vanillin and poplar hydrolysate Type A1 Journal article
Year 2016 Publication Journal of chemical technology and biotechnology Abbreviated Journal J Chem Technol Biot
Volume 91 Issue 6 Pages 1914-1922
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract BACKGROUND Laccase is an intensively researched enzyme for industrial use. Except for decolorisation measurements, HPLC analysis is the conventional method for monitoring the phenolic removal during laccase enzyme reaction. This paper reports an investigation of the continuous UV absorbance follow-up of the laccase reaction with steam pretreated poplar hydrolysate. RESULTS Vanillin was used as a model substrate and lignocellulose xylose rich fraction (XRF) as a biologically complex substrate for laccase detoxification. The reaction was followed by HPLC-UV as well as by UV spectrometric measurements. Results suggest that the reaction can be successfully monitored by measuring the change of UV absorbance at 280 nm, without previous compound separation. In case of XRF experiments the spectrophotometric follow-up is especially useful, as HPLC analysis takes a long time and provides less information than in case of single substrates. The method seems to be suitable for optimization and process control. CONCLUSION The obtained results can help to construct a fast, easy and straightforward monitoring system for laccase-phenolic substrate reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375768300040 Publication Date 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.135 Times cited 3 Open Access
Notes ; This research is financed by the University of Antwerp (project number 15 FA100 002). ; Approved Most recent IF: 3.135
Call Number UA @ admin @ c:irua:127694 Serial 5972
Permanent link to this record
 

 
Author Vidick, D.; Ke, X.; Devillers, M.; Poleunis, C.; Delcorte, A.; Moggi, P.; Van Tendeloo, G.; Hermans, S.
Title Heterometal nanoparticles from Ru-based molecular clusters covalently anchored onto functionalized carbon nanotubes and nanofibers Type A1 Journal article
Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 6 Issue 6 Pages 1287-1297
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterometal clusters containing Ru and Au, Co and/or Pt are anchored onto carbon nanotubes and nanofibers functionalized with chelating phosphine groups. The cluster anchoring yield is related to the amount of phosphine groups available on the nanocarbon surface. The ligands of the anchored molecular species are then removed by gentle thermal treatment in order to form nanoparticles. In the case of Au-containing clusters, removal of gold atoms from the clusters and agglomeration leads to a bimodal distribution of nanoparticles at the nanocarbon surface. In the case of Ru-Pt species, anchoring occurs without reorganization through a ligand exchange mechanism. After thermal treatment, ultrasmall (1-3 nm) bimetal Ru-Pt nanoparticles are formed on the surface of the nanocarbons. Characterization by high resolution transmission electron microscopy (HRTEM) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) confirms their bimetal nature on the nanoscale. The obtained bimetal nanoparticles supported on nanocarbon were tested as catalysts in ammonia synthesis and are shown to be active at low temperature and atmospheric pressure with very low Ru loading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355908400001 Publication Date 2015-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.127 Times cited 7 Open Access
Notes 246791 Countatoms; 262348 Esmi Approved Most recent IF: 3.127; 2015 IF: 2.670
Call Number c:irua:126431 Serial 1420
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Bals, S.; Van Tendeloo, G.
Title Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM Type A1 Journal article
Year 2013 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 4 Issue Pages 77-86
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000314499700001 Publication Date 2013-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.127 Times cited 12 Open Access
Notes 262348 ESMI; 246791 COUNTATOMS; FWO G002410N; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 3.127; 2013 IF: 2.332
Call Number UA @ lucian @ c:irua:106187 Serial 1848
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G.
Title Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 6 Issue 6 Pages 1541-1557
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357977300001 Publication Date 2015-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.127 Times cited 10 Open Access
Notes 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670
Call Number c:irua:126857 Serial 2682
Permanent link to this record
 

 
Author Mordvinova, N.; Emelin, P.; Vinokurov, A.; Dorofeev, S.; Abakumov, A.; Kuznetsova, T.
Title Surface processes during purification of InP quantum dots Type A1 Journal article
Year 2014 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 5 Issue Pages 1220-1225
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH)(3) during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of post-synthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339912400002 Publication Date 2014-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.127 Times cited 5 Open Access
Notes Approved Most recent IF: 3.127; 2014 IF: 2.670
Call Number UA @ lucian @ c:irua:118748 Serial 3397
Permanent link to this record
 

 
Author Bittencourt, C.; Krüger, P.; Lagos, M.J.; Ke, X.; Van Tendeloo, G.; Ewels, C.; Umek, P.; Guttmann, P.
Title Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations Type A1 Journal article
Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 3 Issue Pages 789-797
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS-TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/Delta E = 104 and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS-TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000311482400001 Publication Date 2012-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.127 Times cited 13 Open Access
Notes Approved Most recent IF: 3.127; 2012 IF: 2.374
Call Number UA @ lucian @ c:irua:105140 Serial 3684
Permanent link to this record
 

 
Author Bittencourt, C.; Hitchock, A.P.; Ke, X.; Van Tendeloo, G.; Ewels, C.P.; Guttmann, P.
Title X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge Type A1 Journal article
Year 2012 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech
Volume 3 Issue Pages 345-350
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303243400001 Publication Date 2012-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 3.127 Times cited 15 Open Access
Notes Approved Most recent IF: 3.127; 2012 IF: 2.374
Call Number UA @ lucian @ c:irua:97703 Serial 3924
Permanent link to this record
 

 
Author Molina, L.; Tan, H.; Biermans, E.; Batenburg, K.J.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
Title Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 6 Pages 065019-065019,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 − δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000290472900021 Publication Date 2011-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 31 Open Access
Notes Esteem 026019; Fwo Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88639UA @ admin @ c:irua:88639 Serial 221
Permanent link to this record
 

 
Author Obradors, X.; Puig, T.; Pomar, A.; Sandiumenge, F.; Piñol, S.; Mestres, N.; Castaño, O.; Coll, M.; Cavallaro, A.; Palau, A.; Gázquez, J.; González, J.C.; Gutiérrez, J.; Romá, N.; Ricart, S.; Moretó, J.M.; Rossell, M.D.; Van Tendeloo, G.
Title Chemical solution deposition: a path towards low cost coated conductors Type A1 Journal article
Year 2004 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 17 Issue 8 Pages 1055-1064
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000223574000022 Publication Date 2004-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 107 Open Access
Notes Approved Most recent IF: 2.878; 2004 IF: 1.556
Call Number UA @ lucian @ c:irua:54870 Serial 350
Permanent link to this record
 

 
Author Kerner, C.; Hackens, B.; Golubović, D.S.; Poli, S.; Faniel, S.; Magnus, W.; Schoenmaker, W.; Bayot, V.; Maes, H.
Title Control and readout of current-induced magnetic flux quantization in a superconducting transformer Type A1 Journal article
Year 2009 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 22 Issue 2 Pages 025001,1-025001,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate a simple and robust method for inducing and detecting changes of magnetic flux quantization in the absence of an externally applied magnetic field. In our device, an isolated ring is interconnected with two access loops via permalloy cores, forming a superconducting transformer. By applying and tuning a direct current at the first access loop, the number of flux quanta trapped in the isolated ring is modified without the aid of an external field. The flux state of the isolated ring is simply detected by recording the evolution of the critical current of the second access loop.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000262786000003 Publication Date 2008-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 2 Open Access
Notes Approved Most recent IF: 2.878; 2009 IF: 2.694
Call Number UA @ lucian @ c:irua:76001 Serial 497
Permanent link to this record
 

 
Author Kapra, A.V.; Misko, V.R.; Peeters, F.M.
Title Controlling magnetic flux motion by arrays of zigzag-arranged magnetic bars Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 2 Pages 025011-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent advances in manufacturing arrays of artificial pinning sites, i.e., antidots, blind holes and magnetic dots, allowed an effective control of magnetic flux in superconductors. An array of magnetic bars deposited on top of a superconducting film was shown to display different pinning regimes depending on the direction of the in-plane magnetization of the bars. Changing the sign of their magnetization results in changes in the induced magnetic pinning potentials. By numerically solving the time-dependent Ginzburg-Landau equations in a superconducting film with periodic arrays of zigzag-arranged magnetic bars, we revealed various flux dynamics regimes. In particular, we demonstrate flux pinning and flux flow, depending on the direction of the magnetization of the magnetic bars. Remarkably, the revealed different flux-motion regimes are associated with different mechanisms of vortex-antivortex dynamics. For example, we found that for an 'antiparallel' configuration of magnetic bars this dynamics involves a repeating vortex-antivortex generation and annihilation. We show that the depinning transition and the onset of flux flow can be manipulated by the magnetization of the bars and the geometry of the array. This provides an effective control of the depinning critical current that can be useful for possible fluxonics applications.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000313559300011 Publication Date 2012-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 5 Open Access
Notes ; We acknowledge useful discussions with Denis Vodolazov and Alejandro Silhanek. This work was supported by the 'Odysseus' Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:110080 Serial 505
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Maneval, J.P.; Peeters, F.M.
Title Effect of pinning on the response of superconducting strips to an external pulsed current Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 025004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the anisotropic time-dependent Ginzburg-Landau theory we study the effect of ordered and disordered pinning on the time response of superconducting strips to an external current that switched on abruptly. The pinning centers result in a considerable delay of the response time of the system to such abrupt switching on of the current, whereas the output voltage is always larger when pinning is present. The resistive state in both cases are characterized either by dynamically stable phase-slip centers/lines or expanding in-time hot-spots, which are the main mechanisms for dissipation in current-carrying superconductors. We find that hot-spots are always initiated by the phase-slip state. However, the range of the applied current for the phase-slip state increases significantly when pinning is introduced. Qualitative changes are observed in the dynamics of the superconducting condensate in the presence of pinning.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000351046300010 Publication Date 2014-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 19 Open Access
Notes ; This work was supported by EU Marie Curie (Project No: 253057), the Flemish Science Foundation (FWO-Vl) and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:125491 Serial 829
Permanent link to this record
 

 
Author Misko, V.R.; Zhao, H.J.; Peeters, F.M.; Oboznov, V.; Dubonos, S.V.; Grigorieva, I.V.
Title Formation of vortex shells in mesoscopic superconducting squares Type A1 Journal article
Year 2009 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 22 Issue 3 Pages 034001,1-034001,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study vortex configurations in mesoscopic superconducting squares. Our theoretical approach is based on the analytical solution of the London equation using the Green's function method. The potential energy landscape found is then used in Langevin-type molecular-dynamics simulations to obtain stable vortex configurations. We show that the filling rules for vortices in squares with increasing applied magnetic field can be formulated, although in a different manner than in disks, in terms of the formation of vortex 'shells'. We discuss metastable states and the stability of the vortex configurations found with respect to variations of the material parameters and deformations of the shape of the sample.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000263564500002 Publication Date 2009-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 14 Open Access
Notes Approved Most recent IF: 2.878; 2009 IF: 2.694
Call Number UA @ lucian @ c:irua:76312 Serial 1267
Permanent link to this record
 

 
Author Kapra, A.V.; Misko, V.R.; Vodolazov, D.Y.; Peeters, F.M.
Title The guidance of vortex-antivortex pairs by in-plane magnetic dipoles in a superconducting finite-size film Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 2 Pages 024014-024014,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The possibility of manipulating vortex matter by using various artificial pinning arrays is of significant importance for possible applications in nano and micro fluxonics devices. By numerically solving the time-dependent GinzburgLandau equations, we study the vortexantivortex (vav) dynamics in a hybrid structure consisting of a finite-size superconductor with magnetic dipoles on top which generate vav pairs in the presence of an external current. The vav dynamics is analyzed for different arrangements and magnetic moments of the dipoles, as a function of angle α between the direction of the magnetic dipole and that of the Lorentz force produced by the applied current. The interplay of the attractive interaction between a vav pair and the Lorentz force leads either to the separation of (anti)vortices and their motion in opposite directions or to their annihilation. We found a critical angle αc, below which vortices and antivortices are repelled, while for larger angles they annihilate. In case of a single (few) magnetic dipole(s), this magnetic dipole induced vav guidance is influenced by the self-interaction of the vav pairs with their images in a finite-size sample, while for a periodic array of dipoles the guidance is determined by the interaction of a vav pair with other dipoles and vav pairs created by them. This effect is tunable through the external current and the magnetization and size of the magnetic dipoles.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900015 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 28 Open Access
Notes ; This work was supported by the 'Odysseus' program of the Flemish Government and the Flemish Science Foundation (FWO-Vl), the Interuniversity Attraction Poles (IAP) Programme-Belgian State-Belgian Science Policy, and the FWO-Vl. DYV acknowledges support from the Russian Fund for Basic Research and Russian Agency of Education under the Federal Programme 'Scientific and educational personnel of innovative Russia in 2009-2013'. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88732 Serial 1399
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Kusmartsev, F.V.; Peeters, F.M.
Title In-phase motion of Josephson vortices in stacked SNS Josephson junctions : effect of ordered pinning Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 12 Pages 125010-125016
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions is investigated using the anisotropic time-dependent Ginzburg-Landau theory in the presence of a square/rectangular array of pinning centers (holes). For small values of the applied drive, fluxons in different junctions move out of phase, forming a periodic triangular lattice. A rectangular lattice of moving fluxons is observed at larger currents, which is in agreement with previous theoretical predictions (Koshelev and Aranson 2000 Phys. Rev. Lett. 85 3938). This 'superradiant' flux-flow state is found to be stable in a wide region of applied current. The stability range of this ordered state is considerably larger than the one obtained for the pinning-free sample. Clear commensurability features are observed in the current-voltage characteristics of the system with pronounced peaks in the critical current at (fractional) matching fields. The effect of density and strength of the pinning centers on the stability of the rectangular fluxon lattice is discussed. Predicted synchronized motion of fluxons in the presence of ordered pinning can be detected experimentally using the rf response of the system, where enhancement of the Shapiro-like steps is expected due to the synchronization.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000327447200013 Publication Date 2013-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 5 Open Access
Notes ; This work was supported by EU Marie Curie (Project No: 253057) and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:112834 Serial 1573
Permanent link to this record
 

 
Author Molina, L.; Egoavil, R.; Turner, S.; Thersleff, T.; Verbeeck, J.; Holzapfel, B.; Eibl, O.; Van Tendeloo, G.
Title Interlayer structure in YBCO-coated conductors prepared by chemical solution deposition Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 7 Pages 075016-75018
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The functionality of YBa2Cu3O7−δ (YBCO)-coated conductor technology depends on the reliability and microstructural properties of a given tape or wire architecture. Particularly, the interface to the metal tape is of interest since it determines the adhesion, mechanical stability of the film and thermal contact of the film to the substrate. A trifluoroacetate (TFA)metal organic deposition (MOD) prepared YBCO film deposited on a chemical solution-derived buffer layer architecture based on CeO2/La2Zr2O7 and grown on a flexible Ni5 at.%W substrate with a {100}⟨001⟩ biaxial texture was investigated. The YBCO film had a thickness was 440 nm and a jc of 1.02 MA cm−2 was determined at 77 K and zero external field. We present a sub-nanoscale analysis of a fully processed solution-derived YBCO-coated conductor by aberration-corrected scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS). For the first time, structural and chemical analysis of the valence has been carried out on the sub-nm scale. Intermixing of Ni, La, Ce, O and Ba takes place at these interfaces and gives rise to nanometer-sized interlayers which are a by-product of the sequential annealing process. Two distinct interfacial regions were analyzed in detail: (i) the YBCO/CeO2/La2Zr2O7 region (10 nm interlayer) and (ii) the La2Zr2O7/Ni5 at.%W substrate interface region (20 nm NiO). This is of particular significance for the functionality of these YBCO-coated conductor architectures grown by chemical solution deposition.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000319973800024 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 11 Open Access
Notes vortex; Countatoms; Fwo; Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:108704UA @ admin @ c:irua:108704 Serial 1698
Permanent link to this record
 

 
Author Cayado, P.; De Keukeleere, K.; Garzón, A.; Perez-Mirabet, L.; Meledin, A.; De Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; Coll, M.; Ricart, S.; Palau, A.; Gázquez, J.; Ros, J.; Van Tendeloo, G.; Van Driessche, I.; Puig, T.; Obradors, X.
Title Epitaxial YBa2Cu3O7−xnanocomposite thin films from colloidal solutions Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 124007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A methodology of general validity to prepare epitaxial nanocomposite films based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles ( ex situ nanocomposites) is reported. The trifluoroacetate (TFA) metal–organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa 2 Cu 3 O 7 (YBCO) films. For this reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO 2 and ZrO 2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis of these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticles pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents ( J c ∼ 3–4 MA cm −2 at 77 K) were reached, indicating no current limitation effects associated with epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirm the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366288100009 Publication Date 2015-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited 32 Open Access
Notes All authors acknowledge the EU (EU-FP7 NMP-LA-2012-280432 EUROTAPES project). ICMAB acknowledges MINECO (MAT2014-51778-C2-1-R) and Generalitat de Catalunya (2014SGR 753 and Xarmae). UGhent acknowledges the Special Research Fund (BOF), the Research Foundation Flanders (FWO) and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT). TEM microscopy work was conducted in the Catalan Institute of Nanoscience and Nanotechnology (ICN2). The authors acknowledge the ICN2 Electron Microscopy Division for offering access to their instruments and expertise. Part of the STEM microscopy work was conducted in 'Laboratorio de Microscopias Avanzadas' at the Instituto de Nanociencia de Aragon—Universidad de Zaragoza. The authors acknowledge the LMA-INA for offering access to their instruments and expertise. JG and MC also acknowledge the Ramon y Cajal program (RYC-2012-11709 and RYC-2013-12448 respectively). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129593 Serial 3966
Permanent link to this record
 

 
Author Verbist, K.; Lebedev, O.I.; Verhoeven, M.A.J.; Winchern, R.; Rijnders, A.J.H.M.; Blank, D.H.A.; Tafuri, F.; Bender, H.; Van Tendeloo, G.
Title Microstructure of YBa2Cu3O7-\delta Josephson junctions in relation to their properties Type A1 Journal article
Year 1998 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 11 Issue Pages 13-20
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000071820300005 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (down) 2.878 Times cited Open Access
Notes Approved Most recent IF: 2.878; 1998 IF: 2.050
Call Number UA @ lucian @ c:irua:22112 Serial 2075
Permanent link to this record