|
Record |
Links |
|
Author |
Xiao, H.; Wen, H.; Xu, W.; Cheng, Y.; Zhang, J.; Cheng, X.; Xiao, Y.; Ding, L.; Li, H.; He, B.; Peeters, F.M. |
|
|
Title |
Terahertz magneto-optical properties of Nitrogen-doped diamond |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Infrared physics and technology |
Abbreviated Journal |
|
|
|
Volume |
138 |
Issue |
|
Pages |
105237-105239 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Nitrogen-doped diamond (N-D) is one of the most important carbon-based electronic and optical materials. Here we study the terahertz (THz) magneto-optical (MO) properties of N-D grown by microwave plasma-enhanced chemical vapor deposition. The optical microscope, SEM, XRD, Raman spectrum, FTIR spectroscopy and XPS are used for the characterization of N-D samples. Applying THz time-domain spectroscopy (TDS), in combination with the polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through N-D are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular transmission coefficients and MO conductivities for N-D are obtained accordingly. Through fitting the experimental results with theoretical formulas of the dielectric constant and MO conductivities for an electron gas, we are able to determine magneto-optically the key electronic parameters of N-D, such as the static dielectric constant epsilon b, the electron density ne, the electronic relaxation time tau, the electronic localization factor alpha and, particularly, the effective electron mass m* obtained under non-resonant condition. The dependence of these parameters upon magnetic field is examined and analyzed. We find that the MO conductivities of N-D can be described rightly by the MO Drude-Smith formulas developed by us previously. It is shown that N-doping and the presence of the magnetic field can lead towards the larger epsilon b and heavier m* in diamond, while ne/tau/alpha in N-D decreases/increases/decreases with increasing magnetic field. The results obtained from this work are benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of N-D. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001200173100001 |
Publication Date |
2024-02-15 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1350-4495 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
3.3 |
Times cited |
|
Open Access |
|
|
|
Notes |
|
Approved |
Most recent IF: 3.3; 2024 IF: 1.713 |
|
|
Call Number |
UA @ admin @ c:irua:205523 |
Serial |
9178 |
|
Permanent link to this record |