toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Huvé, M.; Vannier, R.-N.; Nowogrocki, G.; Mairesse, G.; Van Tendeloo, G.
  Title From Bi4V2O11 to Bi4V2O10.66: the VV-VIV transformation in the Aurovillius-type framework Type A1 Journal article
  Year 1996 Publication Journal of materials chemistry Abbreviated Journal
  Volume 6 Issue Pages 1339-1345
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos A1996VC50700012 Publication Date 2004-04-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 63 Open Access
  Notes Approved PHYSICS, MULTIDISCIPLINARY 6/79 Q1 #
  Call Number UA @ lucian @ c:irua:17847 Serial 1287
Permanent link to this record
 

 
Author Teodorescu, V.S.; Mihailescu, I.N.; Dinescu, M.; Chitica, N.; Nistor, L.C.; van Landuyt, J.; Barborica, A.
  Title Laser induced phase transition in iron thin films Type A1 Journal article
  Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal
  Volume 4 Issue Pages 127-130
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Les Ulis Editor
  Language Wos A1994NT08700028 Publication Date 2007-07-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 2 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:10003 Serial 1787
Permanent link to this record
 

 
Author Hervieu, M.; Michel, C.; Martin, C.; Huvé, M.; Van Tendeloo, G.; Maignan, A.; Pelloquin, D.; Goutenoire, F.; Raveau, B.
  Title Mécanismes de la non-stoechiométrie dans les nouveaux supraconducteurs à haute Tc Type A1 Journal article
  Year 1994 Publication Journal de physique: 3: applied physics, materials science, fluids, plasma and instrumentation Abbreviated Journal
  Volume 4 Issue Pages 2057-2067
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Les Ulis Editor
  Language Wos A1994PT17900002 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1155-4320 ISBN Additional Links UA library record; WoS full record;
  Impact Factor (down) Times cited Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:10041 Serial 1973
Permanent link to this record
 

 
Author Schryvers, D.; Ma, Y.; Toth, L.; Tanner, L.E.
  Title Nucleation and growth of Ni5Al3 in austenite and martensite matrices Type P1 Proceeding
  Year 1994 Publication Electron Microscopy 1994, Vols 2a And 2b: Applications In Materials Sciences Abbreviated Journal
  Volume Issue Pages 509-510
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1994BE09Y00247 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2-86883-226-1 ISBN Additional Links UA library record; WoS full record;
  Impact Factor (down) Times cited Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:104476 Serial 2386
Permanent link to this record
 

 
Author Fedina, L.; van Landuyt, J.; Vanhellemont, J.; Aseev, A.
  Title Observation of vacancy clustering in Si crystals during in situ electron irradiation in a high voltage electron microscope Type P1 Proceeding
  Year 1996 Publication Materials Research Society symposium proceedings Abbreviated Journal
  Volume 404 Issue Pages 189-194
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Wuhan Editor
  Language Wos A1996BG19E00025 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0272-9172 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 1 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:15457 Serial 2424
Permanent link to this record
 

 
Author Schryvers, D.; Tanner, L.E.
  Title On the phase-like nature of the 7M structure in Ni-Al Type A3 Journal article
  Year 1993 Publication MRS Japan: shape memory materials Abbreviated Journal
  Volume 18 Issue B Pages 849-852
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1994BC69J00183 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 1 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:48356 Serial 2447
Permanent link to this record
 

 
Author Nistor, L.; Van Tendeloo, G.; Amelinckx, S.; Shpanchenko, R.V.; van Landuyt, J.
  Title Ordering and defects in BanTaxTiyO3n ternary oxides Type P1 Proceeding
  Year 1994 Publication Electron Microscopy 1994, Vols 2a And 2b: Applications In Materials Sciences Abbreviated Journal
  Volume Issue Pages 869-870
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1994BE09Y00422 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2-86883-226-1 ISBN Additional Links UA library record; WoS full record;
  Impact Factor (down) Times cited Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:104477 Serial 2504
Permanent link to this record
 

 
Author Vanhellemont, J.; Romano-Rodriguez, A.; Fedina, L.; van Landuyt, J.; Aseev, A.
  Title Point defect reactions in silicon studies in situ by high flux electron irradiation in high voltage transmission electron microscope Type A3 Journal article
  Year 1995 Publication Materials science and technology Abbreviated Journal
  Volume 11 Issue Pages 1194-1204
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1995TQ95100016 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 7 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:13297 Serial 2655
Permanent link to this record
 

 
Author Hellmuth, K.H.; Siitari-Kaupi, M.; Rauhala, E.; Johansson, B.; Zilliacus, R.; Gijbels, R.; Adriaens, A.
  Title Reactions of high FeO-olivine rock with groundwater and redox-sensitive elements studied by surface-analytical methods and autoradiography Type P1 Proceeding
  Year 1994 Publication Materials Research Society symposium proceedings Abbreviated Journal
  Volume 333 Issue Pages 947-953
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Wuhan Editor
  Language Wos A1994BA13E00112 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0272-9172 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 6 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:8939 Serial 2821
Permanent link to this record
 

 
Author Tanner, L.E.; Shapiro, S.M.; Schryvers, D.; Noda, Y.
  Title Review of phonon behaviour and microstructural development leading to martensitic transformations in NixAl100-x alloys Type A3 Journal article
  Year 1992 Publication Shape memory materials and phenomena: fundamental aspects and applications Abbreviated Journal
  Volume 246 Issue Pages 265-276
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1992BW94E00038 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 4 Open Access
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
  Call Number UA @ lucian @ c:irua:4368 Serial 2904
Permanent link to this record
 

 
Author Raveau, B.; Michel, C.; Hervieu, M.; Van Tendeloo, G.; Maignan, A.
  Title Stabilization of mercury-based superconductors by foreign cations Type A1 Journal article
  Year 1994 Publication Annales de chimie (1914) T2 – 4th North-African Materials Science Symposium (JMSM 94), NOV 23-24, 1994, CASABLANCA, MOROCCO Abbreviated Journal 4th North-African Materials Science Symposium (JMSM 94), NOV 23-24, 1994, CASABLANCA, MOROCCO
  Volume 19 Issue 7-8 Pages 487-492
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The recently discovered superconducting mercury-based cuprates HgBa2Can-1CunO2n+2+delta have proved difficult to synthesize as single phases and are sensitive to environment (CO2, moisture). The present paper gives an overview of new series mercury based superconductors, whose stabilisation is based on the fact that a foreign cation with a higher valency than Hg(II) must be introduced in the mercury layers, in order to fill up partially the oxygen vacancies of these layers. By this method, several new series of superconductors involving strontium instead of barium with critical temperatures ranging from 27 K to 95 K have been isolated : Hg0.5Bi0.5Sr2-xLaxCuO4+delta, Hg(0.5)Bi(0.5)Sr(2)Ca(1-x)R(x)Cu(2)O(6+delta) (R Y, Nd, Pr), Pb0.7Hg0.3Sr2-xLaxCuO4+delta, Pb(0.7)Hg(0.3)Sr(2)Ca(1-x)R(x)Cu(2)O(6+delta) (R = Y, Nd) Hg(1-x)Pr(x)Sr(2)A(1-x')Pr(x') Cu2O6+delta (A = Sr, Ca), Pb0.7Hg0.3Sr2Cu2CO3O7 and Hg1-xCrxSr2CuO4+delta. The behaviour of the praseodymium cuprates that exhibit a rather sharp transition and reach a Tc of 85 K is especially discussed. A method to synthesize new ''Ba-Hg'' superconducting cuprates with the 1212 structure at normal pressure with a Tc up to 110 K is also presented.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Paris Editor
  Language Wos A1994RC75300027 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0151-9107 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 2 Open Access
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #
  Call Number UA @ lucian @ c:irua:104472 Serial 3137
Permanent link to this record
 

 
Author Peeters, F.M.
  Title Tuning of energy levels in a superlattice Type P1 Proceeding
  Year 1994 Publication Materials Research Society symposium proceedings Abbreviated Journal
  Volume 325 Issue Pages 471-480
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Wuhan Editor
  Language Wos A1994BA45Z00064 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0272-9172 ISBN Additional Links UA library record; WoS full record;
  Impact Factor (down) Times cited Open Access
  Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
  Call Number UA @ lucian @ c:irua:9381 Serial 3751
Permanent link to this record
 

 
Author Zhang, B.; Deschamps, M.; Ammar, M.-R.; Raymundo-Pinero, E.; Hennet, L.; Batuk, D.; Tarascon, J.-M.
  Title Laser synthesis of hard carbon for anodes in Na-ion battery Type A1 Journal article
  Year 2017 Publication Advanced Materials Technologies Abbreviated Journal
  Volume 2 Issue 3 Pages 1600227
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000398999900003 Publication Date 2016-12-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2365-709x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 10 Open Access Not_Open_Access
  Notes ; The RS2E (Reseau sur le StockageElectrochimique de l'Energie) network is acknowledged for the financial support of this work through the ANR project Storex (ANR-10-LABX-76-01). J.-M.T acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC GrantProject 670116-ARPEMA. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:142452 Serial 4666
Permanent link to this record
 

 
Author De Clercq, M.; Moors, K.; Sankaran, K.; Pourtois, G.; Dutta, S.; Adelmann, C.; Magnus, W.; Sorée, B.
  Title Resistivity scaling model for metals with conduction band anisotropy Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal
  Volume 2 Issue 3 Pages 033801
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract It is generally understood that the resistivity of metal thin films scales with film thickness mainly due to grain boundary and boundary surface scattering. Recently, several experiments and ab initio simulations have demonstrated the impact of crystal orientation on resistivity scaling. The crystal orientation cannot be captured by the commonly used resistivity scaling models and a qualitative understanding of its impact is currently lacking. In this work, we derive a resistivity scaling model that captures grain boundary and boundary surface scattering as well as the anisotropy of the band structure. The model is applied to Cu and Ru thin films, whose conduction bands are (quasi-) isotropic and anisotropic, respectively. After calibrating the anisotropy with ab initio simulations, the resistivity scaling models are compared to experimental resistivity data and a renormalization of the fitted grain boundary reflection coefficient can be identified for textured Ru.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication College Park, Md Editor
  Language Wos 000426787600001 Publication Date 2018-03-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited Open Access
  Notes ; The authors acknowledge the support by the Fonds National de la Recherche Luxembourg (ATTRACT Grant No. 7556175). ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:149866UA @ admin @ c:irua:149866 Serial 4947
Permanent link to this record
 

 
Author Andelkovic, M.; Covaci, L.; Peeters, F.M.
  Title DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal
  Volume 2 Issue 3 Pages 034004
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication College Park, Md Editor
  Language Wos 000427822700002 Publication Date 2018-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 27 Open Access
  Notes ; We acknowledge financial support from the graphene FLAG-ERA project TRANS2DTMD. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:150838UA @ admin @ c:irua:150838 Serial 4964
Permanent link to this record
 

 
Author Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D.G.; Botton, G.A.; Wei, J.Y.T.
  Title Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal
  Volume 2 Issue 3 Pages 033803
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7-delta grown by pulsed laser deposition are annealed at up to 700 atm O-2 and 900 degrees C, in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15-delta and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9-delta and YBa2Cu6O10-delta phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7-delta powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication College Park, Md Editor
  Language Wos 000428244900004 Publication Date 2018-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 2 Open Access Not_Open_Access
  Notes ; This work is supported by NSERC, CFI-OIT, and CIFAR. The electron microscopy work was carried out at the Canadian Centre for Electron Microscopy, a National Facility supported by the Canada Foundation for Innovation under the Major Science Initiative program, McMaster University, and NSERC. The XAS work was performed at the Canadian Light Source, which is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:150829 Serial 4982
Permanent link to this record
 

 
Author Kalashami, H.G.; Neek-Amal, M.; Peeters, F.M.
  Title Slippage dynamics of confined water in graphene oxide capillaries Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal
  Volume 2 Issue 7 Pages 074004
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The permeation of water between neighboring graphene oxide (GO) flakes, i.e., 2D nanochannels, are investigated using a simple model for the GO membrane. We simulate the hydrophilic behavior of nanocapillaries and study the effect of surface charge on the dynamical properties of water flow and the influence of Na+ and Cl- ions on water permeation. Our approach is based on extensive equilibrium molecular dynamics simulations to obtain a better understanding of water permeation through charged nanochannels in the presence of ions. We found significant change in the slippage dynamics of confined water such as a profound increase in viscosity/slip length with increasing charges over the surface. The slip length decreases one order of magnitude (i.e., 1/30) with increasing density of surface charge, while it increases by a factor of 2 with ion concentration. We found that commensurability induced by nanoconfinement plays an important role on the intrinsic dynamical properties of water.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication College Park, Md Editor
  Language Wos 000439435200006 Publication Date 2018-07-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 1 Open Access
  Notes ; We acknowledge fruitful discussions with Andre K. Geim, Irina Grigorieva, and Rahul R. Nair. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:152409UA @ admin @ c:irua:152409 Serial 5128
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal
  Volume 6 Issue 6 Pages
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000461540600001 Publication Date 2019-03-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 11 Open Access OpenAccess
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:158540 Serial 5205
Permanent link to this record
 

 
Author Moors, K.; Contino, A.; Van de Put, M.L.; Vandenberghe, W.G.; Fischetti, M., V; Magnus, W.; Sorée, B.
  Title Theoretical study of scattering in graphene ribbons in the presence of structural and atomistic edge roughness Type A1 Journal article
  Year 2019 Publication Physical review materials Abbreviated Journal
  Volume 3 Issue 2 Pages 024001
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate the diffusive electron-transport properties of charge-doped graphene ribbons and nanoribbons with imperfect edges. We consider different regimes of edge scattering, ranging from wide graphene ribbons with (partially) diffusive edge scattering to ribbons with large width variations and nanoribbons with atomistic edge roughness. For the latter, we introduce an approach based on pseudopotentials, allowing for an atomistic treatment of the band structure and the scattering potential, on the self-consistent solution of the Boltzmann transport equation within the relaxation-time approximation and taking into account the edge-roughness properties and statistics. The resulting resistivity depends strongly on the ribbon orientation, with zigzag (armchair) ribbons showing the smallest (largest) resistivity and intermediate ribbon orientations exhibiting intermediate resistivity values. The results also show clear resistivity peaks, corresponding to peaks in the density of states due to the confinement-induced subband quantization, except for armchair-edge ribbons that show a very strong width dependence because of their claromatic behavior. Furthermore, we identify a strong interplay between the relative position of the two valleys of graphene along the transport direction, the correlation profile of the atomistic edge roughness, and the chiral valley modes, leading to a peculiar strongly suppressed resistivity regime, most pronounced for the zigzag orientation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000458161800001 Publication Date 2019-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 4 Open Access
  Notes ; We acknowledge the Research Foundation – Flanders (FWO) for supporting K.M.'s research visit at the University of Texas at Dallas, as well as the support by the National Research Fund Luxembourg (FNR) with ATTRACT Grant No. 7556175. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:157499 Serial 5235
Permanent link to this record
 

 
Author Hadermann, J.; Palatinus, L.
  Title Introducton to the special issue on electron crystallography Type Editorial
  Year 2019 Publication And Materials Abbreviated Journal
  Volume 75 Issue 4 Pages 462-462
  Keywords Editorial; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000480512600028 Publication Date 2019-08-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 2 Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:161845 Serial 5389
Permanent link to this record
 

 
Author Chizhov, A.; Vasiliev, R.; Rumyantseva, M.; Krylov, I.; Drozdov, K.; Batuk, M.; Hadermann, J.; Abakumov, A.; Gaskov, A.
  Title Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal
  Volume 6 Issue 6 Pages
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract New hybrid materials-photosensitized nanocomposites containing nanocrystal heterostructures with spatial charge separation, show high response for practically important sub-ppm level NO2 detection at room temperature. Nanocomposites ZnO/CdSe, ZnO/(CdS@CdSe), and ZnO/(ZnSe@CdS) were obtained by the immobilization of nanocrystals-colloidal quantum dots (QDs), on the matrix of nanocrystalline ZnO. The formation of crystalline core-shell structure of QDs was confirmed by HAADF-STEM coupled with EELS mapping. Optical properties of photosensitizers have been investigated by optical absorption and luminescence spectroscopy combined with spectral dependences of photoconductivity, which proved different charge localization regimes. Photoelectrical and gas sensor properties of nanocomposites have been studied at room temperature under green light (max = 535 nm) illumination in the presence of 0.12-2 ppm NO2 in air. It has been demonstrated that sensitization with type II heterostructure ZnSe@CdS with staggered gap provides the rapid growth of effective photoresponse with the increase in the NO2 concentration in air and the highest sensor sensitivity toward NO2. We believe that the use of core-shell QDs with spatial charge separation opens new possibilities in the development of light-activated gas sensors working without thermal heating.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000487641600002 Publication Date 2019-09-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 1 Open Access
  Notes ; This work was financially supported by RFBR grant No. 1653-76001 (RFBR – ERA.Net FONSENS 096) and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 26520408). AC acknowledges support from the RFBR grant No. 18-33-01004. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:163776 Serial 5390
Permanent link to this record
 

 
Author Crippa, F.; Rodriguez-Lorenzo, L.; Hua, X.; Goris, B.; Bals, S.; Garitaonandia, J.S.; Balog, S.; Burnand, D.; Hirt, A.M.; Haeni, L.; Lattuada, M.; Rothen-Rutishauser, B.; Petri-Fink, A.
  Title Phase transformation of superparamagnetic iron oxide nanoparticles via thermal annealing : implications for hyperthermia applications Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal
  Volume 2 Issue 2 Pages 4462-4470
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Magnetic hyperthermia has the potential to play an important role in cancer therapy and its efficacy relies on the nanomaterials selected. Superparamagnetic iron oxide nanoparticles (SPIONs) are excellent candidates due to the ability of producing enough heat to kill tumor cells by thermal ablation. However, their heating properties depend strongly on crystalline structure and size, which may not be controlled and tuned during the synthetic process; therefore, a postprocessing is needed. We show how thermal annealing can be simultaneously coupled with ligand exchange to stabilize the SPIONs in polar solvents and to modify their crystal structure, which improves hyperthermia behavior. Using high-resolution transmission electron microscopy, X-ray diffraction, Mossbauer spectroscopy, vibrating sample magnetometry, and lock-in thermography, we systematically investigate the impact of size and ligand exchange procedure on crystallinity, their magnetism, and heating ability. We describe a valid and simple approach to optimize SPIONs for hyperthermia by carefully controlling the size, colloidal stability, and crystallinity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000477917700048 Publication Date 2019-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 18 Open Access Not_Open_Access
  Notes ; This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials, the Adolphe Merkle Foundation, the University of Fribourg, and the European Society for Molecular Imaging (Grant E141200643). ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:161927 Serial 5393
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.
  Title Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography Type A1 Journal article
  Year 2019 Publication And Materials Abbreviated Journal
  Volume 75 Issue 4 Pages 485-494
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The applicability of electron diffraction tomography to the structure solution and refinement of charged, discharged or cycled metal-ion battery positive electrode (cathode) materials is discussed in detail. As these materials are often only available in very small amounts as powders, the possibility of obtaining single-crystal data using electron diffraction tomography (EDT) provides unique access to crucial information complementary to X-ray diffraction, neutron diffraction and high-resolution transmission electron microscopy techniques. Using several examples, the ability of EDT to be used to detect lithium and refine its atomic position and occupancy, to solve the structure of materials ex situ at different states of charge and to obtain in situ data on structural changes occurring upon electrochemical cycling in liquid electrolyte is discussed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000480512600002 Publication Date 2019-08-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 2 Open Access
  Notes ; The following funding is acknowledged: Fonds Wetenschappelijk Onderzoek (grant No. G040116N); Russian Foundation of Basic Research (grant No. 17-03-00370-a). ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:161846 Serial 5397
Permanent link to this record
 

 
Author Janssens, K.; Vekemans, B.; Adams, F.; van Espen, P.; Mutsaers, P.
  Title Accurate evaluation of \mu-PIXE and \mu-XRF spectral data through iterative least squares fitting Type A1 Journal article
  Year 1996 Publication Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms T2 – 7th International Conference on Particle Induced X-ray Emission and Its Analytical Applications, MAY 26-30, 1995, Abano Terme, Italy Abbreviated Journal 7th International Conference on Particle Induced X-ray Emission and Its Analytical Applications, MAY
  Volume 109 Issue Pages 179-185
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
  Abstract The integration of the nonlinear least squares X-ray spectrum evaluation progam AXIL. into a mu-PIXE and a mu-XRF setup is discussed. The use of the software when procesing data sets derived from biological and geological samples is described.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1996UV44400035 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0168-583x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:95887 Serial 5457
Permanent link to this record
 

 
Author Horemans, B.; Schalm, O.; De Wael, K.; Cardell, C.; Van Grieken, R.
  Title Atmospheric composition and micro-climate in the Alhambra monument, Granada (Spain), in the context of preventive conservation Type P1 Proceeding
  Year 2012 Publication IOP conference series : materials science and engineering Abbreviated Journal
  Volume 37 Issue Pages 012002-12008
  Keywords P1 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The world famous Alhambra monument in Granada, Southern Spain, listed as UNESCO world cultural heritage since 1984, represents probably the most beautiful example of Islamic art and architecture from the Middle Ages in Europe. It is visited by ca. 2 million people annually. Granada is situated in a natural basin, surrounded by mountains with altitudes up to 3500 m. Due to this topography and the prevailing low wind speeds, pollution-derived and especially traffic-derived particulate matter often accumulates in the urban air. In order to evaluate the potential conservation risks from the surrounding air, the atmospheric composition in the Alhambra monument was evaluated. Indoor temperature and relative humidity fluctuations were evaluated for their potential degenerative effects. Furthermore, the atmospheric composition in the Alhambra was analyzed in terms of inorganic gases (NO2, SO2, O3, and NH3) and black carbon. It was found that the open architecture protected the indoor environments from developing a potentially harmful microclimate, such as the build-up of humidity resulting from the huge number of daily tourists. On the downside, the strong ventilation made the indoor air hardly different from outdoor air, as characterized by strong diurnal temperature and relative humidity gradients and high traffic-derived pollutant levels.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000307662000002 Publication Date 2012-07-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1757-8981; 1757-899x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 1 Open Access
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:100112 Serial 5484
Permanent link to this record
 

 
Author Pouyet, E.; Cotte, M.; Fayard, B.; Salome, M.; Meirer, F.; Mehta, A.; Uffelman, E.S.; Hull, A.; Vanmeert, F.; Kieffer, J.; Burghammer, M.; Janssens, K.; Sette, F.; Mass, J.
  Title 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse Type A1 Journal article
  Year 2015 Publication Applied physics A : materials science & processing Abbreviated Journal
  Volume 121 Issue 3 Pages 967-980
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The chemical and physical alterations of cadmium yellow (CdS) paints in Henri Matisse's The Joy of Life (1905-1906, The Barnes Foundation) have been recognized since 2006, when a survey by portable X-ray fluorescence identified this pigment in all altered regions of the monumental painting. This alteration is visible as fading, discoloration, chalking, flaking, and spalling of several regions of light to medium yellow paint. Since that time, synchrotron radiation-based techniques including elemental and spectroscopic imaging, as well as X-ray scattering have been employed to locate and identify the alteration products observed in this and related works by Henri Matisse. This information is necessary to formulate one or multiple mechanisms for degradation of Matisse's paints from this period, and thus ensure proper environmental conditions for the storage and the display of his works. This paper focuses on 2D full-field X-ray Near Edge Structure imaging, 2D micro-X-ray Diffraction, X-ray Fluorescence, and Fourier Transform Infra-red imaging of the altered paint layers to address one of the long-standing questions about cadmium yellow alteration-the roles of cadmium carbonates and cadmium sulphates found in the altered paint layers. These compounds have often been assumed to be photo-oxidation products, but could also be residual starting reagents from an indirect wet process synthesis of CdS. The data presented here allow identifying and mapping the location of cadmium carbonates, cadmium chlorides, cadmium oxalates, cadmium sulphates, and cadmium sulphides in thin sections of altered cadmium yellow paints from The Joy of Life and Matisse's Flower Piece (1906, The Barnes Foundation). Distribution of various cadmium compounds confirms that cadmium carbonates and sulphates are photo-degradation products in The Joy of Life, whereas in Flower Piece, cadmium carbonates appear to have been a [(partially) unreacted] starting reagent for the yellow paint, a role previously suggested in other altered yellow paints.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000364914100017 Publication Date 2015-06-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-8396; 1432-0630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:130290 Serial 7382
Permanent link to this record
 

 
Author Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; Castellanos-Gomez, A.; Peeters, F.M.; Liu, Z.; Hinkle, C.L.; Oh, S.-H.; Ye, P.D.; Koester, S.J.; Lee, Y.H.; Avouris, P.; Wang, X.; Low, T.
  Title Bandgap engineering of two-dimensional semiconductor materials Type A1 Journal article
  Year 2020 Publication npj 2D Materials and Applications Abbreviated Journal
  Volume 4 Issue 1 Pages 29-21
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Semiconductors are the basis of many vital technologies such as electronics, computing, communications, optoelectronics, and sensing. Modern semiconductor technology can trace its origins to the invention of the point contact transistor in 1947. This demonstration paved the way for the development of discrete and integrated semiconductor devices and circuits that has helped to build a modern society where semiconductors are ubiquitous components of everyday life. A key property that determines the semiconductor electrical and optical properties is the bandgap. Beyond graphene, recently discovered two-dimensional (2D) materials possess semiconducting bandgaps ranging from the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides, to the ultraviolet in hexagonal boron nitride. In particular, these 2D materials were demonstrated to exhibit highly tunable bandgaps, achieved via the control of layers number, heterostructuring, strain engineering, chemical doping, alloying, intercalation, substrate engineering, as well as an external electric field. We provide a review of the basic physical principles of these various techniques on the engineering of quasi-particle and optical bandgaps, their bandgap tunability, potentials and limitations in practical realization in future 2D device technologies.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000565588500001 Publication Date 2020-08-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 604 Open Access
  Notes ; Discussions and interactions with D.R. Reichman, F. Tavazza, N.M.R. Peres, and K. Choudhary are gratefully acknowledged. A.C. acknowledges financial support by CNPq, through the PRONEX/FUNCAP and PQ programs. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 755655, ERCStG 2017 project 2D-TOPSENSE). Computational support from the Minnesota Supercomputing Institute (MSI) and EU Graphene Flagship funding (Grant Graphene Core 2, 785219) is acknowledged. R.F. acknowledges support from the Netherlands Organization for Scientific Research (NWO) through the research program Rubicon with project number 680-50-1515. D.H., J.Z., and X.W. acknowledge support by National Natural Science Foundation of China 61734003, 61521001, 61704073, 51861145202, and 61851401, and National Key Basic Research Program of China 2015CB921600 and 2018YFB2200500. J.Z. and Z.L. acknowledge support by RG7/18, MOE2017-T2-2-136, MOE2018-T3-1-002, and A*Star QTE program. S.H.S. and Y.H.L. acknowledge the support from IBS-R011-D1. Y.D.K. is supported by Samsung Research and Incubation Funding Center of Samsung Electronics under Project Number SRFC-TB1803-04. S.J.K acknowledges financial support by the National Science Foundation (NSF), under award DMR-1921629. T.L. and J.G.A. acknowledge funding support from NSF/DMREF under Grant Agreement No. 1921629. S.-H.O. acknowledges support from the U.S. National Science Foundation (NSF ECCS 1809723) and Samsung Global Research Outreach (GRO) project. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:172069 Serial 6459
Permanent link to this record
 

 
Author Du, K.; Guo, L.; Peng, J.; Chen, X.; Zhou, Z.-N.; Zhang, Y.; Zheng, T.; Liang, Y.-P.; Lu, J.-P.; Ni, Z.-H.; Wang, S.-S.; Van Tendeloo, G.; Zhang, Z.; Dong, S.; Tian, H.
  Title Direct visualization of irreducible ferrielectricity in crystals Type A1 Journal article
  Year 2020 Publication npj Quantum Materials Abbreviated Journal
  Volume 5 Issue 1 Pages 49-7
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, e.g., ferroelectricity/ferromagnetism, antiferroelectricity/antiferromagnetism, and even dipole-vortex/magnetic-vortex, but ferrielectricity/ferrimagnetism kept telling a disparate story in microscopic level. Since the definition of a charge dipole involves more than one ion, there may be multiple choices for a dipole unit, which makes most ferrielectric orders equivalent to ferroelectric ones, i.e., this ferrielectricity is not necessary to be a real independent branch of polarity. In this work, by using the spherical aberration-corrected scanning transmission electron microscope, we visualize a nontrivial ferrielectric structural evolution in BaFe2Se3, in which the development of two polar sub-lattices is out-of-sync, for which we term it as irreducible ferrielectricity. Such irreducible ferrielectricity leads to a non-monotonic behavior for the temperature-dependent polarization, and even a compensation point in the ordered state. Our finding unambiguously distinguishes ferrielectrics from ferroelectrics in solids.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000551499400001 Publication Date 2020-07-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited Open Access OpenAccess
  Notes ; We acknowledge the National Natural Science Foundation of China (Grant Nos. 11834002, 11674055, and 11234011), National Key R&D Program of China 2017YFB0703100, and the 111 Project (Grant No. B16042). K.D. acknowledges the China Scholarship Council (CSC, No.201806320230) for sponsorship and 2019 Zhejiang University Academic Award for Outstanding Doctoral Candidates. We thank Prof. Fang Lin for providing guidance on calculating atoms position and Dr. Andrew Studer for performing neutron powder diffraction. We thank Prof. Sang-Wook Cheong, Prof. Zhigao Sheng, Prof. Qianghua Wang, Prof. Meng Wang, Prof. Renkui Zheng, Prof. Takuya Aoyama, Dr. Zhibo Yan, and Dr. Meifeng Liu for valuable discussion and/or technical help during measurements. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:171225 Serial 6486
Permanent link to this record
 

 
Author Vishwakarma, M.; Varandani, D.; Hendrickx, M.; Hadermann, J.; Mehta, B.R.
  Title Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy Type A1 Journal article
  Year 2020 Publication Materials Research Express Abbreviated Journal
  Volume 7 Issue 1 Pages 016418
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In the present work, kelvin probe force microscopy (KPFM) technique has been used to study the CZTSe/CuxSe bilayer interface prepared by multi-step deposition and selenization process of metal precursors. Transmission electron microscopy (TEM) confirmed the bilayer configuration of the CZTSe/CuxSe sample. Two configuration modes (surface mode and junction mode) in KPFM have been employed in order to measure the junction voltage under illumination conditions. The results show that CZTSe/CuxSe has small junction voltage of similar to 21 mV and the presence of CuxSe secondary phase in the CZTSe grain boundaries changes the workfunction of the local grain boundaries region. The negligible photovoltage difference between grain and grain boundaries in photovoltage image indicates that CuxSe phase deteriorates the higher photovoltage at grain boundaries normally observed in CZTSe based device. These results can be important for understanding the role of secondary phases in CZTSe based junction devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000520120900001 Publication Date 2019-12-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited Open Access OpenAccess
  Notes ; Authors acknowledges support provided DST in the forms of InSOL and Indo-Swiss projects. We also acknowledge Joke Hadermann EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Belgium for helping in TEM measurements. M V Manoj Vishwakarma acknowledges IIT Delhi for MHRD fellowship. Prof B R Mehta acknowledges the support of the Schlumberger chair professorship. M V also acknowledges the support of DST-FIST Raman facility. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:167843 Serial 6567
Permanent link to this record
 

 
Author Liu, P.; Madsen, J.; Schiotz, J.; Wagner, J.B.; Hansen, T.W.
  Title Reversible and concerted atom diffusion on supported gold nanoparticles Type A1 Journal article
  Year 2020 Publication Journal Of Physics-materials Abbreviated Journal
  Volume 3 Issue 2 Pages 024009
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Traditionally, direct imaging of atom diffusion is only available by scanning tunneling microscopy and field ion microscopy on geometry-constrained samples: flat surfaces for STM and needle tips for FIM. Here we show time-resolved atomic-scale HRTEM investigations of CeO2-supported Au nanoparticle surfaces to characterize the surface dynamics of atom columns on gold nanoparticles. The observed surface dynamics have been categorized into four types: layer jumping, layer gliding, re-orientation and surface reconstruction. We successfully captured atoms moving in a concerted manner with a time resolution of 0.1 s. A quantitative approach for measuring the dynamics in various gaseous surroundings at elevated temperatures is presented. An approach for measuring quantitative electron beam effects on the surface dynamics is presented by counting atom column occupation as a function of time under a range of dose rates in high vacuum.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000560432800009 Publication Date 2020-03-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor (down) Times cited 2 Open Access OpenAccess
  Notes ; ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:171320 Serial 6597
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: