|   | 
Details
   web
Records
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V.
Title Advanced first-principles theory of superconductivity including both lattice vibrations and spin fluctuations : the case of FeB4 Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 1 Pages (up) 014503
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental T-c similar to 2.4 K [H. Gou et al., Phys. Rev. Lett, 111, 157002 (2013)]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I = 1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q = 0, from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from T-c = 41 K, if they are not taken into account, to T-c = 1.7 K, in good agreement with the experimental value.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000419229100004 Publication Date 2018-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government-department EWI. Anisotropic Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148447UA @ admin @ c:irua:148447 Serial 4866
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D.
Title Structural and electronic properties of defects at grain boundaries in CuInSe2 Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 19 Pages (up) 14770-14780
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We report on a first-principles study of the structural and electronic properties of a Sigma3 (112) grain boundary model in CuInSe2. The study focuses on a coherent, stoichiometry preserving, cation–Se terminated grain boundary, addressing the properties of the grain boundary as such, as well as the effect

of well known defects in CuInSe2. We show that in spite of its apparent simplicity, such a grain boundary exhibits a very rich phenomenology, providing an explanation for several of the experimentally observed properties of grain boundaries in CuInSe2 thin films. In particular, we show that the combined effect of Cu vacancies and cation antisites can result in the observed Cu depletion with no In enrichment at the grain boundaries. Furthermore, Cu vacancies are unlikely to produce a hole barrier at the grain boundaries, but Na may indeed have such an effect. We find that Na-on-Cu defects will tend to form abundantly at

the grain boundaries, and can provide a mechanism for the carrier depletion and/or type inversion experimentally reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403327200059 Publication Date 2017-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 12 Open Access OpenAccess
Notes We thank B. Schoeters for his assistance running the GBstudio software. We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 4.123
Call Number EMAT @ emat @ c:irua:143869 Serial 4577
Permanent link to this record
 

 
Author Willhammar, T.; Sentosun, K.; Mourdikoudis, S.; Goris, B.; Kurttepeli, M.; Bercx, M.; Lamoen, D.; Partoens, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M.; Bals, S.; Van Tendeloo, G.
Title Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue 8 Pages (up) 14925
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals canbe determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397799700001 Publication Date 2017-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 37 Open Access OpenAccess
Notes The work was financially supported by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). T.W. acknowledges the Swedish Research Council for an international postdoc grant. We acknowledge financial support of FWO-Vlaanderen through project G.0216.14N, G.0369.15N and a postdoctoral research grant to B.G. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government–Department EWI. The work was further supported by the Spanish MINECO (MAT2013-45168-R). S.M. thanks the Action ooSupporting Postdoctoral Researchers44 of the Operational Program ‘Education and Lifelong Learning’ (Action’s Beneficiary: General Secretariat for Research and Technology of Greece), which was co-financed by the European Social Fund (ESF) and the Greek State. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); ECAS_Sara Approved Most recent IF: 12.124
Call Number EMAT @ emat @ c:irua:142203UA @ admin @ c:irua:142203 Serial 4538
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Xu, W.; Peeters, F.M.
Title Electric-field modulation of linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
Year 2019 Publication 2D materials Abbreviated Journal 2D Mater
Volume 6 Issue 1 Pages (up) 015032
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electro-optical modulators, which use an electric voltage (or an electric field) to modulate a beam of light, are essential elements in present-day telecommunication devices. Using a self-consistent tight-binding approach combined with the standard Kubo formula, we show that the optical conductivity and the linear dichroism of few-layer phosphorene can be modulated by a perpendicular electric field. We find that the field-induced charge screening plays a significant role in modulating the optical conductivity and the linear dichroism. Distinct absorption peaks are induced in the conductivity spectrum due to the strong quantum confinement along the out-of-plane direction and to the field-induced forbidden-to-allowed transitions. The field modulation of the linear dichroism becomes more pronounced with increasing number of phosphorene layers. We also show that the Faraday rotation is present in few-layer phosphorene even in the absence of an external magnetic field. This optical Hall effect is induced by the reduced lattice symmetry of few-layer phosphorene. The Faraday rotation is greatly influenced by the field-induced charge screening and is strongly dependent on the strength of perpendicular electric field and on the number of phosphorene layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454321100002 Publication Date 2018-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 23 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:156776 Serial 5207
Permanent link to this record
 

 
Author Schoeters, B.; Neyts, E.C.; Khalilov, U.; Pourtois, G.; Partoens, B.
Title Stability of Si epoxide defects in Si nanowires : a mixed reactive force field/DFT study Type A1 Journal article
Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 15 Issue 36 Pages (up) 15091-15097
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modeling the oxidation process of silicon nanowires through reactive force field based molecular dynamics simulations suggests that the formation of Si epoxide defects occurs both at the Si/SiOx interface and at the nanowire surface, whereas for flat surfaces, this defect is experimentally observed to occur only at the interface as a result of stress. In this paper, we argue that the increasing curvature stabilizes the defect at the nanowire surface, as suggested by our density functional theory calculations. The latter can have important consequences for the opto-electronic properties of thin silicon nanowires, since the epoxide induces an electronic state within the band gap. Removing the epoxide defect by hydrogenation is expected to be possible but becomes increasingly difficult with a reduction of the diameter of the nanowires.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000323520600029 Publication Date 2013-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 3 Open Access
Notes ; BS gratefully acknowledges financial support of the IWT, Institute for the Promotion of Innovation by Science and Technology in Flanders, via the SBO project “SilaSol”. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. ; Approved Most recent IF: 4.123; 2013 IF: 4.198
Call Number UA @ lucian @ c:irua:110793 Serial 3130
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D.
Title First-principles study of carbon impurities in CuInSe2 and CuGaSe2, present in non-vacuum synthesis methods Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages (up) 015104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract A first-principles study of the structural and electronic properties of carbon impurities in CuInSe2 and CuGaSe2 is presented. Carbon is present in organic molecules in the precursor solutions used in non-vacuum growth methods for CuInSe2 and CuGaSe2 based photovoltaic cells. These growth methods make more efficient use of material, time, and energy than traditional vacuum methods. The formation energies of several carbon impurities are calculated using the hybrid HSE06 functional. C Cu acts as a shallow donor, CIn and interstitial C yield deep donor levels in CuInSe2, while in CuGaSe2 CGa and interstitial C act as deep amphoteric defects. So, these defects reduce the majority carrier (hole) concentration in p-type CuInSe2 and CuGaSe2 by compensating the acceptor levels. The deep defects are likely to act as recombination centers for the photogenerated charge carriers and are thus detrimental for the performance of the photovoltaic cells. On the other hand, the formation energies of the carbon impurities are high, even under C-rich growth conditions. Thus, few C impurities will form in CuInSe2 and CuGaSe2 in thermodynamic equilibrium. However, the deposition of the precursor solution in non-vacuum growth methods presents conditions far from thermodynamic equilibrium. In this case, our calculations show that C impurities formed in non-equilibrium tend to segregate from CuInSe2 and CuGaSe2 by approaching thermodynamic equilibrium, e.g., via thorough annealing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000347958600055 Publication Date 2015-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 6 Open Access
Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:122064 Serial 1215
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Ab initio study of shallow acceptors in bixbyite V2O3 Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages (up) 015703
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present the results of our study on p-type dopability of bixbyite V2O3 using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) within the density functional theory (DFT) formalism. We study vanadium and oxygen vacancies as intrinsic defects and substitutional Mg, Sc, and Y as extrinsic defects. We find that Mg substituting V acts as a shallow acceptor, and that oxygen vacancies are electrically neutral. Hence, we predict Mg-doped V2O3 to be a p-type conductor. Our results also show that vanadium vacancies are relatively shallow, with a binding energy of 0.14 eV, so that they might also lead to p-type conductivity.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000347958600067 Publication Date 2015-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:122728 Serial 35
Permanent link to this record
 

 
Author Gonzalez, A.; Partoens, B.; Peeters, F.M.
Title Padé approximants for the groundstate energy of closed-shell quantum dots Type A1 Journal article
Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 56 Issue Pages (up) 15740-15743
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000071251000036 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes Approved Most recent IF: 3.836; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19270 Serial 2550
Permanent link to this record
 

 
Author Chirayath, V.A.; Callewaert, V.; Fairchild, A.J.; Chrysler, M.D.; Gladen, R.W.; Mcdonald, A.D.; Imam, S.K.; Shastry, K.; Koymen, A.R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A.H.
Title Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation Type A1 Journal article
Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
Volume 8 Issue 8 Pages (up) 16116
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405398200001 Publication Date 2017-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 20 Open Access
Notes The experiments in this work were supported by the grant NSF DMR 1508719. A.H.W and A.R.K. gratefully acknowledge support for the building of advanced positron beam through the grant NSF DMR MRI 1338130. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 12.124
Call Number CMT @ cmt @ c:irua:144625 Serial 4627
Permanent link to this record
 

 
Author Amini, M.N.; Leenaerts, O.; Partoens, B.; Lamoen, D.
Title Graphane- and fluorographene-based quantum dots Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 31 Pages (up) 16242-16247
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract With the help of first-principles calculations, we investigate graphane/fluorographene heterostructures with special attention for graphane and fluorographene-based quantum dots. Graphane and fluorographene have large electronic band gaps, and we show that their band structures exhibit a strong type-II alignment. In this way, it is possible to obtain confined electron states in fluorographene nanostructures by embedding them in a graphane crystal. Bound hole states can be created in graphane domains embedded in a fluorographene environment. For circular graphane/fluorographene quantum dots, localized states can be observed in the band gap if the size of the radii is larger than approximately 4 to 5 Å.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000323082300046 Publication Date 2013-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 14 Open Access
Notes FWO; GOW; Hercules Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:109457 Serial 1367
Permanent link to this record
 

 
Author Nelissen, K.; Matulis, A.; Partoens, B.; Kong, M.; Peeters, F.M.
Title Spectrum of classical two-dimensional Coulomb clusters Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 73 Issue 1 Pages (up) 016607,1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235008800095 Publication Date 2006-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 33 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:56611 Serial 3075
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.; Volety, K.; Huyberechts, G.; Paul, J.
Title High throughput first-principles calculations of bixbyite oxides for TCO applications Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 33 Pages (up) 17724-17733
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000341064800041 Publication Date 2014-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 23 Open Access
Notes ; We gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project (IWT-n 080023), the FWO-Vlaanderen through project G.0150.13 and a GOA fund from the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation and the Flemish Government (EWI Department). ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:118263 Serial 1469
Permanent link to this record
 

 
Author Sivek, J.; Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of bilayer fluorographene Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 36 Pages (up) 19240-19245
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Ab initio calculations within the density functional theory formalism are performed to investigate the stability and electronic properties of fluorinated bilayer graphene (bilayer fluorographene). A comparison is made to previously investigated graphane, bilayer graphane, and fluorographene. Bilayer fluorographene is found to be a much more stable material than bilayer graphane. Its electronic band structure is similar to that of monolayer fluorographene, but its electronic band gap is significantly larger (about 1 eV). We also calculate the effective masses around the Gamma-point for fluorographene and bilayer fluorographene and find that they are isotropic, in contrast to earlier reports. Furthermore, it is found that bilayer fluorographene is almost as strong as graphene, as its 2D Young's modulus is approximately 300 N m(-1).
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000308631300022 Publication Date 2012-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 39 Open Access
Notes ; This work is supported by the ESF-Eurocores program EuroGRAPHENE (project CONERAN) and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:101842 Serial 1211
Permanent link to this record
 

 
Author Schouteden, K.; Li, Z.; Chen, T.; Song, F.; Partoens, B.; Van Haesendonck, C.; Park, K.
Title Moire superlattices at the topological insulator Bi2Te3 Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages (up) 20278
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract We report on the observation of complex superlattices at the surface of the topological insulator Bi2Te3. Scanning tunneling microscopy reveals the existence of two different periodic structures in addition to the Bi2Te3 atomic lattice, which is found to strongly affect the local electronic structure. These three different periodicities are interpreted to result from a single small in-plane rotation of the topmost quintuple layer only. Density functional theory calculations support the observed increase in the DOS near the Fermi level, and exclude the possibility that strain is at the origin of the observed Moire pattern. Exploration of Moire superlattices formed by the quintuple layers of topological insulators holds great potential for further tuning of the properties of topological insulators.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000369543200001 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 14 Open Access
Notes ; The research in Leuven and Antwerp has been supported by the Research Foundation – Flanders (FWO, Belgium). The research in Leuven received additional support from the Flemish Concerted Research Action program (BOF KU Leuven, Project No. GOA/14/007). Z.L. thanks the China Scholarship Council for financial support (No. 2011624021). K.S. acknowledges support from the FWO. K.P. was supported by U.S. National Science Foundation DMR-1206354 and San Diego Supercomputer Center (SDSC) Trestles under DMR060009N. T.C. and F.S. acknowledge the financial support of the National Key Projects for Basic Research of China (Grant Nos: 2013CB922103), the National Natural Science Foundation of China (Grant Nos: 91421109, 11522432), the PAPD project, and the Natural Science Foundation of Jiangsu Province (Grant BK20130054). ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:131612 Serial 4208
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Easily doped p-type, low hole effective mass, transparent oxides Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages (up) 20446
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.
Address EMAT, Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369568900001 Publication Date 2016-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 55 Open Access
Notes We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13 and of a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government–department EWI. Approved Most recent IF: 4.259
Call Number c:irua:131611 Serial 4036
Permanent link to this record
 

 
Author Bercx, M.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages (up) 20542-20549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency.
Address EMAT & CMT groups, Department of Physics, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerp, Belgium. marnik.bercx@uantwerpen.be
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000381428600058 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 34 Open Access
Notes We acknowledge financial support of FWO-Vlaanderen through projects G.0150.13N and G.0216.14N and ERA-NET RUS Plus/FWO, Grant G0D6515N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO FWOVlaanderen. Approved Most recent IF: 4.123
Call Number c:irua:135091 Serial 4112
Permanent link to this record
 

 
Author Ferreira, W.P.; Partoens, B.; Peeters, F.M.; Farias, G.A.
Title Structural phase transitions and unusual melting behavior in a classical two-dimensional Coulomb bound cluster Type A1 Journal article
Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 71 Issue Pages (up) 021501,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000228245700023 Publication Date 2005-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:62445 Serial 3251
Permanent link to this record
 

 
Author Kong, M.; Partoens, B.; Peeters, F.M.
Title Topological defects and nonhomogeneous melting of large two-dimensional Coulomb clusters Type A1 Journal article
Year 2003 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 67 Issue 2 Pages (up) 021608,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000181520200051 Publication Date 2003-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 45 Open Access
Notes Approved Most recent IF: 2.366; 2003 IF: 2.202
Call Number UA @ lucian @ c:irua:62441 Serial 3677
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Native point defects in CuIn1-xGaxSe2 : hybrid density functional calculations predict the origin of p- and n-type conductivity Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 40 Pages (up) 22299-22308
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We have performed a first-principles study of the p- and n-type conductivity in CuIn1−xGaxSe2 due to native point defects, based on the HSE06 hybrid functional. Band alignment shows that the band gap becomes larger with x due to the increasing conduction band minimum, rendering it hard to establish n-type conductivity in CuGaSe2. From the defect formation energies, we find that In/GaCu is a shallow donor, while VCu, VIn/Ga and CuIn/Ga act as shallow acceptors. Using the total charge neutrality of ionized defects and intrinsic charge carriers to determine the Fermi level, we show that under In-rich growth conditions InCu causes strongly n-type conductivity in CuInSe2. Under increasingly In-poor growth conditions, the conductivity type in CuInSe2 alters to p-type and compensation of the acceptors by InCu reduces, as also observed in photoluminescence experiments. In CuGaSe2, the native acceptors pin the Fermi level far away from the conduction band minimum, thus inhibiting n-type conductivity. On the other hand, CuGaSe2 shows strong p-type conductivity under a wide range of Ga-poor growth conditions. Maximal p-type conductivity in CuIn1−xGaxSe2 is reached under In/Ga-poor growth conditions, in agreement with charge concentration measurements on samples with In/Ga-poor stoichiometry, and is primarily due to the dominant acceptor CuIn/Ga.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343072800042 Publication Date 2014-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 43 Open Access
Notes ; We gratefully acknowledge financial support from the science fund FWO-Flanders through project G.0150.13. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules foundation and the Flemish Government (EWI Department). We also like to thank Prof. S. Siebentritt of the University of Luxembourg for a presentation of her work on GIGS during a visit to our research group and for helpful discussions of our results. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:120465 Serial 2284
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Sarmadian, N.; Neyts, E.C.; Partoens, B.
Title A first principles study of p-type defects in LaCrO3 Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 34 Pages (up) 22870-22876
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recently, Sr-doped LaCrO3 has been experimentally introduced as a new p-type transparent conducting oxide. It is demonstrated that substituting Sr for La results in inducing p-type conductivity in LaCrO3. Performing first principles calculations we study the electronic structure and formation energy of various point defects in LaCrO3. Our results for the formation energies show that in addition to Sr, two more divalent defects, Ca and Ba, substituting for La in LaCrO3, behave as shallow acceptors in line with previous experimental reports. We further demonstrate that under oxygen-poor growth conditions, these shallow acceptors will be compensated by intrinsic donor-like defects (an oxygen vacancy and Cr on an oxygen site), but in the oxygen-rich growth regime the shallow acceptors have the lowest formation energies between all considered defects and will lead to p-type conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000408671600026 Publication Date 2017-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 16 Open Access OpenAccess
Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services were provided by the Flemish Supercomputer Center and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:145621 Serial 4735
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neyts, E.C.; Partoens, B.
Title van der Waals density functionals applied to corundum-type sesquioxides : bulk properties and adsorption of CH3 and C6H6 on (0001) surfaces Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages (up) 23139-23146
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract van der Waals (vdW) forces play an important role in the adsorption of molecules on the surface of solids. However, the choice of the most suitable vdW functional for different systems is an essential problem which must be addressed for different systems. The lack of a systematic study on the performance of the vdW functionals in the bulk and adsorption properties of metal-oxides motivated us to examine different vdW approaches and compute the bulk and molecular adsorption properties of alpha-Cr2O3, alpha-Fe2O3, and alpha-Al2O3. For the bulk properties, we compared our results for the heat of formation, cohesive energy, lattice parameters and bond distances between the different vdW functionals and available experimental data. Next we studied the adsorption of benzene and CH3 molecules on top of different oxide surfaces. We employed different approximations to exchange and correlation within DFT, namely, the Perdew-Burke-Ernzerhof (PBE) GGA, (PBE)+U, and vdW density functionals [ DFT(vdW-DF/DF2/optPBE/optB86b/optB88)+U] as well as DFT-D2/D3(+U) methods of Grimme for the bulk calculations and optB86b-vdW(+U) and DFT-D2(+U) for the adsorption energy calculations. Our results highlight the importance of vdW interactions not only in the adsorption of molecules, but importantly also for the bulk properties. Although the vdW contribution in the adsorption of CH3 (as a chemisorption interaction) is less important compared to the adsorption of benzene (as a physisorption interaction), this contribution is not negligible. Also adsorption of benzene on ferryl/chromyl terminated surfaces shows an important chemisorption contribution in which the vdW interactions become less significant.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000382109300040 Publication Date 2016-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 6 Open Access
Notes ; This work was supported by the Strategic Initiative Materials in Flanders (SIM). The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:135701 Serial 4311
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Schoeters, B.; Partoens, B.
Title System-size dependent band alignment in lateral two-dimensional heterostructures Type A1 Journal article
Year 2016 Publication 2D materials Abbreviated Journal 2D Mater
Volume 3 Issue 3 Pages (up) 025012
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic band alignment in semiconductor heterostructures is a key factor for their use in electronic applications. The alignment problem has been intensively studied for bulk systems but is less well understood for low-dimensional heterostructures. In this work we investigate the alignment in two-dimensional lateral heterostructures. First-principles calculations are used to show that the electronic band offset depends crucially on the width and thickness of the heterostructure slab. The particular heterostructures under study consist of thin hydrogenated and fluorinated diamond slabs which are laterally joined together. Two different limits for the band offset are observed. For infinitely wide heterostructures the vacuum potential above the two materials is aligned leading to a large step potential within the heterostructure. For infinitely thick heterostructure slabs, on the other hand, there is no potential step in the heterostructure bulk, but a large potential step in the vacuum region above the heterojunction is observed. The band alignment in finite systems depends on the particular dimensions of the system. These observations are shown to result from an interface dipole at the heterojunction that tends to align the band structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378571400032 Publication Date 2016-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 19 Open Access
Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government— department EWI. Approved Most recent IF: 6.937
Call Number c:irua:132792 c:irua:132792 Serial 4055
Permanent link to this record
 

 
Author Kus, M.; Altantzis, T.; Vercauteren, S.; Caretti, I.; Leenaerts, O.; Batenburg, K.J.; Mertens, M.; Meynen, V.; Partoens, B.; Van Doorslaer, S.; Bals, S.; Cool, P.
Title Mechanistic Insight into the Photocatalytic Working of Fluorinated Anatase {001} Nanosheets Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages (up) 26275-26286
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Laboratory of adsorption and catalysis (LADCA)
Abstract Anatase nanosheets with exposed {001} facets

have gained increasing interest for photocatalytic applications. To

fully understand the structure-to-activity relation, combined

experimental and computational methods have been exploited.

Anatase nanosheets were prepared under hydrothermal conditions

in the presence of fluorine ions. High resolution scanning

transmission electron microscopy was used to fully characterize

the synthesized material, confirming the TiO2 nanosheet

morphology. Moreover, the surface structure and composition

of a single nanosheet could be determined by annular bright-field

scanning transmission electron microscopy (ABF-STEM) and

STEM electron energy loss spectroscopy (STEM-EELS). The photocatalytic activity was tested for the decomposition of organic

dyes rhodamine 6G and methyl orange and compared to a reference TiO2 anatase sample. The anatase nanosheets with exposed

{001} facets revealed a significantly lower photocatalytic activity compared to the reference. In order to understand the

mechanism for the catalytic performance, and to investigate the role of the presence of F−, light-induced electron paramagnetic

resonance (EPR) experiments were performed. The EPR results are in agreement with TEM, proving the presence of Ti3+

species close to the surface of the sample and allowing the analysis of the photoinduced formation of paramagnetic species.

Further, ab initio calculations of the anisotropic effective mass of electrons and electron holes in anatase show a very high effective

mass of electrons in the [001] direction, having a negative impact on the mobility of electrons toward the {001} surface and thus

the photocatalysis. Finally, motivated by the experimental results that indicate the presence of fluorine atoms at the surface, we

performed ab initio calculations to determine the position of the band edges in anatase slabs with different terminations of the

{001} surface. The presence of fluorine atoms near the surface is shown to strongly shift down the band edges, which indicates

another reason why it can be expected that the prepared samples with a large amount of {001} surface, but with fluorine atoms

near the surface, show only a low photocatalytic activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000417228500017 Publication Date 2017-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access OpenAccess
Notes The authors acknowledge the University of Antwerp for financial support in the frame of a GOA project. S.B. acknowledges funding from the European Research Council under the Seventh Framework Program (FP7), ERC Grant No. 335078 COLOURATOM. S.V.D. and V.M. acknowledge funding from the Fund for Scientific Research-Flanders (G.0687.13). T.A. acknowledges financial support from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 4.536
Call Number EMAT @ emat @c:irua:147240UA @ admin @ c:irua:147240 Serial 4771
Permanent link to this record
 

 
Author Payette, C.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Amaha, S.; Tarucha, S.
Title Coherent three-level mixing in an electronic quantum dot Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 102 Issue 2 Pages (up) 026808,1-026808,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We observe magnetic-field-induced level mixing and quantum superposition phenomena between three approaching single-particle states in a quantum dot probed via the ground state of an adjacent quantum dot by single-electron resonant tunneling. The mixing is attributed to anisotropy and anharmonicity in realistic dot confining potentials. The pronounced anticrossing and transfer of strengths (both enhancement and suppression) between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance, an effect resembling coherent population trapping in a three-level-system of quantum and atom optics.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000262535900060 Publication Date 2009-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:76019 Serial 382
Permanent link to this record
 

 
Author Momot, A.; Amini, M.N.; Reekmans, G.; Lamoen, D.; Partoens, B.; Slocombe, D.R.; Elen, K.; Adriaensens, P.; Hardy, A.; Van Bael, M.K.
Title A novel explanation for the increased conductivity in annealed Al-doped ZnO: an insight into migration of aluminum and displacement of zinc Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 40 Pages (up) 27866-27877
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A combined experimental and first-principles study is performed to study the origin of conductivity in

ZnO:Al nanoparticles synthesized under controlled conditions via a reflux route using benzylamine as a

solvent. The experimental characterization of the samples by Raman, nuclear magnetic resonance (NMR)

and conductivity measurements indicates that upon annealing in nitrogen, the Al atoms at interstitial

positions migrate to the substitutional positions, creating at the same time Zn interstitials. We provide

evidence for the fact that the formed complex of AlZn and Zni corresponds to the origin of the Knight

shifted peak (KS) we observe in 27Al NMR. As far as we know, the role of this complex has not been

discussed in the literature to date. However, our first-principles calculations show that such a complex is

indeed energetically favoured over the isolated Al interstitial positions. In our calculations we also

address the charge state of the Al interstitials. Further, Zn interstitials can migrate from Al_Zn and possibly

also form Zn clusters, leading to the observed increased conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413290500073 Publication Date 2017-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 26 Open Access OpenAccess
Notes We want to thank the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office (BELSPO) for the financial support. We also acknowledge the Research Foundation Flanders (FWO-Vlaanderen) for support via the MULTIMAR WOG project and under project No. G018914. The computational parts were carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules foundation and the Flemish Government (EWI Department). Approved Most recent IF: 4.123
Call Number EMAT @ emat @c:irua:146878 Serial 4760
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; van den Broeck, C.
Title Work and dissipation in 2D clusters Type A1 Journal article
Year 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 88 Issue 3 Pages (up) 30001-30001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We show by extensive numerical simulations, that far-from-equilibrium experiments on dusty plasmas and on dipole particles in a circular cavity are good candidates for the verification of the Jarzynski equality, the Crooks relation and, to a lesser extent, of the recently obtained microscopic expression for the dissipated work.
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000271961400001 Publication Date 2009-11-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 2 Open Access
Notes Approved Most recent IF: 1.957; 2009 IF: 2.893
Call Number UA @ lucian @ c:irua:86925 Serial 3922
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Partoens, B.; Peeters, F.M.
Title Inhomogeneous melting in anisotropically confined two-dimensional clusters Type A1 Journal article
Year 2006 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 74 Issue 3 Pages (up) 031107,1-11
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240870100019 Publication Date 2006-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 25 Open Access
Notes Approved Most recent IF: 2.366; 2006 IF: 2.438
Call Number UA @ lucian @ c:irua:60998 Serial 1668
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M.
Title Influence of an ellipsoid on the angular order in a two-dimensional cluster Type A1 Journal article
Year 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 84 Issue 3 Pages (up) 031405,1-031405,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of an ellipsoid on the angular order of two-dimensional classical clusters is investigated through Brownian dynamics simulations. We found the following: (1) The presence of an ellipsoid does not influence the start of the angular melting, but reduces the rate at which the inner rings can rotate with respect to each other. (2) Even a small eccentricity of the ellipsoid leads to a stabilization of the angular order of the system. (3) Depending on the position of the ellipsoid in the cluster, a reentrant behavior in the angular order is observed before full radial melting of the cluster sets in. (4) The ellipsoid can lead to a two-step angular melting process: First, the rotation of the inner rings with respect to each other is hindered by the ellipsoid, but on further increasing the kinetic energy of the system, the ellipsoid just starts to behave as a spherical particle with different mobility. The effect of an ellipsoid on the molten system does not depend crucially on the interparticle interaction, but a softer parabolic confinement reduces the angular stabilization.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000296495000007 Publication Date 2011-09-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.366 Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and CNPq. ; Approved Most recent IF: 2.366; 2011 IF: 2.255
Call Number UA @ lucian @ c:irua:93612 Serial 1615
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Inelastic electron-vortex-beam scattering Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages (up) 032703
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part of the answer to these questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and postselection one can filter out the relevant contributions to a specific signal.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000351035000004 Publication Date 2015-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 31 Open Access
Notes Fwo; 312483 Esteem2; 278510 Vortex; esteem2jra3 ECASJO; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:123925 c:irua:123925UA @ admin @ c:irua:123925 Serial 1607
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
Title Rutherford scattering of electron vortices Type A1 Journal article
Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 89 Issue 3 Pages (up) 032715-32719
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000333690500008 Publication Date 2014-03-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 34 Open Access
Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808
Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936
Permanent link to this record