toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A. pdf  doi
openurl 
  Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 2 Pages (up) 025205-25209  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000329108000013 Publication Date 2013-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 51 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:112286 Serial 2823  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages (up) 25923-25934  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma catalysis is gaining increasing interest for various environmental applications, but the crucial question is whether plasma can be created inside catalyst pores and under which conditions. In practice, various catalytic support materials are used, with various dielectric constants. We investigate here the influence of the dielectric constant on the plasma properties inside catalyst pores and in the sheath in front of the pores, for various pore sizes. The calculations are performed by a two-dimensional fluid model for an atmospheric pressure dielectric barrier discharge in helium. The electron impact ionization rate, electron temperature, electron and ion density, as well as the potential distribution and surface charge density, are analyzed for a better understanding of the discharge behavior inside catalyst pores. The results indicate that, in a 100 μm pore, the electron impact ionization in the pore, which is characteristic for the plasma generation inside the pore, is greatly enhanced for dielectric constants below 300. Smaller pore sizes only yield enhanced ionization for smaller dielectric constants, i.e., up to εr = 200, 150, and 50 for pore sizes of 50, 30, and 10 μm. Thus, the most common catalyst supports, i.e., Al2O3 and SiO2, which have dielectric constants around εr = 8−11 and 4.2, respectively, should allow more easily that microdischarges can be formed inside catalyst pores, even for smaller pore sizes. On the other hand, ferroelectric materials with dielectric constants above 300 never seem to yield plasma enhancement inside catalyst pores, not even for 100 μm pore sizes. Furthermore, it is clear that the dielectric constant of the material has a large effect on the extent of plasma enhancement inside the catalyst pores, especially in the range between εr = 4 and εr = 200. The obtained results are explained in detail based on the surface charge density at the pore walls,

and the potential distribution and electron temperature inside and above the pores. The results obtained with this model are

important for plasma catalysis, as the production plasma species in catalyst pores might affect the catalyst properties, and thus

improve the applications of plasma catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388429100029 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 34 Open Access  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant G.0217.14N), the National Natural Science Foundation of China (Grant 11405019), and the China Postdoctoral Science Foundation (Grant 2015T80244). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the University of Antwerp. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @ c:irua:138602 Serial 4319  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A. url  doi
openurl 
  Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
  Year 2023 Publication ACS Omega Abbreviated Journal  
  Volume 8 Issue 30 Pages (up) 27519-27533  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001031269000001 Publication Date 2023-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.1 Times cited Open Access  
  Notes Approved Most recent IF: 4.1; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:198313 Serial 9011  
Permanent link to this record
 

 
Author Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C. url  doi
openurl 
  Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
  Year 2015 Publication Biointerphases Abbreviated Journal Biointerphases  
  Volume 10 Issue 10 Pages (up) 029501  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357195600019 Publication Date 2014-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.603 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.603; 2015 IF: 3.374  
  Call Number c:irua:121371 Serial 1492  
Permanent link to this record
 

 
Author Tinck, S.; Neyts, E.C.; Bogaerts, A. url  doi
openurl 
  Title Fluorinesilicon surface reactions during cryogenic and near room temperature etching Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 51 Pages (up) 30315-30324  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cyrogenic etching of silicon is envisaged to enable better control over plasma processing in the microelectronics industry, albeit little is known about the fundamental differences compared to the room temperature process. We here present molecular dynamics simulations carried out to obtain sticking probabilities, thermal desorption rates, surface diffusion speeds, and sputter yields of F, F2, Si, SiF, SiF2, SiF3, SiF4, and the corresponding ions on Si(100) and on SiF13 surfaces, both at cryogenic and near room temperature. The different surface behavior during conventional etching and cryoetching is discussed. F2 is found to be relatively reactive compared to other species like SiF03. Thermal desorption occurs at a significantly lower rate under cryogenic conditions, which results in an accumulation of physisorbed species. Moreover, ion incorporation is often observed for ions with energies of 30400 eV, which results in a relatively low net sputter yield. The obtained results suggest that the actual etching of Si, under both cryogenic and near room temperature conditions, is based on the complete conversion of the Si surface to physisorbed SiF4, followed by subsequent sputtering of these molecules, instead of direct sputtering of the SiF03 surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000347360200101 Publication Date 2014-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 11 Open Access  
  Notes Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:122957 Serial 1239  
Permanent link to this record
 

 
Author Neyts, E.C. pdf  doi
openurl 
  Title PECVD growth of carbon nanotubes : from experiment to simulation Type A1 Journal article
  Year 2012 Publication Journal of vacuum science and technology: B: micro-electronics processing and phenomena Abbreviated Journal  
  Volume 30 Issue 3 Pages (up) 030803-030803,17  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanostructured carbon materials show a tremendous variety in atomic structure, morphology, properties, and applications. As all properties are ultimately determined by the structure of the material, a thorough understanding of the growth mechanisms that give rise to the particular structure is critical. On many occasions, it has been shown that plasma enhanced growth can be strongly beneficial. This review will describe the authors current understanding of plasma enhanced growth of carbon nanotubes, the prototypical example of nanostructured carbon materials, as obtained from experiments, simulations, and modeling. Specific emphasis is put on where experiments and computational approaches correspond, and where they differ. Also, the current status on simulating PECVD growth of some other carbon nanomaterials is reviewed, including amorphous carbon, graphene, and metallofullerenes. Finally, computational challenges with respect to the simulation of PECVD growth are identified.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000305042000010 Publication Date 2012-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-2746; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 42 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:97166 Serial 2570  
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A. doi  openurl
  Title On the reaction behaviour of hydrocarbon species at diamond (1 0 0) and (1 1 1) surfaces: a molecular dynamics investigation Type A1 Journal article
  Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 41 Issue Pages (up) 032006,1-3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000253177800006 Publication Date 2008-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 17 Open Access  
  Notes Approved Most recent IF: 2.588; 2008 IF: 2.104  
  Call Number UA @ lucian @ c:irua:66107 Serial 2449  
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M. doi  openurl
  Title Cation-controlled permeation of charged polymers through nanocapillaries Type A1 Journal article
  Year 2023 Publication Physical review E Abbreviated Journal Phys Rev E  
  Volume 107 Issue 3 Pages (up) 034501-34510  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000955986000006 Publication Date 2023-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.4 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.4; 2023 IF: 2.366  
  Call Number UA @ admin @ c:irua:196089 Serial 7586  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 30 Pages (up) 34946-34954  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835946500001 Publication Date 2022-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:189467 Serial 7127  
Permanent link to this record
 

 
Author Heyne, M.H.; Marinov, D.; Braithwaite, N.; Goodyear, A.; de Marneffe, J.-F.; Cooke, M.; Radu, I.; Neyts, E.C.; De Gendt, S. pdf  doi
openurl 
  Title A route towards the fabrication of 2D heterostructures using atomic layer etching combined with selective conversion Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 3 Pages (up) 035030  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Heterostructures of low-dimensional semiconducting materials, such as transition metal dichalcogenides (MX2), are promising building blocks for future electronic and optoelectronic devices. The patterning of one MX2 material on top of another one is challenging due to their structural similarity. This prevents an intrinsic etch stop when conventional anisotropic dry etching processes are used. An alternative approach consist in a two-step process, where a sacrificial silicon layer is pre-patterned with a low damage plasma process, stopping on the underlying MoS2 film. The pre-patterned layer is used as sacrificial template for the formation of the top WS2 film. This study describes the optimization of a cyclic Ar/Cl-2 atomic layer etch process applied to etch silicon on top of MoS2, with minimal damage, followed by a selective conversion of the patterned Si into WS2. The impact of the Si atomic layer etch towards the MoS2 is evaluated: in the ion energy range used for this study, MoS2 removal occurs in the over-etch step over 1-2 layers, leading to the appearance of MoOx but without significant lattice distortions to the remaining layers. The combination of Si atomic layer etch, on top of MoS2, and subsequent Si-to-WS2 selective conversion, allows to create a WS2/MoS2 heterostructure, with clear Raman signals and horizontal lattice alignment. These results demonstrate a scalable, transfer free method to achieve horizontally individually patterned heterostacks and open the route towards wafer-level processing of 2D materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468335500004 Publication Date 2019-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:160229 Serial 5266  
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Surmenev, R.A.; Neyts, E.C. url  doi
openurl 
  Title Effect of van der Waals interactions on the adhesion strength at the interface of the hydroxyapatite-titanium biocomposite : a first-principles study Type A1 Journal article
  Year 2020 Publication RSC advances Abbreviated Journal  
  Volume 10 Issue 62 Pages (up) 37800-37805  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Hydroxyapatite (HAP) is frequently used as biocompatible coating on Ti-based implants. In this context, the HAP-Ti adhesion is of crucial importance. Here, we report ab initio calculations to investigate the influence of Si incorporation into the amorphous calcium-phosphate (a-HAP) structure on the interfacial bonding mechanism between the a-HAP coating and an amorphous titanium dioxide (a-TiO2) substrate, contrasting two different density functionals: PBE-GGA, and DFT-D3, which are capable of describing the influence of the van der Waals (vdW) interactions. In particular, we discuss the effect of dispersion on the work of adhesion (W-ad), equilibrium geometries, and charge density difference (CDD). We find that replacement of P by Si in a-HAP (a-Si-HAP) with the creation of OH vacancies as charge compensation results in a significant increase in the bond strength between the coating and substrate in the case of using the PBE-GGA functional. However, including the vdW interactions shows that these forces considerably contribute to the W-ad. We show that the difference (W-ad – W-ad(vdW)) is on average more than 1.1 J m(-2) and 0.5 J m(-2) for a-HAP/a-TiO2 and a-Si-HAP/a-TiO2, respectively. These results reveal that including vdW interactions is essential for accurately describing the chemical bonding at the a-HAP/a-TiO2 interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000583523300025 Publication Date 2020-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; The authors gratefully acknowledge financial support from the Russian president's grant MK-330.2020.8 and BOF Fellowships for International Joint PhD students funded by University of Antwerp (UAntwerp, project number 32545). The work was carried out at Tomsk Polytechnic University within the framework of Tomsk Polytechnic University Competitiveness Enhancement Program grant and in part using the Turing HPC infrastructure of the CalcUA core facility of the UAntwerp, a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerp, Belgium. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:173603 Serial 6499  
Permanent link to this record
 

 
Author Van der Paal, J.; Verheyen, C.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages (up) 39526  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation

for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of

reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391306900001 Publication Date 2017-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 27 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, grant number 11U5416N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:139512 Serial 4340  
Permanent link to this record
 

 
Author Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; Fernandez Rivas, D.; Foster, J.E.; Garrick, S.C.; Gorbanev, Y.; Hamaguchi, S.; Iza, F.; Jablonowski, H.; Klimova, E.; Kolb, J.; Krcma, F.; Lukes, P.; Machala, Z.; Marinov, I.; Mariotti, D.; Mededovic Thagard, S.; Minakata, D.; Neyts, E.C.; Pawlat, J.; Petrovic, Z.L.; Pflieger, R.; Reuter, S.; Schram, D.C.; Schröter, S.; Shiraiwa, M.; Tarabová, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G. url  doi
openurl 
  Title Plasma–liquid interactions: a review and roadmap Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 5 Pages (up) 053002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on nonequilibrium plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384715400001 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 460 Open Access  
  Notes This manuscript originated from discussions at the Lorentz Center Workshop ‘Gas/Plasma–Liquid Interface: Transport, Chemistry and Fundamental Data’ that took place at the Lorentz Center, Leiden University in the Netherlands from August 4, through August 8, 2014, and follow-up discussions since the workshop. All authors acknowledge the support of the Lorentz Center, the COST action TD1208 (Electrical Discharges with Liquids for Future Applications) and the Royal Dutch Academy of Sciences for their financial support. PJB, MJK, DBG and JEF acknowledge the support of the ‘Center on Control of Plasma Kinetics’ of the United States Department of Energy Office of Fusion Energy Science (DE-SC0001319). In addition, PJB and BRL acknowledge the support of the National Science Foundation (PHY 1500135 and CBET 1236225, respectively). In addition the enormous help of Mrs. Victoria Piorek (University of Minnesota) in the formatting of the final document including the references is gratefully acknowledged. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144654 Serial 4628  
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C. pdf  url
doi  openurl
  Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
  Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 49 Issue 49 Pages (up) 054002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma–biomolecule interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368944100003 Publication Date 2015-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 11 Open Access  
  Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO) and the Francqui Foundation. The calculations were carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588  
  Call Number c:irua:131571 Serial 3985  
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C. pdf  url
openurl 
  Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
  Year 2016 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 49 Issue 5 Pages (up) 054002-54019  
  Keywords A1 Journal article; Plasma, laser ablation and surface modeling – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record  
  Impact Factor 2.588 Times cited Open Access  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:129798 Serial 4467  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Enhancement of plasma generation in catalyst pores with different shapes Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 5 Pages (up) 055008  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432351700002 Publication Date 2018-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access OpenAccess  
  Notes This work was supported by the Fund for Scientific Research Flanders (FWO) (Grant No. G.0217.14N) and the Fundamental Research Funds for the Central Universities (Grant No. DUT17LK52). Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:151546 Serial 4998  
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.; Han, Z.J.; Kumar, S.; van Duin, A.C.T.; Bogaerts, A. url  doi
openurl 
  Title Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 110 Issue 6 Pages (up) 065501-65505  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000314687300022 Publication Date 2013-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 50 Open Access  
  Notes Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:105306 Serial 616  
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Khalilov, U.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A. url  doi
openurl 
  Title Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue 9 Pages (up) 093043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. CO, CN and CC bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000309393400001 Publication Date 2012-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:101014 Serial 189  
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Neyts, E.C.; Jacob, T.; Fantauzzi, D.; Golkaram, M.; Shin, Y.-K.; van Duin, A.C.T.; Bogaerts, A. pdf  url
doi  openurl
  Title Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 17 Issue 17 Pages (up) 103005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasmas have proven to provide an alternative treatment of cancer by targeting tumorous cells while leaving their healthy counterparts unharmed. However, the underlying mechanisms of the plasma–cell interactions are not yet fully understood. Reactive oxygen species, and in particular hydroxyl radicals (OH), are known to play a crucial role in plasma driven apoptosis of

malignant cells. In this paper we investigate the interaction of OH radicals, as well as H2O2 molecules and HO2 radicals, with DNA by means of reactive molecular dynamics simulations using the ReaxFF force field. Our results provide atomic-scale insight into the dynamics of oxidative stress on DNA caused by the OH radicals, while H2O2 molecules appear not reactive within the considered timescale. Among the observed processes are the formation of 8-OH-adduct radicals, forming the first stages towards the formation of 8-oxoGua and 8-oxoAde, H-abstraction reactions of the amines, and the partial opening of loose DNA ends in aqueous solution.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367328100001 Publication Date 2015-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 18 Open Access  
  Notes CCWV,ECN and AB acknowledge the contribution of J Van Beeck who is investigating the interaction between H2O2 andDNAusingrMDsimulations. Furthermore, they acknowledge financial support from the Fund for Scientific Research—Flanders (project number G012413N). The calculations were performed using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. TJ and DF gratefully acknowledge support from the European Research Council through the ERC-Starting GrantTHEOFUN(Grant Agreement No. 259608). Approved Most recent IF: 3.786; 2015 IF: 3.558  
  Call Number c:irua:129178 Serial 3955  
Permanent link to this record
 

 
Author Chernozem, R., V; Romanyuk, K.N.; Grubova, I.; Chernozem, P., V.; Surmeneva, M.A.; Mukhortova, Y.R.; Wilhelm, M.; Ludwig, T.; Mathur, S.; Kholkin, A.L.; Neyts, E.; Parakhonskiy, B.; Skirtach, A.G.; Surmenev, R.A. pdf  doi
openurl 
  Title Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering Type A1 Journal article
  Year 2021 Publication Nano Energy Abbreviated Journal Nano Energy  
  Volume 89 Issue B Pages (up) 106473  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 +/- 29 mV) with increasing rGO content up to 1.0 wt% (314 +/- 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the alpha-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on alpha-phase (P2(1)2(1)2(1) space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703592700002 Publication Date 2021-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.343  
  Call Number UA @ admin @ c:irua:182579 Serial 7914  
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y. pdf  url
doi  openurl
  Title Accelerated molecular dynamics simulation of large systems with parallel collective variable-driven hyperdynamics Type A1 Journal article
  Year 2020 Publication Computational Materials Science Abbreviated Journal Comp Mater Sci  
  Volume 177 Issue Pages (up) 109581  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The limitation in time and length scale is a major issue of molecular dynamics (MD) simulation. Although several methods have been developed to extend the MD time scale, their performance usually deteriorates with increasing system size. Therefore, an acceleration method which is applicable to large systems is required to bridge the gap between the MD simulations and target phenomena. In this study, an accelerated MD method for large system is developed based on the collective variable-driven hyperdynamics (CVHD) method [K.M. Bal and E.C. Neyts, 2015]. The key idea is to run CVHD in parallel with rate control and accelerate multiple possible events simultaneously. Using this novel method, carbon diffusion in bcc-iron bicrystal with grain boundary is examined as an application for practical materials. Carbon atoms reaching at the grain boundary are trapped whereas carbon atoms in the bulk region diffuse randomly, and both dynamic regimes can be simultaneously accelerated with the parallel CVHD technique.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519576300001 Publication Date 2020-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited Open Access  
  Notes JSPS, J22727 ; Japan Society for the Promotion of Science; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). Data availability The data required to reproduce these findings are available from the corresponding authors upon reasonable request. Approved Most recent IF: 3.3; 2020 IF: 2.292  
  Call Number PLASMANT @ plasmant @c:irua:166773 Serial 6333  
Permanent link to this record
 

 
Author Gou, F.; Neyts, E.; Eckert, M.; Tinck, S.; Bogaerts, A. doi  openurl
  Title Molecular dynamics simulations of Cl+ etching on a Si(100) surface Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 107 Issue 11 Pages (up) 113305,1-113305,6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations using improved TersoffBrenner potential parameters were performed to investigate Cl+ etching of a {2×1} reconstructed Si(100) surface. Steady-state Si etching accompanying the Cl coverage of the surface is observed. Furthermore, a steady-state chlorinated reaction layer is formed. The thickness of this reaction layer is found to increase with increasing energy. The stoichiometry of SiClx species in the reaction layer is found to be SiCl:SiCl2:SiCl3 = 1.0:0.14:0.008 at 50 eV. These results are in excellent agreement with available experimental data. While elemental Si products are created by physical sputtering, most SiClx (0<x<4) etch products are produced by chemical-enhanced physical sputtering.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278907100018 Publication Date 2010-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:82663 Serial 2175  
Permanent link to this record
 

 
Author Bal, K.M.; Fukuhara, S.; Shibuta, Y.; Neyts, E.C. pdf  url
doi  openurl
  Title Free energy barriers from biased molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 153 Issue 11 Pages (up) 114118  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Atomistic simulation methods for the quantification of free energies are in wide use. These methods operate by sampling the probability density of a system along a small set of suitable collective variables (CVs), which is, in turn, expressed in the form of a free energy surface (FES). This definition of the FES can capture the relative stability of metastable states but not that of the transition state because the barrier height is not invariant to the choice of CVs. Free energy barriers therefore cannot be consistently computed from the FES. Here, we present a simple approach to calculate the gauge correction necessary to eliminate this inconsistency. Using our procedure, the standard FES as well as its gauge-corrected counterpart can be obtained by reweighing the same simulated trajectory at little additional cost. We apply the method to a number of systems—a particle solvated in a Lennard-Jones fluid, a Diels–Alder reaction, and crystallization of liquid sodium—to demonstrate its ability to produce consistent free energy barriers that correctly capture the kinetics of chemical or physical transformations, and discuss the additional demands it puts on the chosen CVs. Because the FES can be converged at relatively short (sub-ns) time scales, a free energy-based description of reaction kinetics is a particularly attractive option to study chemical processes at more expensive quantum mechanical levels of theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000574665600004 Publication Date 2020-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access  
  Notes Japan Society for the Promotion of Science, 19H02415 18J22727 ; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; This work was supported, in part, by a Grant-in-Aid for Scientific Research (B) (Grant No. 19H02415) and Grant-in-Aid for a JSPS Research Fellow (Grant No. 18J22727) from the Japan Society for the Promotion of Science (JSPS), Japan. K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation – Flanders), Grant No. 12ZI420N. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. The authors are grateful to Pablo Piaggi for making the pair entropy CV code publicly available. Approved Most recent IF: 4.4; 2020 IF: 2.965  
  Call Number PLASMANT @ plasmant @c:irua:172456 Serial 6420  
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
  Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia  
  Volume 250 Issue Pages (up) 116186  
  Keywords A1 Journal Article; CMT  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links  
  Impact Factor 6 Times cited Open Access  
  Notes Research Foundation Flanders; Approved Most recent IF: 6; 2024 IF: 3.747  
  Call Number UA @ lucian @ CMT Serial 9116  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  url
doi  openurl
  Title Direct oxidation of methane to methanol on Co embedded N-doped graphene: Comparing the role of N₂O and O₂ as oxidants Type A1 Journal article
  Year 2020 Publication Applied Catalysis A-General Abbreviated Journal Appl Catal A-Gen  
  Volume 602 Issue Pages (up) 117716-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, the effects of N-doping into the Co-doped single vacancy (Co-SV-G) and di-vacancy graphene flake (Co-dV-G) are investigated and compared toward direct oxidation of methane to methanol (DOMM) employing two different oxidants (N2O and O-2) using density functional theory (DFT) calculation. We found that DOMM on CoN3-G utilizing the N2O molecule as oxygen-donor proceeds via a two-step reaction with low activation energies. In addition, we found that although CoN3-G might be a good catalyst for methane conversion, it can also catalyze the oxidation of methanol to CO2 and H2O due to the required low activation barriers. Moreover, the adsorption behaviors of CHx (x = 0-4) species and dehydrogenation of CHx (x = 1-4) species on CoN3-G are investigated. We concluded that CoN3-G can be used as an efficient catalyst for DOMM and N-2O reduction at ambient conditions which may serve as a guide for fabricating effective C/N catalysts in energy-related devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000554006800046 Publication Date 2020-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-860x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access  
  Notes ; This work was performed with the financial support from the Doctoral Fund of the Antwerp University (NO. BOFLP33099). All the simulations are performed on resources provided by the high-performance computing center of Antwerp University. ; Approved Most recent IF: 5.5; 2020 IF: 4.339  
  Call Number UA @ admin @ c:irua:171219 Serial 6485  
Permanent link to this record
 

 
Author Kovács, A.; Yusupov, M.; Cornet, I.; Billen, P.; Neyts, E.C. pdf  doi
openurl 
  Title Effect of natural deep eutectic solvents of non-eutectic compositions on enzyme stability Type A1 Journal article
  Year 2022 Publication Journal Of Molecular Liquids Abbreviated Journal J Mol Liq  
  Volume 366 Issue Pages (up) 120180-17  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Natural deep eutectic solvents (NADES) represent a green alternative to common organic solvents in the biochemical industry due to their benign behavior and tailorable properties, in particular as media for enzymatic reactions. However, to fully exploit their potential in enzymatic reactions, there is a need for a more fundamental understanding of how these neoteric solvents influence the course of these reac-tions. Thus, the aim of this study is to investigate the influence of NADES with various molar composi-tions on the stability and structure of enzymes, applying molecular dynamics simulations. This can help to better understand the effect of individual compounds of NADES, in addition to eutectic mixtures. More specifically, we simulate the behavior of Candida antarctica lipase B (CALB) enzyme in NADES com-posed of choline chloride with either urea, ethylene glycol or glycerol. Hereto, we monitor the NADES microstructure, the general stability of the enzyme and changes in the structure of its active sites and sur-face residues. Our simulations show that none of the studied NADES systems significantly disrupt the microstructure of the solvent or the stability of the CALB enzyme within the time scales of the simula-tions. The enzyme preserves its initial structure, size and intra-chain hydrogen bonds in all investigated compositions and, for the first time reported, also in NADES with increased hydrogen bond donating com-pound ratios. As the main novelty, our results indicate that, in addition to the composition, the molar ratio can be an additional variable to fine-tune the physicochemical properties of NADES without altering the enzyme characteristics. These findings could facilitate the development and application of task -tailored NADES media for biocatalytic processes. (c) 2022 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865431800010 Publication Date 2022-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-7322 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6  
  Call Number UA @ admin @ c:irua:191538 Serial 7265  
Permanent link to this record
 

 
Author Neyts, E.; Eckert, M.; Mao, M.; Bogaerts, A. doi  openurl
  Title Numerical simulation of hydrocarbon plasmas for nanoparticle formation and the growth of nanostructured thin films Type A1 Journal article
  Year 2009 Publication Plasma physics and controlled fusion Abbreviated Journal Plasma Phys Contr F  
  Volume 51 Issue Pages (up) 124034,1-124034,8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper outlines two different numerical simulation approaches, carried out by our group, used for describing hydrocarbon plasmas in their applications for either nanoparticle formation in the plasma or the growth of nanostructured thin films, such as nanocrystalline diamond (NCD). A plasma model based on the fluid approach is utilized to study the initial mechanisms giving rise to nanoparticle formation in an acetylene plasma. The growth of NCD is investigated by molecular dynamics simulations, describing the interaction of the hydrocarbon species with a substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000271940800045 Publication Date 2009-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3335;1361-6587; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.392 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.392; 2009 IF: 2.409  
  Call Number UA @ lucian @ c:irua:79132 Serial 2405  
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Neyts, E.C.; Thijsse, B.J.; Stesmans, A. url  doi
openurl 
  Title Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 13 Pages (up) 134301-134301,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Monte Carlo (MC) methods have a long-standing history as partners of molecular dynamics (MD) to simulate the evolution of materials at the atomic scale. Among these techniques, the uniform-acceptance force-bias Monte Carlo (UFMC) method [ G. Dereli Mol. Simul. 8 351 (1992)] has recently attracted attention [ M. Timonova et al. Phys. Rev. B 81 144107 (2010)] thanks to its apparent capacity of being able to simulate physical processes in a reduced number of iterations compared to classical MD methods. The origin of this efficiency remains, however, unclear. In this work we derive a UFMC method starting from basic thermodynamic principles, which leads to an intuitive and unambiguous formalism. The approach includes a statistically relevant time step per Monte Carlo iteration, showing a significant speed-up compared to MD simulations. This time-stamped force-bias Monte Carlo (tfMC) formalism is tested on both simple one-dimensional and three-dimensional systems. Both test-cases give excellent results in agreement with analytical solutions and literature reports. The inclusion of a time scale, the simplicity of the method, and the enhancement of the time step compared to classical MD methods make this method very appealing for studying the dynamics of many-particle systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000302290500001 Publication Date 2012-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97160 Serial 3809  
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M. doi  openurl
  Title Effect of hydrogen on the growth of thin hydrogenated amorphous carbon films from thermal energy radicals Type A1 Journal article
  Year 2006 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 88 Issue Pages (up) 141922  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000236612000037 Publication Date 2006-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.411; 2006 IF: 3.977  
  Call Number UA @ lucian @ c:irua:57642 Serial 817  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. pdf  doi
openurl 
  Title Direct methane conversion to methanol on M and MN4 embedded graphene (M = Ni and Si): a comparative DFT study Type A1 Journal article
  Year 2019 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 496 Issue 496 Pages (up) 143618  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The ever increasing global production and dispersion of methane requires novel chemistry to transform it into easily condensable energy carriers that can be integrated into the chemical infrastructure. In this context, single atom catalysts have attracted considerable interest due to their outstanding catalytic activity. We here use density functional theory (DFT) computations to compare the reaction and activation energies of M and MN4 embedded graphene (M = Ni and Si) on the methane-to-methanol conversion near room temperature. Thermodynamically, conversion of methane to methanol is energetically favorable at ambient conditions. Both singlet and triplet spin state of the studied systems are considered in all of the calculations. The DFT results show that the barriers are significantly lower when the complexes are in the triplet state than in the singlet state. In particular, Si-G with the preferred spin multiplicity of triplet seems to be viable catalysts for methane oxidation thanks to the corresponding lower energy barriers and higher stability of the obtained configurations. Our results provide insights into the nature of methane conversion and may serve as guidance for fabricating cost-effective graphene-based single atom catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000488957400004 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:163695 Serial 6294  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: