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Atomistic simulation methods for the quantification of free energies are in wide use. These methods operate by
sampling the probability density of a system along a small set of suitable collective variables (CVs), which is in
turn expressed in the form of a free energy surface (FES). This definition of the FES can capture the relative
stability of metastable states, but not that of the transition state because the barrier height is not invariant
to the choice of CVs. Free energy barriers therefore cannot be consistently computed from the FES. Here, we
present a simple approach to calculate the gauge correction necessary to eliminate this inconsistency. Using
our procedure, the standard FES as well as its gauge-corrected counterpart can be obtained by reweighing the
same simulated trajectory at little additional cost. We apply the method to a number of systems—a particle
solvated in a Lennard-Jones fluid, a Diels–Alder reaction, and crystallization of liquid sodium—to demonstrate
its ability to produce consistent free energy barriers that correctly capture the kinetics of chemical or physical
transformations, and discuss the additional demands it puts on the chosen CVs. Because the FES can be
converged at relatively short (sub-ns) time scales, a free energy-based description of reaction kinetics is a
particularly attractive option to study chemical processes at more expensive quantum mechanical levels of
theory.
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I. INTRODUCTION

Free energy is a key quantity that describes the prop-
erties and transformations of molecular systems. In par-
ticular the analysis of high-dimensional problems is fa-
cilitated by the introduction of the free energy surface
(FES) F (s), which is a function of only a limited number
of physically meaningful collective variables (CVs) s.

Over the last decades, an ever-increasing number of
CVs has been proposed to reconstruct the FES from
molecular dynamics (MD) simulations of a wide range
of processes in chemistry, biology, and materials sci-
ence. Implementations of such CVs are widely avail-
able in established reference codes.1,2 Extensive sam-
pling along the CVs—necessary for an accurate estima-
tion of the FES—is in many cases not possible within
MD time scales, because different metastable states are
separated by high free energy barriers. For this reason,
several enhanced sampling methods have been developed
to enhance the exploration of the CV space, and pro-
duce accurate estimates of F (s) through reasonably short
simulations.3–12 One particularly successful class of such
methods employs a history-dependent bias potential V (s)
that discourages the system from re-entering previously
visited (metastable) regions in the CV space s. The most
famous of these methods is metadynamics,7 which has
spawned many variants and derivatives.13

In principle, the as such obtained FES F (s) encodes
both the thermodynamics as well as the kinetics of any
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transformation in CV space. Indeed, the relative thermo-
dynamic stability of metastable states can be expressed
in terms of their free energy difference ∆F whereas the
ease of transition is described by the free energy bar-
rier ∆‡F . However, while ∆F is unambiguously defined
within any appropriate CV space, this is not the case for
∆‡F . This is because the free energy barrier on the FES
is not invariant with respect to the choice of s.14–16 As
a consequence, the equilibrium constant for a state-to-
state transition can be directly inferred from F (s), but
its rate cannot.

To study kinetics without having to invoke the free
energy barrier, one can also calculate the reaction rate
explicitly from biased trajectories. This is possible pro-
vided that dividing surfaces between states remain un-
biased; in that case, rate estimates can be obtained
by reweighing transition times measured on the biased
FES.17 Two variants of common bias-based free energy
methods—dubbed infrequent metadynamics18 and vari-
ational flooding,19 respectively—have already been pro-
posed specifically for this purpose. These approaches
have been successfully applied to compute the rates of
a broad range of processes, such as chemical reactions of
small molecules,20 protein unfolding,21 or drug unbinding
from a target protein.22

An inconvenient aspect of such explicit rate calcula-
tions is that they are usually more elaborate or have
higher computational cost than the standard approaches
to calculate the FES on which they are based. On one
hand, transition state regions can be kept bias-free if a
rough estimate of the barrier is already known,19 or if
an iterative series of deep learning steps is adopted.12
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On the other hand, infrequent metadynamics simulations
achieve unperturbed kinetics by very slowly depositing
the bias potential, which leads to rather long MD runs.18

Ad hoc system-dependent optimizations20, adaptive ver-
sions of the algorithm23, or specialized CVs24 can im-
prove its performance, but even then the use of, e.g., ex-
pensive ab initio simulations to study chemical reactions
remains difficult.20

In this paper, we demonstrate how biased simulations
can be used to produce a gauge-invariant version of the
FES, from which consistent estimations of the free energy
barrier can be inferred. This approach can calculate valu-
able descriptors of the system’s kinetics within the time
scale needed to converge the FES, without requiring ad-
ditional simulations.

II. THEORY

A. Standard and geometric free energies

For a system in thermal equilibrium, its probability
distribution p(R) in the configuration space R at tem-
perature T and potential energy U(R) follows the Boltz-
mann distribution

p(R) = Z−1e−βU(R), (1)

in which β = (kBT )−1, kB the Boltzmann constant,
and Z =

∫
dR e−βU(R) the partition function of the

system. It is often convenient to analyse the prop-
erties of the system along a smaller set of n coordi-
nates s(R) = (s1(R), s2(R), . . . , sn(R)) that is still suf-
ficient to distinguish between key states of interest. The
marginal probability distribution p(s) of these collective
variables (CVs) s is defined as

p(s) =

∫
dR δ[s− s(R)] p(R) = 〈δ[s− s(R)]〉, (2)

and can also be expressed as a time average p(s) = 〈δ[s−
s(t)]〉 under the ergodic hypothesis. p(s) can be related
to the free energy surface (FES) F (s):

F (s) = − 1

β
ln p(s). (3)

Usually there are multiple possible choices of s capable
of characterizing a given process A → B. The shape of
the resulting FES is however not invariant to a change
in CVs. After all, e−βF (s)ds is the probability in the
volume element ds, which has a volume and shape that
are dependent on the precise choice of the CV functions
s(R).

When computing the free energy difference ∆FA→B
between metastable states, the lack of gauge invariance
of F is of no direct concern, since any such CV-dependent

features can be integrated out for each separate state:

FA = − 1

β
ln

∫
A

ds e−βF (s), (4)

FB = − 1

β
ln

∫
B

ds e−βF (s), (5)

∆FA→B = FB − FA. (6)

Such an approach is not as trivially realized for the
calculation of the free energy barrier ∆‡FA→B . Indeed,
according to transition state theory (TST), kA→B is de-
fined as

kA→B =
νTST

2pA
, (7)

with pA the probability of state A, so that pA +
pB = 1. Now suppose the reaction coordinate can be
parametrized as the CV s. The TST crossing rate νTST

is then defined as the total number of crossings of the
transition state sTS, located in between states A and B:

νTST = lim
t→∞

1

t

∫ t

0

dt′
∣∣∣∣ d

dt′
H[sTS − s(t)]

∣∣∣∣ , (8)

in which the Heaviside function H(x) discriminates be-
tween states A and B. Applying the chain rule while re-
alizing that s(t) = s(R(t)), and converting the time inte-
gral into a phase space integral using ergodicity, yields:14

νTST = lim
t→∞

1

t

∫ t

0

dt′
∣∣∣∣dRdt′ · ∇s

∣∣∣∣ δ[sTS − s(R(t))] (9)

=

∫
dRdV |V · ∇s| · δ[sTS − s(R)]p(R,V). (10)

When explicitly performing the integration over the ve-
locity V, one retains only the component normal to the
chosen dividing surface, and finally gets:

νTST =

√
2

πβm

∫
dR |∇s| · δ[sTS − s(R)]p(R) (11)

A different definition of the FES has been proposed
specifically to deal with kinetics.14–16 We will use the
terminology introduced by Hartmann and Schütte,15 who
refer to F (s) defined in Eq. (3) as the standard FES,
which relates to the geometric FES FG(s) through

FG(s) = F (s)− 1

β
ln 〈λ|∇s|〉s , (12)

in which 〈|∇s|〉s is an ensemble average of the gradient of
s(R) with respect to the system coordinates, calculated
at point s. The magnitude of 〈|∇s|〉s depends not only on
the choice of s, but also on the unit system employed for
R. To acknowledge this, and ensure that the exponential
term remains dimensionless, the length scale λ must be
introduced.14 Then, the reaction rate kA→B becomes

kA→B =
νTST

2pA
=

1

λ
√

2πβm
e−β(FG

TS−FA), (13)
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where we have used pA = e−βFA , and FGTS = FG(sTS).
Most importantly, Eq (13) tells us that the geometric
FES must be invoked whenever kinetics is involved. It
also shows that different parametrizations of the reac-
tion coordinate s should yield the same FGTS but, conse-
quently, not necessarily the same FTS. This explains the
meaning of the gauge dependence of the standard FES.

Because Eq. (13) is the TST rate estimate, it will in
practice be the classical upper bound of the true rate.
Moreover, it is not trivial to find a simple CV s(R) that
is simultaneously the true reaction coordinate. Different
choices of s can thus still give rise to different values of
FGTS. Therefore, the best choice of s is the one that mini-
mizes the predicted rate or maximizes FGTS.14 Such a CV
will also be an optimal choice for biasing the transition.13

It is useful to point out that the original literature that
introduced the geometric free energy used the notation
G(s) to distinguish it from the standard free energy F (s)
and emphasize that both quantities reflect two interpre-
tations of the free energy that are equally sensible from
a theoretical point of view.14,15 We believe that such a
notation would be somewhat confusing in practice: the
same two symbols are usually also used to distinguish the
Helmholtz free energy F , which is used in the constant
volume (isochoric–isothermal) ensemble, from the Gibbs
free energy G in constant pressure (isobaric–isothermal)
cases. Moreover, free energies are most commonly in-
voked to describe the relative stability of metastable
states (i.e., their probability of occurring). This means
that the definition (3) based on marginal probability den-
sities is used by most free energy methods and the stan-
dard FES F (s) is usually more easily obtainable for a
process of interest. It therefore makes sense to calcu-
late the geometric FES by augmenting F (s), using (12),
which justifies the notation FG(s). Analogously one can
then define a geometric version of the (standard) Gibbs
FES G(s) as GG(s) for isobaric systems.

A one-dimensional FES is the most simple to analyze,
and reweighing techniques allow to project a FES on any
set of variables on the fly when using bias-based tech-
niques such as metadynamics.25–28 However, sometimes
multiple CVs are required to accurately distinguish free
energy basins and identify the paths connecting them. In
these cases one can define the n× n matrix d

d2
ij = ∇si · ∇sj (14)

and have, as recognized by Branduardi et al.29 in the
context of metadynamics with adaptive Gaussians,

FG(s) = F (s)− 1

β
ln 〈λn det d〉s . (15)

Our first objective is now to find a practical way to
evaluate Eq. (15) using tools that are already in place to
obtain the standard FES. Our second objective is to use
the geometric FES to give a consistent definition of the
free energy barrier.

B. Geometric FES from biased simulations

In some cases the gradient ∇s can be expressed as a
function of s only, so that FG can be calculated through
an a posteriori additive correction to F . This requires
that for all possible R 6= R′ for which s(R) = s(R′), also
|∇s|R = |∇s|R′ , which can be the case if s is a simple
function of a limited number of microscopic coordinates.
However, the biasing and analysis of complex transfor-
mations tends to require more complex many-body func-
tions as CVs; examples include order parameters for
crystallization simulations30–33, SPRINT coordinates for
chemical reactions34, path collective variables35,36, or
functions of simpler candidate CVs derived through ma-
chine learning.12,37–40 In such cases, ∇s is not necessarily
uniquely defined for a given s, or can only be expressed
as an analytic function of all R.

Some form of numerical averaging is therefore needed,
which would require running a simulation that exhaus-
tively samples the full CV space of interest. Naturally,
this is precisely the goal of bias-based enhanced sampling
methods such as metadynamics or variationally enhanced
sampling. Here, the calculation of any physical ensemble
average requires properly accounting for the effect of the
applied bias potential V , which means that each sampled
configuration receives a modified weight w. In its most
straightforward application, w = w(s, t) = e−βV (s,t), al-
though more recent schemes are easier to apply.26 In such
a reweighing scheme, the marginal density p(s) is calcu-
lated by inserting w into Eq. (2):

p(s) = 〈w · δ[s− s(t)]〉b, (16)

in which 〈· · · 〉b denotes averaging over the biased ensem-
ble. Similarly, we also have

〈det d〉s =
〈w · δ[s− s(t)] · det d〉b
〈w · δ[s− s(t)]〉b

. (17)

Multiplying (16) and (17), and using the identities (3)
and (15), we get

FG(s) = − 1

β
ln〈w · δ[s− s(t)] · λn det d〉b. (18)

When comparing (18) to (3) and (16), it can be real-
ized that the calculation of the geometric FES FG(s) is
equivalent to calculating the standard FES F (s) through
on-the-fly reweighing, but using a modified weight w ·
λn det d. As a result, calculation of the geometric FES
can be easily implemented in any enhanced sampling
code that already supports histogram reweighing, and be
done concurrently with the sampling of p(s). Note that
∇s is already calculated when the CV s is biased, for ex-
ample during a metadynamics simulation. Both F (s) as
well as FG(s) can therefore be obtained from the same
trajectory at little extra cost.
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C. Free energy barriers

As defined in Eqs. (12) and (15), the geometric FES
FG only has units of energy thanks to the length scale
parameter λ. While the introduction of the geometric
FES allows to define a free energy barrier as FGTS − FA
that is invariant to the choice of CVs s, it is one that still
depends on the choice of length unit in the simulation.

The Eyring equation requires a definition of the free
energy barrier ∆‡F that is free from any such depen-
dency:

kA→B =
κ

hβ
e−β∆‡FA→B . (19)

Here, h is the Planck constant. The transmission coef-
ficient κ compensates for the lowering of the apparent
reaction rate by TS recrossings. When we compare this
expression to Eq. (13), we see that

∆‡FA→B = FGTS +
n

β
ln
λ

h

√
2πm

β
− FA. (20)

Inside the logarithm in the second term we recognize the
translational partition function inside the segment λ.

Eq. (20) gives an additional rationalisation for the
gauge dependence of the FTS. FTS is the free energy
of an ensemble of states within a segment ds around the
TS. This segment is associated with a partition function
z∗, which depends on the choice of s. The true TS is
constrained at a single point within the CV space s. The
contribution of these degrees of freedom must therefore
be removed in order to obtain the free energy of the true
TS. This term −β−1 ln z∗ is still present in an estimate
of ∆‡F that is purely based on the standard FES, i.e.,
FTS − FA. The volume ds, then, is dependent on the
choice of s, and so is −β−1 ln z∗. FTS will therefore have
a gauge dependence.

Replacing FTS by FGTS removes the gauge dependence
because it entails a coordinate transformation from s to a
new coordinate system that has the same units as R, i.e.,
λ. In the limiting case of a single CV s, for example, this
means that the length unit is not anymore the unit of s,
but λ. Therefore, applying the gauge correction replaces
the CV-dependent z∗ by the partition function inside λn.
The term FGTS−FA is therefore independent of s, but still
contains the partition function inside a volume element
(now λn) around the TS. Only when this dependency on
the unit of R is removed, the Eyring formula is recovered.
It is this final realization that allows us to write Eq. (20)
for the case of n CVs, because that generalization does
not follow directly from comparing Eqs. (13) and (19).
κ can be estimated by running trajectories start-

ing from the blue moon ensemble41 at sTS,14,30 using
Kramers’ rate theory42, or by comparing computed TST
rates with rates that were explicitly sampled using dedi-
cated approaches.12,18,19 For many chemical reactions we
can assume transport across the TS to be ballistic, and
κ = 1.

In what follows, we will use the definition of Eqs. (12)
and (15) for the geometric FES. By comparing F and FG,
we can then assess the magnitude of the gauge correction
within the chosen unit system. The unit λ of the system
coordinates R will therefore always be reported, but is
1 Å in most molecular systems. Whenever free energy
barriers are reported, we will use Eq. (20) because of the
ubiquity of the Eyring equation.

We also remark that the mass m in Eq. (20) is easily
defined as the atomic mass in elementally pure systems,
or as twice the reduced mass µ = (mimj)/(mi + mj)
when employed CVs are based on pairwise terms between
pairs of atoms i and j. In more complex systems, it is
more convenient to directly calculate the gradient with
respect to mass-scaled coordinates qi =

√
mixi and drop

the factor
√
m in the Eq. (20).14 λ will then be the unit

of q.
Finally, we note that we have made two implicit as-

sumptions in the previous section. The first one is that
there is a clear time scale separation between the CVs
s and all other degrees of freedom which should equili-
brate on a much faster time scale. Only when this is
true the concept of a free energy barrier along s is use-
ful. The second assumption is that sampling is sufficient:
all relevant values of s should be well-sampled to obtain
an accurate FES and enough configurations R should be
sampled at each s to converge the estimate of 〈det d〉s.
Both of these assumptions—which boil down to sampling
of transverse degrees of freedom being possible on an MD
time scale—are also inherent to most enhanced sampling
methods based on the biasing of CVs. In the systems we
consider in the following section, we find that the 〈det d〉s
term converges very quickly.

III. EXAMPLES

A. Dissociation and association in solution

As a first illustration of the difficulties associated
with calculating free energy barriers, we consider the
case of two strongly interacting particles, immersed in
a 1000-atom Lennard–Jones (LJ) fluid of reduced den-
sity ρ = 0.84, close to the triple point density. The
solvent–solvent and solvent–solute interactions are de-
scribed using the same LJ potential (σ = ε = 1), whereas
the two solute atoms interact through a Morse potential

U(r) = 10
(
1− e−5(r−1)

)2
(using reduced units through-

out).
A natural choice of CV to describe the dissociation

and association of the two strongly interacting particles
would be their interatomic distance r. As we will show,
this will however result in a poorly balanced description
of the two metastable states versus the transition state:
The bound and transition state will be located in only
a small region of short r, whereas a much wider range
of large r values will represent the unbound state. All
states can be given more or less equal weight when using
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FIG. 1. Free energy profiles for the solvated dimer in a finite
cubic box. Standard FES F (s) and geometric FES FG(s)
(with λ = 1) for (a) the distance CV r and (b) the switching
function σ(r). The gauge-invariant free energy of the transi-
tion state is depicted as a red dashed line.

a switching function with the general form

σ(r) =
1−

(
r−r0
d

)n
1−

(
r−r0
d

)m , (21)

for which we set r0 = 0.75, d = 1.0, n = 1 and m = 2.
We performed well-tempered metadynamics simula-

tions at several temperatures 0.75 ≤ T ≤ 2.50, biasing
σ(r) by depositing Gaussians with width δ = 0.01 and
initial height w0 = 0.25 every 2500 time steps. The equa-
tions of motion were integrated with a time step ∆t =
0.002, using a stochastic velocity rescaling thermostat43

to control the temperature. A one-dimensional FES was
projected on r and σ(r), respectively, using the reweigh-
ing scheme of Tiwary and Parrinello26 during a sampling
run of 107 steps at each temperature. A harmonic wall is
applied when r > 7. All simulations were carried out us-
ing the LAMMPS package44 and the PLUMED2 plugin.2

Fig. 1 depicts the FES for T = 1.5 along both r and
σ(r), respectively. Both projections of the FES capture
the main characteristics of the system, with a bound state
B at short interatomic separations, an unbound dissoci-
ated state D at larger distances, and a free energy bar-
rier in between. r has a more direct physical significance,

TABLE I. Free energy difference ∆F between the bound (B)
and dissociated (D) dimer states, and their interconversion
barriers ∆‡F according to several definitions, all calculated
from the respective FES projected on two different CVs.

r σ(r)
∆FD→B −1.39 −1.38
association
FTS −minF (s ∈ D) 3.18 6.38
FTS − FD 5.04 3.15
FG
TS − FD 4.52 4.48

∆‡FD→B 3.44 3.41
dissociation
FTS −minF (s ∈ B) 8.88 7.91
FTS − FB 6.42 4.54
FG
TS − FB 5.90 5.86

∆‡FB→D 4.83 4.79

but F (σ) is a smoother function which can be accurately
represented on a coarser numerical grid. Moreover, both
metastable states occupy a similarly sized section of CV
space, so that the average CV fluctuations in both states
will be similar and the optimal width δ of the biasing
Gaussian will be the same for both.29

From the two projections of the FES, we can now at-
tempt to calculate estimates of the free energy barriers
∆‡F for both association (D → B) as well as dissociation
(B → D). Several approaches are used, and their results
are collected in Table I for a temperature of T = 1.5. We
begin by noting that the free energy difference ∆FD→B
between the two states, as calculated from (6), is indepen-
dent on the choice of CVs, as expected; physically, both
CVs represent the same degree of freedom. The associ-
ation process is thermodynamically favored at this tem-
perature, but still requires a barrier crossing at around
r = 1.6. The magnitude of the barrier can be estimated
from the FES projection through various relations.

The most straightforward approach is to estimate a
barrier as the difference between the maximum of F (s)
along the reaction path and its minimum value in the
starting basin, i.e., FTS − minF (s ∈ D) for the associ-
ation process. Here we see that the apparent barrier is
twice as large when projecting the free energy on σ(r).
However, the two CVs currently under consideration are
merely different parametrizations of the same reaction
coordinate. In principle, they should be equally capa-
ble of correctly distinguishing the transition state, albeit
with different curvatures in the FES. These different bar-
rier heights therefore cannot directly correspond to the
actual transition rate between states.

Integrating over the whole free energy basin should
eliminate any effect of its shape around the minima but,
as noted earlier, using FTS − FD still does not lead to
a consistent value of the barrier. Using σ as a CV now
results in a predicted barrier that is 2 energy units lower
than in the case where r is used. However, this discrep-
ancy disappears when using the TS free energy as defined
on then geometric FES, through FGTS − FD. From both



Free energy barriers from biased molecular dynamics simulations 6

-2

0

2

4

6

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Δ
‡
 F

T

Association

Dissociation

-10

-5

0

5

Δ
F

a

b

FIG. 2. Effect of the temperature T on (a) the dimer associa-
tion free energy ∆F and (b) free energy barriers ∆‡F for both
association and dissociation. Linear regression is performed
on all datasets. The intercept with the Y axis corresponds to
the energetic component, the slope with entropy.

projections of the FES, this term can be estimated to be
about 4.5 within a small error, likely due to deficiencies
of the numerical grid. FGTS is more conveniently calcu-

lated from F (G)(σ) because it is smoother around the
transition state.

When using FG, Eq. (20) thus yields consistent barri-
ers: ∆‡F ≈ 3.4 from both projections of the FES. (Note
that h = 2π in LJ units.) Another intuitive way to reach
this conclusion is by observing that the absolute value of
FG at the transition state is the same for both projec-
tions, while this is not the case for F (Fig. 1).

Viewing kinetics through the lens of free energies has
the advantage that it is rather straightforward to investi-
gate the trade-off between energetics and entropy in this
context. As is also possible for the reaction free energy
∆F , barriers ∆‡F can be evaluated at different temper-
atures. Then, the entropy S and potential energy U can
be disentangled using the relation F = U−TS. As shown
in Fig. 2, ∆FD→B and the two barriers vary linearly as
a function of the temperature, making the determination
of these thermodynamic parameters a matter of standard
linear regression.

Starting with the reaction thermodynamics, we here
find confirmation that the bound state has a lower po-
tential energy, but the dissociated state is entropically
favored. Indeed, ∆UD→B = −9.12±0.12 and ∆SD→B =
−5.52 ± 0.07. The value of ∆UD→B is consistent with
the formation of a bond of strength Ub = −10 which is

TABLE II. TST rates k for the association and dissociation
reactions of the LJ-solvated dimer. The rates are calculated
using either free energy barriers obtained from the FES, or by
explicitly counting TS crossings in unbiased MD simulations.
From both sets of rates, the binding free energy ∆FD→B is
also estimated.

from FES explicitly from MD
kD→B 24.7× 10−3 22.0× 10−3

kB→D 9.8× 10−3 9.0× 10−3

∆FD→B −1.38 −1.34

offset by the loss of, on average, one solvent partner with
interaction energy Ub = −1.

The balance between entropy and potential energy also
affects the barriers. The association reaction in fact has
a negative energetic barrier ∆‡UD→B = −1.52 ± 0.21,
so that the origin of the free energy barrier is fully at-
tributable to its entropic component ∆‡SD→B = −3.46±
0.12. Conversely, the dissociation barrier is dominated by
a large energetic barrier ∆‡UB→D = 7.60±0.11 but facil-
itated by entropic factors, with ∆‡SB→D = 1.80 ± 0.06.
Just like the process thermodynamics, analysis of the free
energy barriers explains how high temperatures favor dis-
sociation over association.

Finally, we can use our estimates of ∆‡F to calcu-
late rate coefficients k using the Eyring relation Eq. (19).
These values are reported in Table II assuming that
κ = 1.

Both association and dissociation processes at T = 1.5
are fast enough to observe in unbiased MD simulations.
We can therefore explicitly calculate the rate by collect-
ing TS crossing times in unbiased MD simulations. In 5
simulations over an accumulated time scale of 5 × 105,
319 association events were recorded, and 316 dissoci-
ation events. TST rates were then calculated by di-
viding the total number of TS crossings by the sim-
ulation time, and are also collected in Table II. We
note that the sampling of these rates appears to be of
good quality. Estimating the association free energy
as ∆FD→B = −β−1 ln(kD→B/kB→D) yields a value of
−1.34, very close to −1.38, the value obtained from inte-
grating the FES.

Comparing the explicit and FES-derived rates, we can
see that the two sets are in very close agreement with each
other. The TST rates from ∆‡F slightly overestimate
the explicit rates, as can be expected. The true reaction
coordinate should likely also contain a contribution from
the solvent–solute interaction.

We can also use a slightly more strict definition of
state-to-state transitions that requires the system to end
up deeper in the respective basins. We commit the
system to the bound state once r < 1.0, and require
r > 3.5 for the dissociated state. Fewer events are now
recorded, and both rates decrease strongly. Only 58 as-
sociation events and 55 dissociation events are identified
on the same set of accumulated trajectories. Therefore,
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κ ≈ 0.19. This is in line with the highly diffusional nature
of particle motion in the considered system. Any trajec-
tory reaching the TS region will perform a random walk,
witnessing several recrossings that do not effectively re-
sult in reaching the B or D states.

The rate theory of Kramers42 provides a framework to
estimate κ for reactions in solution. From 15 short (t <
1.0) MD runs originating from the transition state, we es-
timate the diffusivity of the CV r to be D = 0.06± 0.01.
The diffusing dimer has a reduced mass of µ = 0.5. This
translates into a friction η = (βµD)−1 = 50 ± 9. The
imaginary harmonic frequency at the TS can be esti-
mated from F (r) to be ωTS = 7.9. Because η � ωTS,
we can use the strongly damped limit of Kramers’ the-
ory, for which κ ≈ ωTS/η. We then have κ = 0.16± 0.03,
in line with our explicit estimate. Repeating the same
analysis but now based on the σ(r) CV is fully analogous
except that the computed individual parameters have dif-
ferent numeric values: D = 0.015± 0.003, η = 200± 30,
and ωTS = 30, which still yields κ = 0.15± 0.03.

B. Chemical reaction in vacuum

We now turn to a more realistic system that is also
chemically more complex. The Diels–Alder reaction
of ethene and 1,3-butadiene produces cyclohexene as
a product and requires the simultaneous formation of
two new carbon–carbon bonds between the reactant
molecules (Fig. 3(a)). The reaction also has a very high
barrier on the PM6 PES,45 with rates below 10−4 s−1 at
600 K.46 It has therefore been a useful testing ground for
enhanced sampling approaches.38,46

To drive the reaction, we used a single CV derived by
Mendels et al. using their harmonic linear discriminant
analysis (HLDA) method.38 This CV is a linear com-
bination of the six carbon–carbon distances that corre-
spond to bonds in the product state. We performed well-
tempered metadynamics simulations with a bias factor of
γ = 25, depositing a Gaussian of height w = 1 kcal/mol
and width δ = 0.15 Å every 0.5 ps. A time step of
0.5 fs was used, and the temperature was controlled us-
ing a generalized Langevin equation (GLE) thermostat
optimized for efficient canonical sampling.47 To closely
mimic the setup of previous infrequent metadynamics
simulations,46 we applied harmonic restraints to keep
the chemically relevant r1 and r2 distances below 5 Å,
calculated forces on the PM6 level,45 and sampled at a
temperature of 600 K. The simulation was performed us-
ing CP2K48 with the PLUMED2 plugin. The simula-
tion lasted 5 ns in total, with the final 2.5 ns being used
for sampling the FES. The resulting FES is depicted in
Fig. 3(b).

The FES was also projected on several candidate CVs
besides the HLDA reaction coordinate used for biasing.
All of these CVs capture an aspect of the reaction, and
could be adequate CVs. Free energy parameters derived
from their respective FESes are collected in Table III.
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FIG. 3. Diels–Alder reaction of ethene and 1,3-butadiene. (a)
Schematic depiction of the two key C–C contacts r1 and r2.
The standard FES F (s) is shown projected on the two best
one dimensional CVs: (b) HLDA CV and (c) σ.

Because the C–C bond formation is concerted, using
just one of the two bond distances (e.g., r1) might be
sufficient; the very close agreement of the predicted ∆F
with that of the HLDA-derived FES at least implies it
is a CV capable of distinguishing between the reactant
and product state. The predicted barrier ∆‡F , however,
is underestimated by 18 kcal/mol because the CV is too
simple. The barrier on the resultant FES is too low be-
cause the true transition state is mixed with other more
stable configurations.13 The deviation of ∆F from the
HLDA reference value suggests that the CV sometimes
even assigns configurations to the wrong basin.

A similar observation can be made for SPRINT coor-
dinates. To construct the contact matrix, we use the
switching function of Eq. (21) and set r0 = 2.65 Å,
d0 = 0 Å and 2n = m = 12 for all C–C distances in
the system.46 As a CV (denoted SPRINT1) we then take
the average of the SPRINT coordinates of the two car-
bon atoms of ethene. This CV is able to distinguish the
metastable states and yields an estimate of ∆F equal
to the one from the HLDA FES. It fails, however, to
accurately isolate the transition region: the barrier is
again underestimated, now by more than 14 kcal/mol.
This is a consequence of the slowly varying long-ranged



Free energy barriers from biased molecular dynamics simulations 8

TABLE III. Reaction free energies ∆F , barriers ∆‡F , the magnitude of the geometric FES correction at the transition state
for the Diels-Alder reaction, and the total value of the correction term β−1 ln z∗ as obtained from different projections of the
FES. All energies in kcal/mol, and λ = 1 Å.

HLDA r1 SPRINT1 SPRINT2 σ (r1, r2)
∆F −23.25 −23.34 −23.25 −23.25 −23.25 −23.25
∆‡F 47.01 29.01 32.66 46.51 47.16 47.23
FG
TS − FTS −0.43 −0.41 −0.62 −1.65 1.79 −0.83
β−1 ln z∗ 1.45 1.47 1.27 0.24 3.67 2.94

switching function, which results in SPRINT coordinates
that are affected by all non-bonded distances in the sys-
tem. Although a good generic choice for biasing arbi-
trary reactions with little a priori knowledge,46 such a
switching function therefore cannot target specific reac-
tions well. By analyzing the 2D FES in (r1, r2), we find
that the transition state corresponds to C–C distances
of around 2.12 Å. Using this information, we can design
a sharply varying switching function that is tailored to
strictly discriminate between bonded and non-bonded C–
C contacts, by setting r0 = 2.12 Å and 2n = m = 48. A
FES projected on a SPRINT-based CV using this switch-
ing function (SPRINT2) yields a free energy barrier that
is only 0.5 kcal/mol below the one from the HLDA FES.

We can also hypothesize that a good identifcation of
the transition states can be achieved with a significantly
more generic CV. As a basis, we can take the switching
function used in the earlier solvated dimer example. In
this simple CV, we calculate switching functions based
on r1 and r2 and take their average (σ). The param-
eters of the switching function are r0 = d0 = 1.0 Å
and 2n = m = 2. The resulting CV has similar advan-
tages as the σ CV used earlier, and is chemically intuitive
(Fig. 3(c)). Despite its simplicity, however, the FES pro-
jected on this CV σ again produces a perfect estimate of
∆F , and ∆‡F is even slightly higher than the HLDA ref-
erence. Although optimized for biasing the reaction, the
HLDA CV is therefore not necessarily the best approxi-
mation of the reaction coordinate. This is confirmed by
our final set of CVs: when we project the FES on (r1, r2),
we obtain the highest barrier yet.

Ultimately, the four best estimates of ∆‡F are all
within 1 kcal/mol, or less than 2% of the total barrier.
Several 1D FES projections therefore do perform quite
well for this system. From block averaging we can esti-
mate that the uncertainty on predicted free energy dif-
ferences is about 0.25 kcal/mol.

When taking ∆‡F = 47.23±0.25 kcal/mol as the final
best estimate of the barrier, and assuming κ = 1, we can
calculate the reaction rate to be (7.8 ± 1.7) × 10−5 s−1.
This is very close to Fu and Pfaendtner’s best infrequent
metadynamics estimate of (5.8 ± 0.7) × 10−5 s−1, ob-
tained while biasing a CVHD-style24 manybody CV.46

Due to the slow bias addition rate in their simulation,
recording a single event required at least 15 ns of sim-
ulation time, longer than our total free energy run of
5 ns. Moreover, metadynamics variants that can con-

verge the FES even faster than well-tempered metady-
namics have already been developed, such as transition-
tempered metadynamics.49

We perform five runs with transition-tempered meta-
dynamics, using the same hill parameters and bias fac-
tor as previously, but with a faster addition stride of
50 fs and a simulation time of only 250 ps per run.
The average estimated barrier of these simulations as
projected on the HLDA CV is ∆‡F = 47.39 kcal/mol.
This value is very close to the one obtained from the
longer well-tempered metadynamics simulations, ∆‡F =
47.01 kcal/mol. Moreover, the standard deviation of the
barriers is only 0.60 kcal/mol, meaning that the esti-
mates produced from a single short transition-tempered
metadynamics run can be quite precise. Kinetic analysis
of high-barrier chemical reactions is therefore achievable
within ab initio time scales.

The use of the gauge-invariant geometric free energy
FG is crucial to obtain accurate kinetics. The term
ln 〈λn det d〉sTS

frequently has an absolute value larger
than unity, meaning that the correction to the barrier
exceeds β−1, as can be seen in Table III. When com-
paring different CV dimensionalities, β−1 ln z∗ = ∆‡F −
(FTS−FA) following from Eq. (20) provides a more con-
sistent metric. For example, the barriers obtained using
the CVs SPRINT2 and σ are in very close agreement, but
without the correction they would differ by 2.8 kcal/mol.
Moreover, the absolute correction to FTS−FA can reach
values up to 3.7 kcal/mol. Predicted rates would then
differ by an order of magnitude. Because β−1 ln z∗ is al-
ways positive, not including this correction might lead to
spurious negative estimates of ∆‡F .

C. Crystal nucleation from the liquid

Phase transitions are true manybody processes because
they involve a (re)ordering of all atoms in the system.
Suitable CVs will accordingly be manybody as well. As
an example of such a process, we here consider the liquid–
solid (L → S) transition of sodium, in a well-tempered
metadynamics setup using LAMMPS and PLUMED2
that closely mimics that of Piaggi et al.33 The inter-
atomic interactions between 250 Na atoms are described
using an EAM potential50, constant isotropic pressure
dynamics at 1 bar is simulated using a Nosé–Hoover style
barostat51, a 2 fs time step, and a stochastic thermostat43
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TABLE IV. Sodium free energy of fusion ∆GS→L, crystalliza-
tion barriers ∆‡GL→S , and the magnitude of the geometric
FES correction at the transition state, as obtained from two
different projections of the FES. All energies in eV, λ = 1 Å.

SP Q6

∆GS→L 0.03 0.03
∆‡GL→S 0.28 0.51
GG

TS −GTS 0.03 0.11

to maintain the temperature at 375 K, close to the melt-
ing point. As shown earlier, the phase transition can
be biased in both directions using two generic CVs based
on the system’s enthalpy and a pairwise approximation of
the entropy.33 Bivariate Gaussian hills of height 0.025 eV
were deposited every 5 ps with widths of 0.002 eV/atom
in the enthalpic direction, and 0.1 kB/atom in the en-
tropic direction. The bias factor was 30.

Two simulations of 200 ns each were carried out, pro-
ducing respective estimates of the FES that had a root
mean square difference below 0.02 eV. Analysis was per-
formed using quantities averaged over both simulations.

The FES can be projected on several possible order
parameters. One possible choice of CV would be the
pair entropy CV (SP , Fig. 4a) that was also used for
biasing, which can distinguish the disordered liquid phase
from the bcc solid.33 Another CV with this ability is a
locally averaged version of the Q6 Steinhardt parameter
(Q6, Fig. 4b).31 Both projections of the FES allow for a
consistent estimation of the Gibbs free energy of fusion
∆GS→L, as summarized in Table IV; with ∆GS→L =
0.03 eV, the system is very close to its melting point and
crystallization should be a spontaneous process.

The predicted nucleation barrier ∆‡GL→S , is quite
sensitive to the choice of CV because—as can also be
visually inferred from Fig. 4a–b—the TS is much lower
on GG(SP ) than on GG(Q6). Therefore, the crystalliza-
tion barrier is predicted to be 0.45 eV when using Q6

as CV, 0.23 eV higher than the estimate from G(SP ).
SP therefore does not separate critical states from the
pure liquid and solid phases as well as Q6. This can also
be deduced from tracking the respective CV trajectories
during the biased simulation (Fig. 4c–d).13

The crystallization barrier not only mirrors the Diels–
Alder barrier in its strong dependence on the CV choice,
but also in the importance of the geometric FES correc-
tion. Here, this correction is even larger: When using
the Q6 CV, its magnitude is about a quarter of the total
barrier and more than 3kBT , which would affect a rate
prediction by a factor of 30. Note that the nucleation
barrier is sensitive to finite size effects,32 and that κ can
be quite small.30

D. General remarks

Calculation of free energy barriers is much less forgiv-
ing with respect to the choice of CVs than biasing. Not
only must the CVs be able to discriminate between differ-
ent metastable states, but they also have to accurately
recognize transition states.13 CVs that sharply vary in
the transition state regions are also preferred, because
they result in a smooth FES around the barrier. It is
however not always obvious a priori which CVs are op-
timal.

The reweighing-based approach adopted here some-
what alleviates this problem. An optimal set of CVs
for analysis can be selected independently from the CVs
used for biasing, even after performing the biased simu-
lation. More and more methods are becoming available
to find these optimal CVs.12,37–40 Because the FES need
not be directly calculated from a converged bias, bar-
riers can also be obtained using methods that preserve
kinetics.12,18,19 This way, kinetics can be studied both
directly as well as through a free energy-based perspec-
tive.

Another advantage is computational. An accurate es-
timate of the (standard and geometric) FES is generally
faster to obtain than a sufficiently large sample of unper-
turbed transition times. This extends access to kinetic
information to more complex systems. Even when TST
fails to give highly accurate rates, free energy barriers
can be useful to compare the relative importance of com-
peting reaction pathways or the kinetics across different
systems. In such applications a gauge correction is also
needed.

For efficient reconstruction of the FES there exists a
large choice of mature bias-based free energy methods.
Recent approaches to specifically enhance sampling of
transition states might also yield accurate barriers at
even lower costs.52 Indeed, although we have used the
metadynamics method in all examples discussed in this
manuscript, our approach can be applied with any bias-
based free energy method.

IV. CONCLUSIONS

We have presented a simple approach to calculate
a gauge correction to a free energy surface (FES) by
reweighing a biased molecular dynamics trajectory. For
a number of realistic processes in different systems,
we show that predicted free energy barriers can differ
significantly—in the order of several kBT—depending on
the choice of collective variables (CVs) used to construct
the FES. Only when applying the gauge correction, free
energy barriers can be consistent across different projec-
tions of the FES, and be used to calculate accurate tran-
sition rates. The standard and gauge-corrected FES can
be obtained from the same trajectory at little additional
cost.

It is important that the employed CVs are able
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FIG. 4. Crystallization of liquid sodium. Standard and geometric free energy are projected on the (a) SP and (b) Q6 CVs. CV
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to strictly discriminate not only between different
metastable states, but also the transition state regions
that separate them. Because the FES is obtained through
reweighing, it is also possible to project the FES on a set
of CVs that is different from the CVs used for biasing.

There exists an ever-growing arsenal of biasing meth-
ods that promise rapid convergence of the free energy.
By pairing these with our approach, it becomes possi-
ble to study the kinetics of processes for which explicit
rates are difficult to obtain, including ab initio models of
chemical reactions. We therefore hope our approach can
extend the capabilities of contemporary enhanced sam-
pling methods.
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