toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. url  doi
openurl 
  Title Challenges in the use of hydrogen for maritime applications Type A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume Issue Pages (up)  
  Keywords A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications; Sustainable energy, air and water technology (DuEL)  
  Abstract Maritime shipping is a key factor that enables the global economy, however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses, the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions, the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed, starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods, and in this work we discuss the storage of hydrogen at high pressure, in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621101100009 Publication Date 2021-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes For the completion of this work we would like to thank, Compagnie Maritime Belge for initial funding 9 of the research into maritime hydrogen storage and the University of Antwerp for funding of the 10 Doctoral Project that allowed for the completion of this work. Approved Most recent IF: 29.518  
  Call Number DuEL @ duel @c:irua:174754 Serial 6668  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Khalilov, U.; Hamoudi, H.; Neyts, E.C. url  doi
openurl 
  Title Effect of chemical modification on electronic transport properties of carbyne Type A1 Journal article
  Year 2021 Publication Journal Of Computational Electronics Abbreviated Journal J Comput Electron  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Using density functional theory in combination with the Green’s functional formalism, we study the effect of surface functionalization on the electronic transport properties of 1D carbon allotrope—carbyne. We found that both hydrogenation and fluorination result in structural changes and semiconducting to metallic transition. Consequently, the current in the functionalization systems increases significantly due to strong delocalization of electronic states along the carbon chain. We also study the electronic transport in partially hydrogenated carbyne and interface structures consisting of pristine and functionalized carbyne. In the latter case, current rectification is obtained in the system with rectification ratio up to 50%. These findings can be useful for developing carbyne-based structures with tunable electronic transport properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000617664900001 Publication Date 2021-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited Open Access OpenAccess  
  Notes Computational resources were provided by the research computing facilities of Qatar Environment and Energy Research Institute. Calculations are also conducted using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. U. Khalilov gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1315N. Approved Most recent IF: 1.526  
  Call Number PLASMANT @ plasmant @c:irua:176169 Serial 6708  
Permanent link to this record
 

 
Author Skorikov, A.; Heyvaert, W.; Albrecht, W.; Pelt, D.M.; Bals, S. doi  openurl
  Title EMAT Simulated 3D Nanoparticle Structures Dataset Type Dataset
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords Dataset; Electron microscopy for materials research (EMAT)  
  Abstract This dataset contains 1000 simulated nanoparticle-like 3D structures and noisy EDX-like elemental maps based on them. These data are intended to be used for quantitative analysis of data processing methods in (EDX) tomography of nanoparticles and training the data-driven approaches for these tasks. The dataset is structured as follows: voxel_data/clean 3D voxel grid representation of the simulated nanoparticles. Voxel intensities are adjusted so that the total intensity equals 103. All 3D structures have unique identifiers in 0..999 range. The data derived from a 3D structure preserves this unique identifier. sinograms/clean Tilt series of projection images obtained from the corresponding 3D structures over an angular range of -75..75 degrees with a tilt step of 10 degrees to simulate a typical tilt series used in EDX tomography. Total intensity in each projection image equals 103. sinograms/noisy Tilt series of projection images corrupted with Poisson noise and an additional spatially uniform background noise. projections/clean Projection images extracted from the clean tilt series at 0 degrees tilt angle. projections/noisy Projection images extracted from the noisy tilt series at 0 degrees tilt angle. images/clean Visualizations of the clean projections as PNG images with the intensity range adjusted to 0..255 images/noisy Visualizations of the noisy projections as PNG images with the intensity range adjusted to 0..255  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180615 Serial 6838  
Permanent link to this record
 

 
Author Shi, R.; Choudhuri, D.; Kashiwar, A.; Dasari, S.; Wang, Y.; Banerjee, R.; Banerjee, D. doi  openurl
  Title α phase growth and branching in titanium alloys Type A1 Journal article
  Year 2021 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The morphology and spatial distribution of alpha (α) precipitates have been mapped as a function of Mo content in Ti-Mo binary alloys employing a combinatorial approach. Heat-treatments were carried out on compositionally graded Ti-xMo samples processed using a rapid throughput laser engineered net shape (LENS) process. The composition space spans 1.5 at% to 6 at% Mo with ageing at 750°C, 650°C and 600°C following a β solution treatment. Three distinct regimes of α morphology and distribution were observed. These are colony-dominated microstructures originating from grain boundary α allotriomorphs, bundles of intragranular α laths, and homogeneously distributed individual fine-scale α laths. Branching of the α precipitates was observed in all these domains in a manner reminiscent of solid-state dendritic growth. The phenomenon is particularly apparent at low volume fractions of α. Similar features are present in a wide variety of alloy compositions. 3-dimensional features of such branched structures have been analysed. Simulation of the branching process by phase field methods incorporating anisotropy in the α/β interface energy and elasticity suggests that it can be initiated at growth ledges present at broad faces of the α laths, driven by the enhancement of the diffusion flux at these steps. The dependence of branching on various parameters such as supersaturation and diffusivity, and microstructural features like ledge height and distribution and the presence of adjacent α variants has been evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722082700001 Publication Date 2021-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.505 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.505  
  Call Number UA @ admin @ c:irua:183616 Serial 6849  
Permanent link to this record
 

 
Author Madsen, J.; Pennycook, T.J.; Susi, T. url  doi
openurl 
  Title ab initio description of bonding for transmission electron microscopy Type A1 Journal article
  Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 231 Issue Pages (up)  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified ab initio description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000744190300006 Publication Date 2021-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:183955 Serial 6850  
Permanent link to this record
 

 
Author Wang, L.; Li, Y.; Yang, X.-Y.; Zhang, B.-B.; Ninane, N.; Busscher, H.J.; Hu, Z.-Y.; Delneuville, C.; Jiang, N.; Xie, H.; Van Tendeloo, G.; Hasan, T.; Su, B.-L. url  doi
openurl 
  Title Single-cell yolk-shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition Type A1 Journal article
  Year 2021 Publication National Science Review Abbreviated Journal Natl Sci Rev  
  Volume 8 Issue 4 Pages (up)  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Like nanomaterials, bacteria have been unknowingly used for centuries. They hold significant economic potential for fuel and medicinal compound production. Their full exploitation, however, is impeded by low biological activity and stability in industrial reactors. Though cellular encapsulation addresses these limitations, cell survival is usually compromised due to shell-to-cell contacts and low permeability. Here, we report ordered packing of silica nanocolloids with organized, uniform and tunable nanoporosities for single cyanobacterium nanoencapsulation using protamine as an electrostatic template. A space between the capsule shell and the cell is created by controlled internalization of protamine, resulting in a highly ordered porous shell-void-cell structure formation. These unique yolk-shell nano structures provide long-term cell viability with superior photosynthetic activities and resistance in harsh environments. In addition, engineering the colloidal packing allows tunable shell-pore diameter for size-dependent permeability and introduction of new functionalities for specific molecular recognition. Our strategy could significantly enhance the activity and stability of cyanobacteria for various nanobiotechnological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000651827200002 Publication Date 2020-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.843 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.843  
  Call Number UA @ admin @ c:irua:179085 Serial 6885  
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D. url  doi
openurl 
  Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
  Year 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695956400001 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.879 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.879  
  Call Number UA @ admin @ c:irua:181533 Serial 6892  
Permanent link to this record
 

 
Author Berihun, D.; Van Passel, S. pdf  url
doi  openurl
  Title Climate variability and macroeconomic output in Ethiopia : the analysis of nexus and impact via asymmetric autoregressive distributive lag cointegration method Type A1 Journal article
  Year 2021 Publication Environment, development and sustainability Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Ethiopia showed a rapid, yet, a none resilient economic growth much threatened by climate variability. In Ethiopia, the adverse effects of climate variability are stipulated among the significant factors constraining its economic development. There are relatively few studies about the adverse effects of climate variability on the Ethiopian macroeconomy. In this context, little is known about the exact effects of the ongoing climate variability on Ethiopian macroeconomic growth. This study intends to examine whether climate variability factors, for instance rainfall and temperature, have an effect on the macroeconomic output of Ethiopia. An asymmetric autoregressive distributive lag cointegration method is used to investigate time-series data for the years 1950-2014. Diagnostic tests show the relevance of the applied method and robustness of our results. The study finds climate variability affects Ethiopia's economic growth in the long run. Rainfall and temperature fluctuation induce significant negative impacts. A percentage annual temperature variability for instance decreases the Ethiopian annual gross domestic yield (GDP) up to 4.5 percent. In the short run, climate variability particularly rainfall and temperature changes also have a profound effect on Ethiopia's economic output. Within such confirmed climate change impacts, Ethiopia should carry out more on adapting and mitigating the impacts as it is presented on its climate-resilient economic growth policies and strategies. In spite of the policy contribution of the results, the study will motivate further research and will also serve as a benchmark for the coming Ethiopian studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670722100001 Publication Date 2021-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-585x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179837 Serial 6917  
Permanent link to this record
 

 
Author Admasu, W.F.; Van Passel, S.; Nyssen, J.; Minale, A.S.; Tsegaye, E.A. pdf  doi
openurl 
  Title Eliciting farmers' preferences and willingness to pay for land use attributes in Northwest Ethiopia : a discrete choice experiment study Type A1 Journal article
  Year 2021 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 109 Issue Pages (up)  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract This study investigates farmers' preferences and willingness to pay for cropland attributes in Bahir Dar, north-west Ethiopia. A choice experiment is used to elicit farmers' preferences between different land use attributes, including a monetary attribute. The study was conducted in the croplands that are threatened by land expro-priation for urban expansion. A survey was undertaken with 144 farmers in four rural kebeles surrounding the city (Addis Alem, Weramit, Wereb and Zenzelima). In the survey, respondents were provided with hypothetical land purchasing decisions, with three alternatives (i.e., two hypothetical parcels and an opt-out option). A choice experiment was undertaken to measure farmers' interest in different types of croplands, which varies with respect to irrigability, number of trees per ha, soil erosion resistance and water holding capacity of the cropland. Estimation of two mixed logit models was carried out. The estimation results show that, although the farmers did not show strong preferences for each attribute of the cropland, many farmers in the area showed interest in the proposed alternative croplands. Farmers show more interest for the land that is irrigable, gentle slope and with medium water holding capacity. The results also indicate that farmers assign highest marginal willingness to pay (MWTP) (79.01 ETB per square meter) for irrigated land, followed by medium water holding capacity with MWTP of 52.13 ETB per square meter. We believe that the results of this study would help land use policy and decision makers in the study area to consider the various attributes of cropland in land use planning, including land expropriation programs, which assures the sustainability of ecosystem services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000702844000009 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.089 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.089  
  Call Number UA @ admin @ c:irua:182489 Serial 6921  
Permanent link to this record
 

 
Author Alihosseini, M.; Ghasemi, S.; Ahmadkhani, S.; Alidoosti, M.; Esfahani, D.N.; Peeters, F.M.; Neek-Amal, M. pdf  doi
openurl 
  Title Electronic properties of oxidized graphene : effects of strain and an electric field on flat bands and the energy gap Type A1 Journal article
  Year 2021 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract A multiscale modeling and simulation approach, including first-principles calculations, ab initio molecular dynamics simulations, and a tight binding approach, is employed to study band flattening of the electronic band structure of oxidized monolayer graphene. The width offlat bands can be tuned by strain, the external electric field, and the density of functional groups and their distribution. A transition to a conducting state is found for monolayer graphene with impurities when it is subjected to an electric field of similar to 1.0 V/angstrom. Several parallel impurity-induced flat bands appear in the low-energy spectrum of monolayer graphene when the number of epoxy groups is changed. The width of the flat band decreases with an increase in tensile strain but is independent of the electric field strength. Here an alternative and easy route for obtaining band flattening in thermodynamically stable functionalized monolayer graphene is introduced. Our work discloses a new avenue for research on band flattening in monolayer graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000737988100001 Publication Date 2021-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:184725 Serial 6987  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sozen, Y.; Baskurt, M.; Peeters, F.M.; Sahin, H. doi  openurl
  Title Interface-dependent phononic and optical properties of GeO/MoSO heterostructures Type A1 Journal article
  Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The interface-dependent electronic, vibrational, piezoelectric, and optical properties of van der Waals heterobilayers, formed by buckled GeO (b-GeO) and Janus MoSO structures, are investigated by means of first-principles calculations. The electronic band dispersions show that O/Ge and S/O interface formations result in a type-II band alignment with direct and indirect band gaps, respectively. In contrast, O/O and S/Ge interfaces give rise to the formation of a type-I band alignment with an indirect band gap. By considering the Bethe-Salpeter equation (BSE) on top of G(0)W(0) approximation, it is shown that different interfaces can be distinguished from each other by means of the optical absorption spectra as a consequence of the band alignments. Additionally, the low- and high-frequency regimes of the Raman spectra are also different for each interface type. The alignment of the individual dipoles, which is interface-dependent, either weakens or strengthens the net dipole of the heterobilayers and results in tunable piezoelectric coefficients. The results indicate that the possible heterobilayers of b-GeO/MoSO asymmetric structures possess various electronic, optical, and piezoelectric properties arising from the different interface formations and can be distinguished by means of various spectroscopic techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000738899600001 Publication Date 2021-12-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:184722 Serial 6998  
Permanent link to this record
 

 
Author Bollen, E.; Pagan, B.R.; Kuijpers, B.; Van Hoey, S.; Desmet, N.; Hendrix, R.; Dams, J.; Seuntjens, P. url  doi
openurl 
  Title A database system for querying of river networks : facilitating monitoring and prediction applications Type A1 Journal article
  Year 2021 Publication Water Science And Technology-Water Supply Abbreviated Journal Water Sci Tech-W Sup  
  Volume Issue Pages (up)  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increasing availability of real-time in situ measurements and remote sensing observations have the potential to contribute to the optimization of water resources management. Global challenges such as climate change, intensive agriculture and urbanization put a high pressure on our water resources. Due to recent innovations in measuring both water quantity and quality, river systems can now be monitored in real time at an unprecedented spatial and temporal scale. To interpret the sensor measurements and remote sensing observations additional data for example on: the location of the measurement, upstream and downstream catchment characteristics, horizontal ellipsis are required. In this paper, we present a data management system to support flow-path related functionality for decision making and prediction modelling. Adding meta data sets and facilitating (near) real-time processing of sensor data questions are key concepts for the systems. The potential of the database framework for hydrological applications is demonstrated using different applications for the river system of Flanders. In one, the database framework is used to simulate the daily discharge for each segment within a catchment using a simple data-driven approach. The presented system is useful for numerous applications including pollution tracking, alerting and inter-sensor validation in river systems, or related networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000729755100001 Publication Date 2021-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1606-9749 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.573 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.573  
  Call Number UA @ admin @ c:irua:184814 Serial 7387  
Permanent link to this record
 

 
Author Cui, Z. file  openurl
  Title Experimental and theoretical study on SF6 degradation by packed-bed DBD plasma Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Sulfur hexafluoride (SF6), as a man-made gas, is widely used in power industry, semiconductor industry and metal-processing industry. However, SF6 is a greenhouse gas and its global warming potential is 23500 times that of CO2. Besides, SF6 is very stable, with a lifetime in the atmosphere for more than one thousand years. Under natural conditions, only the ultraviolet light can make it slowly decomposed. Thus, the emission of SF6 has a great threat to the environment. In recent years, with the development of our national economy, the use of SF6 increased dramatically. And 90% of the SF6 emissions come from the power industry. In the meantime, the emission of SF6 exists a ‘hysteresis effect’, as many of the SF6-gas insulation equipment will retire in next decades, the emission of SF6 may increase sharply, and this may put great pressure on the environment. Therefore, it’s necessary to make efforts in controlling and treating the SF6 emission. Among the SF6 abatement technologies, the non-thermal plasma(NTP) represented by the dielectric barrier discharge(DBD) can effectively degrade SF6 and is suitable for large-scale industry applications. However, its energy efficiency still gets room for improvement and this kind of method has a defect that it’s hard to regulate the degradation by-products. Therefore, this paper proposed the combination of the packed bed reactor and the DBD technology to form a packed DBD discharge system for SF6 degradation, so that to further improve the energy efficiency and regulate the selectivity of by-products. By experiment and simulation research, the following innovations have been achieved: (1) Based on the packed bed DBD platform, the power parameter and gas-phase parameters of SF6 degradation were studied. It was found that the discharge process was significantly enhanced with the addition of packing particles, and the discharge energy efficiency was improved. The increase of input voltage can obviously increase the degradation rate, but reduces the energy efficiency. The increase of SF6 initial concentration and gas flow rate can improve the energy efficiency, but reduce the degradation rate. Therefore, both degradation rate and energy efficiency should be considered in deciding basic experimental conditions. (2) Active gases, such as O2, H2O and NH3, could effectively promote the degradation rate of SF6, and changed the product selectivity. In our packed bed DBD system, O2 and H2O have the optimal concentration conditions, which are 2% and 1%, respectively. The addition of O2 can promote the generation of S-O-F products, and inhibit the selectivity of SO2, while the addition of H2O had the opposite effects. In addition, the synergistic degradation of NH3 and SF6 will produce solid products, such as NH3HF, NH4HF2 and elemental S. For gaseous products, the increase of NH3 will lead to the generation of SO2 in the final degradation products and inhibit the generation of S-O-F products. (3) Different kinds of packing materials have great impacts on the degradation system in the discharge parameters, degradation rate and energy efficiency, as well as the products distribution. In the experiment, we compared the degradation results in three systems: glass beads packing, γ-Al2O3 packing and no-packing system. The packing of glass beads effectively improved the discharge voltage amplitude and discharge power, while had a limited effect on the equivalent capacitance of the dielectric. Besides, γ-Al2O3 packing had little effect on voltage amplitude, but obviously increased the equivalent capacitance of the dielectric. Furthermore, the degradation rate and energy efficiency in γ-Al2O3 system was higher than that of glass bead system. For products selectivity, γ-Al2O3 system was more desirable, where S-O-F type of product selectivity was suppressed and the SO2 selectivity increased significantly. By contrast, the glass beads system hardly affected the product selectivity. This results are presumably due to the relatively high dielectric constant of γ-Al2O3 particles and γ-Al2O3 itself may act as a reactant or a catalyst participating in the degradation reactions. (4) The size and status of the packing particles also have significant effects on the degradation process. The systems packed with 1, 2 and 4mm γ-Al2O3 particles for SF6 degradation were compared, and the 2mm system had the best performance, which may because the 2mm system had a good balance between the active contact area and the gas residence time. In addition, the packing pellets suffered from a hydration process slightly reduced the discharge parameters in the γ-Al2O3 packing system and significantly reduced the degradation rate was, which may because the H2O molecules pre-occupied the active sites on the γ-Al2O3 surface and reduced the discharge process. (5) Based on density functional theory (DFT), the degradation process of SF6 in the packed bed DBD system was studied at atomic scale. It was found that the SF6 can occur a physical adsorption at AlⅢ active sites on γ-Al2O3 surface. The activation barrier for the first degradation step of SF6 on γ-Al2O3 surface is much lower than in gas phase, which proved that the SF6 molecule is activated on the γ-Al2O3 surface. In addition, the plasma may affect the γ-Al2O3 surface to generate excess electrons or external electric fields. This two effects can change the adsorbed SF6 molecules from physical adsorption to chemisorption, together with an obvious stretching of S-F bonds, indicating that the plasma surface effects prmote the activation and decomposition of SF6 molecules. Furthermore, the stepwise degradation process of SF6 on γ-Al2O3 surface were investigated. The influence of radicals produced by plasma on the degradation process was analyzed. It was found that via Eley–Rideal (ER) reactions, high-energy radicals could effectively reduce the activation barriers and promote the surface reactions. Finally, the degradation mechanism of SF6 molecules in the packed bed plasma system was summarized, which may provide a theoretical basis for the study of harmless degradation of SF6. Keywords: SF6; Packed Bed DBD; Discharge Parameters; Products Analysis; Degradation Mechanism  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180819 Serial 7946  
Permanent link to this record
 

 
Author Gielis, J.; Shi, P.; Beirinckx, B.; Caratelli, D.; Ricci, P.E. file  openurl
  Title Lamé-Gielis curves in biology and geometry Type P3 Proceeding
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords P3 Proceeding; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178828 Serial 8145  
Permanent link to this record
 

 
Author Wagaarachchige, J.; Idris, Z.; Kummamuru, N.B.; Sætre, K.A.; Halstensen, M.; Jens, K.-J. url  doi
openurl 
  Title A new sulfolane based solvent for CO₂ capture Type P1 Proceeding
  Year 2021 Publication SSRN electronic journal Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study presents novel sulfolane based non-aqueous CO2 capture solvents, as an alternative solution for capturing CO2 from industrial processes. In order to select the most promising amine system, five different amines were tested by monitoring CO2 absorption and desorption processes using the time-base Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. During absorption experiments, we observed the formation of Monomethyl Carbonate (MMC) in diisopropylamine (DIPA) and 2-amino-2-methyl-1-propanol (AMP) systems, while carbamate was observed as the main product for the other three amine systems tested. In regeneration experiments, the MMC could be desorbed relatively easily from the amine solution at a mild temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180364 Serial 8305  
Permanent link to this record
 

 
Author Bagiński, M.; Pedrazo-Tardajos, A.; Altantzis, T.; Tupikowska, M.; Vetter, A.; Tomczyk, E.; Suryadharma, R.N.S.; Pawlak, M.; Andruszkiewicz, A.; Górecka, E.; Pociecha, D.; Rockstuhl, C.; Bals, S.; Lewandowski, W. url  doi
openurl 
  Title Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume Issue Pages (up) acsnano.0c09746  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV−vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV−vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634569100101 Publication Date 2021-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 10 Open Access OpenAccess  
  Notes Ministerstwo Nauki i Szkolnictwa Wyzszego, 0112/DIA/2019/48 ; European Commission, 731019 E171000009 (EUSMI) ; Narodowe Centrum Nauki, 2016/21/N/ST5/03356 ; Deutsche Forschungsgemeinschaft, RO 3640/12-1 ; Fundacja na rzecz Nauki Polskiej, First TEAM2016–2/15 ; European Research Council, 815128 (REALNANO) ; sygma; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @c:irua:175872 Serial 6673  
Permanent link to this record
 

 
Author MacArthur, K.E.; Yankovich, A.B.; Béché, A.; Luysberg, M.; Brown, H.G.; Findlay, S.D.; Heggen, M.; Allen, L.J. pdf  url
doi  openurl
  Title Optimizing Experimental Conditions for Accurate Quantitative Energy-Dispersive X-ray Analysis of Interfaces at the Atomic Scale Type A1 Journal article
  Year 2021 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal  
  Volume Issue Pages (up) 1-15  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000664532400007 Publication Date 2021-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited Open Access OpenAccess  
  Notes The authors would like to thank Jürgen Schubert for helping to supply the sample and valuable discussions on the topic. K. E. MacArthur and M. Heggen acknowledge the Helmholtz Funding agency and the DFG (grant number HE 7192/1-2) for their financial support of this work. L. J. Allen acknowledges the support of the Alexander von Humboldt Foundation. This research was supported under the Discovery Projects funding scheme of the Australian Research Council (Projects DP140102538 and FT190100619). K.E. MacArthur, A.B. Yankovich and A. Béché acknowledge support from the European Union’s Horizon 2020 research innovation program under grant agreement No. 823717 – ESTEEM3. A.B. Yankovich also acknowledges support from the Materials Science Area of Advance at Chalmers and the Swedish Research Council (VR, under grant No: 2020-04986).; esteem3TA; esteem3reported Approved Most recent IF: 1.891  
  Call Number EMAT @ emat @c:irua:178129 Serial 6760  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Introduction Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages (up) 1-28  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177525 Serial 6784  
Permanent link to this record
 

 
Author Feng, X.; Jena, H.S.; Krishnaraj, C.; Arenas-Esteban, D.; Leus, K.; Wang, G.; Sun, J.; Rüscher, M.; Timoshenko, J.; Roldan Cuenya, B.; Bals, S.; Voort, P.V.D. pdf  url
doi  openurl
  Title Creation of Exclusive Artificial Cluster Defects by Selective Metal Removal in the (Zn, Zr) Mixed-Metal UiO-66 Type A1 Journal article
  Year 2021 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume Issue Pages (up) jacs.1c05357  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The differentiation between missing linker defects

and missing cluster defects in MOFs is difficult, thereby limiting the

ability to correlate materials properties to a specific type of defects.

Herein, we present a novel and easy synthesis strategy for the

creation of solely “missing cluster defects” by preparing mixed-metal

(Zn, Zr)-UiO-66 followed by a gentle acid wash to remove the Zn

nodes. The resulting material has the reo UiO-66 structure, typical

for well-defined missing cluster defects. The missing clusters are

thoroughly characterized, including low-pressure Ar-sorption, iDPCSTEM

at a low dose (1.5 pA), and XANES/EXAFS analysis. We

show that the missing cluster UiO-66 has a negligible number of missing linkers. We show the performance of the missing cluster

UiO-66 in CO2 sorption and heterogeneous catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000730569500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 29 Open Access OpenAccess  
  Notes Agentschap Innoveren en Ondernemen, HBC.2019.0110 HBC.2021.0254 ; Universiteit Gent; Fonds Wetenschappelijk Onderzoek, 665501 ; Dalian University of Technology; China Scholarship Council, 201507565009 ; National Natural Science Foundation of China, 22101039 ; H2020 European Research Council, 815128 REALNANO ; sygmaSB Approved Most recent IF: 13.858  
  Call Number EMAT @ emat @c:irua:183951 Serial 6833  
Permanent link to this record
 

 
Author Grangeiro de Barros, A.; Devroede, R.; Vanlanduit, S.; Vuye, C.; Kampen, J.K. url  openurl
  Title Acoustic simulation of noise barriers and prediction of annoyance for local residents Type P1 Proceeding
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages (up) 1-8  
  Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)  
  Abstract Road traffic is the most widespread environmental noise source in Europe, proven to affect human health and well-being adversely. Noise barriers can be a very effective way to objectively reduce the noise levels to which the population is exposed, leading to positive effects on noise perception and quality of life. In this paper, surveys were used to assess subjective noise level indicators (annoyance and quality of life) from residents of the vicinity of a highway where obsolete noise barriers were to be replaced. %HA before the barrier replacement was measured from the surveys (26.8%) and estimated based on the acoustic simulation and two existing exposure/response relationships (14.6 and 18.8% before and 13.6 and 8.3% after). The difference in the measured %HA to those calculated from the ERRs shows that those models might not estimate %HA fairly for small samples or particular situations where high Lden is reported. Noise annoyance correlated differently with the quality of life indicators: a weak link was observed with health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Objective noise measurements gave LA,eq,(15 min.) reductions of 4.1dB(A) due to the new barrier, while in acoustics models, calculated as Lday, expected this reduction to be 5.2 dB(A). After replacing the noise barriers, a second survey could still not be distributed due to the unknown effect of the COVID-19 measures that are still active  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-83-7880-799-5 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181057 Serial 6969  
Permanent link to this record
 

 
Author de Barros, A.G.; Hasheminejad, N.; Kampen, J.K.; Vanlanduit, S.; Vuye, C. file  openurl
  Title Noise barriers as a road traffic noise intervention in an urban environment Type P1 Proceeding
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages (up) 1-10  
  Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)  
  Abstract Intending to tackle road traffic noise in urban environments, noise barriers have been proven to effectively reduce environmental noise levels, leading to positive effects on noise perception by the exposed population. This work assesses the impacts of replacing an obsolete noise barrier in a site near a highway. The effects of this change were monitored via a combination of field surveys, acoustic measurements and noise maps. The results have shown that even though the barrier replacement led to a 4.1 dB reduction in the LA,eq,(15 min.), the annoyance levels of the respondents increased. Possibly, the expectations regarding the improvement of the noise barrier were not met, after a history of complaints. Additionally, existing exposure-response relationships were not successful in predicting the annoyance levels in this particular case. In this dataset, noise annoyance presented a weak link with reported health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Questions regarding the COVID-19 pandemic showed that even though the respondents were spending more time at home, they were less annoyed due to road traffic noise in the period when circulation restrictions were in place.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-989-53387-0-2 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180105 Serial 7004  
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Soot removal from ancient Egyptian complex painted surfaces using a double network gel : empirical tests on the ceiling of the sanctuary of Osiris in the temple of Seti I-Abydos Type A1 Journal article
  Year 2021 Publication Heritage science Abbreviated Journal  
  Volume 9 Issue 1 Pages (up) 1-10  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract In this study, we evaluated the ease of removal of soot layers from ancient wall paintings by employing double network gels as a controllable and safe cleaning method. The ceiling of the temple of Seti I (Abydos, Egypt) is covered with thick layers of soot; this is especially the case in the sanctuary of Osiris. These layers may have been accumulated during the occupation of the temple by Christians, fleeing the Romans in the first centuries A.D. Soot particulates are one of the most common deposits to be removed during conservation-restoration activities of ancient Egyptian wall paintings. They usually mask the painted reliefs and reduce the permeability of the painted surface. A Polyvinyl alcohol-borax/agarose (PVA-B/AG) double network gel was selected for this task since its properties were expected to be compatible with the cleaning treatment requirements. The gel is characterized by its flexibility, permitting to take the shape of the reliefs, while also having self-healing properties, featuring shape stability and an appropriate capacity to retain liquid. The gel was loaded with several cleaning reagents that proved to be effective for soot removal. Soot removal tests were conducted with these gel composites. The cleaned surfaces were evaluated with the naked eye, a digital microscope, and color measurements in order to select the best gel composite. The gel composite, loaded with a solution of 5% ammonia, 0.3% ammonium carbonate, and 0.3% EDTA yielded the most satisfactory results and allowed to safely remove a crust of thick soot layers from the surface. Thus, during the final phase of the study, it was used successfully to clean a larger area of the ceiling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604977300001 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174948 Serial 8557  
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Effect of mismatched electron-hole effective masses on superfluidity in double layer solid-state systems Type A1 Journal article
  Year 2021 Publication Condensed Matter Abbreviated Journal  
  Volume 6 Issue 2 Pages (up) 14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superfluidity has been predicted and now observed in a number of different electron-hole double-layer semiconductor heterostructures. In some of the heterostructures, such as GaAs and Ge-Si electron-hole double quantum wells, there is a strong mismatch between the electron and hole effective masses. We systematically investigate the sensitivity to unequal masses of the superfluid properties and the self-consistent screening of the electron-hole pairing interaction. We find that the superfluid properties are insensitive to mass imbalance in the low density BEC regime of strongly-coupled boson-like electron-hole pairs. At higher densities, in the BEC-BCS crossover regime of fermionic pairs, we find that mass imbalance between electrons and holes weakens the superfluidity and expands the density range for the BEC-BCS crossover regime. This permits screening to kill the superfluid at a lower density than for equal masses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000665155800001 Publication Date 2021-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179635 Serial 6982  
Permanent link to this record
 

 
Author Marinov, D.; de Marneffe, J.-F.; Smets, Q.; Arutchelvan, G.; Bal, K.M.; Voronina, E.; Rakhimova, T.; Mankelevich, Y.; El Kazzi, S.; Nalin Mehta, A.; Wyndaele, P.-J.; Heyne, M.H.; Zhang, J.; With, P.C.; Banerjee, S.; Neyts, E.C.; Asselberghs, I.; Lin, D.; De Gendt, S. url  doi
openurl 
  Title Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal npj 2D Mater Appl  
  Volume 5 Issue 1 Pages (up) 17  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H<sub>2</sub>plasma to clean the surface of monolayer WS<sub>2</sub>grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS<sub>2</sub>in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H<sub>2</sub>S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS<sub>2</sub>devices can be maintained by the combination of H<sub>2</sub>plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H<sub>2</sub>and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613258900001 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Daniil Marinov has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 752164. Ekaterina Voronina, Yuri Mankelevitch, and Tatyana Rakhimova are thankful to the Russian Science Foundation (RSF) for financial support (Grant No. 16-12-10361). This study was carried out using the equipment of the shared research facilities of high-performance computing resources at Lomonosov Moscow State University and the computational resources and services of the HPC core facility CalcUA of the University of Antwerp, and VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government. Patrick With gratefully acknowledges imec’s CTO office for financial support during his stay at imec. The authors thank Mr. Surajit Sutar (imec) for his help during sample electrical characterization, and Patrick Verdonck for lab processing. Jean-François de Marneffe thank Prof. Simone Napolitano from the Free University of Brussels for useful discussions on irreversibly adsorbed polymer layers, and Cédric Huyghebaert (imec) for his continuous support in the framework of the Graphene FET Flagship core project. All authors acknowledge the support of imec’s pilot line and materials characterization and analysis (MCA) group, namely Jonathan Ludwig, Stefanie Sergeant, Thomas Nuytten, Olivier Richard, and Thierry Conard. Finally, Daniil Marinov thank Mikhail Krishtab (imec/KU Leuven) for his help in selecting the optimal plasma etch system for this work. Part of this project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 649953. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:175871 Serial 6671  
Permanent link to this record
 

 
Author Gielis, J.; Ricci, P.E.; Tavkhelidze, I. pdf  url
doi  openurl
  Title The Möbius phenomenon in Generalized Möbius-Listing surfaces and bodies, and Arnold's Cat phenomenon Type A1 Journal article
  Year 2021 Publication Advanced Studies : Euro-Tbilisi Mathematical Journal Abbreviated Journal  
  Volume 14 Issue 4 Pages (up) 17-35  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Möbius bands have been studied extensively, mainly in topology. Generalized Möbius-Listing surfaces and bodies providing a full geometrical generalization, is a quite new field, motivated originally by solutions of boundary value problems. Analogous to cutting of the original Möbius band, for this class of surfaces and bodies, results have been obtained when cutting such bodies or surfaces. In general, cutting leads to interlinked and intertwined different surfaces or bodies, resulting in very complex systems. However, under certain conditions, the result of cutting can be a single surface or body, which reduces complexity considerably. Our research is motivated by this reduction of complexity. In the study of cutting Generalized Möbius-Listing bodies with polygons as cross section, the conditions under which a single body results, displaying the Möbius phenomenon of a one-sided body, have been determined for even and odd polygons. These conditions are based on congruence and rotational symmetry of the resulting cross sections after cutting, and on the knife cutting the origin. The Möbius phenomenon is important, since the process of cutting (or separation of zones in a GML body in general) then results in a single body, not in different, intertwined domains. In all previous works it was assumed that the cross section of the GML bodies is constant, but the main result of this paper is that it is sufficient that only one cross section on the whole GML structure meets the conditions for the Möbius phenomenon to occur. Several examples are given to illustrate this.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000774655100002 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183081 Serial 8258  
Permanent link to this record
 

 
Author Muhammad, S.; Wuyts, K.; De Wael, K.; Samson, R. url  doi
openurl 
  Title Does leaf micro-morphology influence the recognition of particles on SEM images? Type A3 Journal article
  Year 2021 Publication International Journal of Environmental Pollution and Remediation Abbreviated Journal  
  Volume 9 Issue Pages (up) 22-37  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Scanning electron microscopy (SEM) remains a popular approach to determine the shape, size, density and elemental composition of particles collected on leaf surfaces, but the effect of leaf micro-morphology on particle counts is not very well known. In this study, leaves of sixteen urban plant species were examined for particle density in June and September 2016 using SEM. The investigated plant species differed in leaf micro-morphology involving trichomes, raised stomata, epicuticular wax crystals and convex epidermal cells forming deep grooves between cells. The particle density on leaves of the investigated plant species was estimated by particle size fraction and leaf side. Particle density was significantly higher on the adaxial (AD) leaf side compared to the abaxial (AB) leaf side and higher for fine-particles than coarse-particles. The effect of trichome density on particle density of the AB and the AD leaf side was indicated to be significant and positive for both coarse and fine-particles in June but not in September. The successive repeated measurements elucidated that features constructing the topography of a leaf surface such as trichomes, stomata, and epidermal cells frequently contributed towards the edge enhancement effect, resulting in exaggerated particle counts. Besides, the mechanical drift contributed to the disparity in particle density measurements. Lastly, the reduction in particle density between successive measurements were imputed on the charging effect. These results enable us to suggest that in addition to characterization of micro-morphological features on a leaf surface, SEM will continue to be a useful approach for determining the particle: shape, size, elemental composition and density of the deposited particles. Nonetheless, the disparity in particle density measurements can occur due to abnormal particle recognition. Based on the results of September, we recommend that within-session successive repeated measurements (~ n ≥ 5) need to be performed to remove measurement uncertainties and obtain reliable quantitative data of particle counts using SEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181797 Serial 7822  
Permanent link to this record
 

 
Author Gielis, J. openurl 
  Title Er bestaan geen absurde, irrationele, onregelmatige of onderling niet-onmeetbare meetkundige getallen Type A2 Journal article
  Year 2021 Publication Wiskunde en onderwijs Abbreviated Journal  
  Volume 47 Issue 188 Pages (up) 23-33  
  Keywords A2 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2032-0485 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:183083 Serial 7934  
Permanent link to this record
 

 
Author Gielis, J. pdf  url
doi  openurl
  Title Phi-bonacci in Ancient Greece Type A1 Journal article
  Year 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 1 Pages (up) 25-40  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Fibonacci numbers are a very popular subject in mathematics, culture and science. A major open question is why the ancient Greeks overlooked this series, while they were very familiar with the golden mean and division in extreme and mean ratio. Furthermore, they could compute the square root of five to a high degree of precision using Theon 's ladder. This fact is based on tables built with side and diagonal numbers, and it is a simple and incredibly efficient method to compute roots of integers, though it is little known even now among most of the experts. The biologist D 'Arcy Wentworth Thompson showed that the same method could be used to generate the Fibonacci series using a simple shift in the computation of the tables. He argues, quite convincingly, that the ancient Greeks could not have overlooked this. Actually, the same method can be used to generate all possible regular phyllotaxis patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000643822700002 Publication Date 2021-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178322 Serial 8376  
Permanent link to this record
 

 
Author Barbiellini, B.; Kuriplach, J.; Saniz, R. url  doi
openurl 
  Title Study of rechargeable batteries using advanced spectroscopic and computational techniques Type Editorial
  Year 2021 Publication Condensed Matter Abbreviated Journal  
  Volume 6 Issue 3 Pages (up) 26  
  Keywords Editorial; Electron microscopy for materials research (EMAT)  
  Abstract Improving the efficiency and longevity of energy storage systems based on Li- and Na-ion rechargeable batteries presents a major challenge. The main problems are essentially capacity loss and limited cyclability. These effects are due to a hierarchy of factors spanning various length and time scales, interconnected in a complex manner. As a consequence, and in spite of several decades of research, a proper understanding of the ageing process has remained somewhat elusive. In recent years, however, combinations of advanced spectroscopy techniques and first-principles simulations have been applied with success to tackle this problem. In this Special Issue, we are pleased to present a selection of articles that, by precisely applying these methods, unravel key aspects of the reduction-oxidation reaction and intercalation processes. Furthermore, the approaches presented provide improvements to standard diagnostic and characterisation techniques, enabling the detection of possible Li-ion flow bottlenecks causing the degradation of capacity and cyclability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000699368400001 Publication Date 2021-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2410-3896 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181630 Serial 6890  
Permanent link to this record
 

 
Author de Backer, A.; Fatermans, J.; den Dekker, A.J.; Van Aert, S. pdf  doi
isbn  openurl
  Title Statistical parameter estimation theory : principles and simulation studies Type H2 Book chapter
  Year 2021 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics Abbreviated Journal  
  Volume Issue Pages (up) 29-72  
  Keywords H2 Book chapter; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this chapter, the principles of statistical parameter estimation theory for a quantitative analysis of atomic-resolution electron microscopy images are introduced. Within this framework, electron microscopy images are described by a parametric statistical model. Here, parametric models are introduced for different types of electron microscopy images: reconstructed exit waves, annular dark-field (ADF) scanning transmission electron microscopy (STEM) images, and simultaneously acquired ADF and annular bright-field (ABF) STEM images. Furthermore, the Cramér-Rao lower bound (CRLB) is introduced, i.e. a theoretical lower bound on the variance of any unbiased estimator. This CRLB is used to quantify the precision of the structure parameters of interest, such as the atomic column positions and the integrated atomic column intensities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 217 Series Issue Edition  
  ISSN ISBN 978-0-12-824607-8; 1076-5670 Additional Links UA library record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ERC Consolidator project funded by the European Union grant #770887 Picometrics Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:177527 Serial 6788  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: