|   | 
Details
   web
Records
Author Queralto, A.; Graf, D.; Frohnhoven, R.; Fischer, T.; Vanrompay, H.; Bals, S.; Bartasyte, A.; Mathur, S.
Title LaFeO3 nanofibers for high detection of sulfur-containing gases Type A1 Journal article
Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 7 Issue 7 Pages 6023-6032
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Lanthanum ferrite nanofibers were electrospun from a chemical sol and calcined at 600 degrees C to obtain singlephase LaFeO3 (LFO) perovskite. High-resolution transmission electron microscopy in conjunction with 3D tomographic analysis confirmed an interwoven network of hollow and porous (surface) LFO nanofibers. Owing to their high surface area and p-type behavior, the nanofiber meshes showed high chemoselectivity toward reducing toxic gases (SO2, H2S) that could be reproducibly detected at very low concentrations (<1 ppm), well below the threshold values for occupational safety and health. An increased sensitivity was observed in the temperature range of 150-300 degrees C with maximum sensor response at 250 degrees C. The surface reaction at the heterogeneous solid (LFO)/gas (SO2) interface that confirmed the formation of La-2(SO4)(3) was investigated by X-ray photoelectron spectroscopy. Moreover, the LFO fibers showed a high selectivity in the detection of oxidizing and reducing gases. Whereas superior detection of NH3 and H2S was measured, little response was observed for CO and NO2. Finally, the integration of nanowire meshes in commercial sensor platforms was successfully demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461978200047 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 5.951 Times cited 41 Open Access OpenAccess
Notes ; The authors kindly acknowledge the ERA.Net RUS Plus project FONSENS funded by the German Federal Ministry of Education and Research (BMBF) under the grant no. 01DJ16017. A.Q. highly appreciates the support of the Alexander von Humboldt Foundation (grant no. AVH 1184642) and the BMBF for his postdoctoral fellowship. A.Q., D.G., R.F., T.F., and S.M. also kindly acknowledge the financial support of the University of Cologne. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). We also express our gratitude to Prof. Dr. J. Hadermann from the Electron Microscopy for Materials Science group at the University of Antwerp for her assistance. A.B. is grateful for the EUR EIPHI program (grant no. ANR-17-EURE-0002). ; Approved Most recent IF: 5.951
Call Number UA @ admin @ c:irua:158535 Serial 5263
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M.
Title Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 11 Pages 115421
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461958900006 Publication Date 2019-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158538 Serial 5199
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
Year 2019 Publication Frontiers in materials Abbreviated Journal
Volume 6 Issue 6 Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461540600001 Publication Date 2019-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-8016 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 11 Open Access OpenAccess
Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158540 Serial 5205
Permanent link to this record
 

 
Author Yin, C.; Krishnan, D.; Gauquelin, N.; Verbeeck, J.; Aarts, J.
Title Controlling the interfacial conductance in LaAlO3/SrTiO3 in 90 degrees off-axis sputter deposition Type A1 Journal article
Year 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 3 Pages 034002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the fabrication of conducting interfaces between LaAlO3 and SrTiO3 by 90 degrees off-axis sputtering in an Ar atmosphere. At a growth pressure of 0.04 mbar the interface is metallic, with a carrier density of the order of 1 x 10(13) cm(-2) at 3 K. By increasing the growth pressure, we observe an increase of the out-of-plane lattice constants of the LaAlO3 films while the in-plane lattice constants do not change. Also, the low-temperature sheet resistance increases with increasing growth pressure, leading to an insulating interface when the growth pressure reaches 0.10 mbar. We attribute the structural variations to an increase of the La/Al ratio, which also explains the transition from metallic behavior to insulating behavior of the interfaces. Our research shows that the control which is furnished by the Ar pressure makes sputtering as versatile a process as pulsed laser deposition, and emphasizes the key role of the cation stoichiometry of LaAlO3 in the formation of the conducting interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461077100002 Publication Date 2019-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.926 Times cited 4 Open Access Not_Open_Access
Notes ; We thank Nikita Lebedev, Aymen Ben Hamida, and Prateek Kumar for useful discussions and Giordano Mattoni, Jun Wang, Vincent Joly, and Hozanna Miro for their technical assistance. We also thank Jean-Marc Triscone and his group for sharing their design of the sputtering system with us. This work is part of the FOM research programme DESCO with Project No. 149, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). C.Y. is supported by China Scholarship Council (CSC) with Grant No. 201508110214. N.G., D.K., and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158547 Serial 5243
Permanent link to this record
 

 
Author Gan, Y.; Christensen, D.V.; Zhang, Y.; Zhang, H.; Krishnan, D.; Zhong, Z.; Niu, W.; Carrad, D.J.; Norrman, K.; von Soosten, M.; Jespersen, T.S.; Shen, B.; Gauquelin, N.; Verbeeck, J.; Sun, J.; Pryds, N.; Chen, Y.
Title Diluted oxide interfaces with tunable ground states Type A1 Journal article
Year 2019 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 31 Issue 10 Pages 1805970
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The metallic interface between two oxide insulators, such as LaAlO3/SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1-xMnxO3/STO (0 <= x <= 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of n(c) = 2.8 x 10(13) cm(-2), where a peak T-SC approximate to 255 mK of superconducting transition temperature is observed. Moreover, the LaAl1-xMnxO3 turns ferromagnetic at x >= 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only d(xy) electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 x 10(12) cm(-2) < n(s) <= 1.1 x 10(13) cm(-2)) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460329300004 Publication Date 2019-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 31 Open Access Not_Open_Access
Notes ; The authors thank the technical help from J. Geyti. J.R.S. acknowledges the support of the National Basic Research of China (2016YFA0300701, 2018YFA0305704), the National Natural Science Foundation of China (11520101002), and the Key Program of the Chinese Academy of Sciences. N.G., D.K., and J.V. acknowledge funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp, Belgium. ; Approved Most recent IF: 19.791
Call Number UA @ admin @ c:irua:158553 Serial 5245
Permanent link to this record
 

 
Author Menezes, R.M.; Mulkers, J.; de Souza Silva, C.C.; Milošević, M.V.
Title Deflection of ferromagnetic and antiferromagnetic skyrmions at heterochiral interfaces Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 10 Pages 104409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Devising magnetic nanostructures with spatially heterogeneous Dzyaloshinskii-Moriya interaction (DMI) is a promising pathway toward advanced confinement and control of magnetic skyrmions in potential devices. Here we discuss theoretically how a skyrmion interacts with a heterochiral interface using micromagnetic simulations and analytic arguments. We show that a heterochiral interface deflects the trajectory of ferromagnetic (FM) skyrmions, and that the extent of such deflection is tuned by the applied spin-polarized current and the difference in DMI across the interface. Further, we show that this deflection is characteristic of the FM skyrmion, and it is completely absent in the antiferromagnetic (AFM) case. In turn, we reveal that the AFM skyrmion achieves much higher velocities than its FM counterpart, yet experiences far stronger confinement in nanoengineered heterochiral tracks, which reinforces AFM skyrmions as a favorable choice for skyrmion-based devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460720600005 Publication Date 2019-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vlaanderen) and Brazilian Agencies FACEPE under Grant No. APQ-0198-1.05/14, CAPES and CNPq. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158557 Serial 5203
Permanent link to this record
 

 
Author Zhang, G.; Zhou, Y.; Korneychuk, S.; Samuely, T.; Liu, L.; May, P.W.; Xu, Z.; Onufriienko, O.; Zhang, X.; Verbeeck, J.; Samuely, P.; Moshchalkov, V.V.; Yang, Z.; Rubahn, H.-G.
Title Superconductor-insulator transition driven by pressure-tuned intergrain coupling in nanodiamond films Type A1 Journal article
Year 2019 Publication Physical review materials Abbreviated Journal
Volume 3 Issue 3 Pages 034801
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report on the pressure-driven superconductor-insulator transition in heavily boron-doped nanodiamond films. By systematically increasing the pressure, we suppress the Josephson coupling between the superconducting nanodiamond grains. The diminished intergrain coupling gives rise to an overall insulating state in the films, which is interpreted in the framework of a parallel-series circuit model to be the result of bosonic insulators with preserved localized intragrain superconducting order parameters. Our investigation opens up perspectives for the application of high pressure in research on quantum confinement and coherence. Our data unveil the percolative nature of the electrical transport in nanodiamond films, and highlight the essential role of grain boundaries in determining the electronic properties of this material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460684600002 Publication Date 2019-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.926 Times cited 5 Open Access Not_Open_Access
Notes ; Y.Z. and Z.Y. acknowledge support from the National Key Research and Development Program of China (Grants No. 2018YFA0305700 and No. 2016YFA0401804), the National Natural Science Foundation of China (Grants No. 11574323, No. 11704387, and No. U1632275), the Natural Science Foundation of Anhui Province (Grants No. 1708085QA19 and No. 1808085MA06), and the Director's Fund of Hefei Institutes of Physical Science, Chinese Academy of Sciences (YZJJ201621). J.V. and S.K. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp, and thank the FWO (Research Foundation-Flanders) for financial support under Contract No. G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. T.S., O.O., and P.S. are supported by APVV-0036-11, APVV-0605-14, VEGA 1/0409/15, VEGA 2/0149/16, and EU ERDF-ITMS 26220120005. L.L. acknowledges the financial support of a FWO postdoctoral research fellowship (12V4419N) and the KU Leuven C1 project OPTIPROBE (C14/16/ 063). ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158561 Serial 5260
Permanent link to this record
 

 
Author Wang, C.; Xin, X.; Shu, M.; Huang, S.; Zhang, Y.; Li, X.
Title Scalable synthesis of one-dimensional Na2Li2Ti6O14 nanofibers as ultrahigh rate capability anodes for lithium-ion batteries Type A1 Journal article
Year 2019 Publication Inorganic Chemistry Frontiers Abbreviated Journal Inorg Chem Front
Volume 6 Issue 3 Pages 646-653
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon anode materials for Li-ion batteries have been operated close to their theoretical rate and cycle limits. Therefore, titanium-based materials have attracted great attention due to their high stability. Here, Na2Li2Ti6O14 nanofibers as anode materials were prepared through a controlled electrospinning method. The Na2Li2Ti6O14 nanofibers presented superior electrochemical performance with high rate capability and long cycle life and can be regarded as a competitive anode candidate for advanced Li-ion batteries. One-dimensional (1D) Na2Li2Ti6O14 nanofibers are able to deliver a capacity of 128.5 mA h g(-1) at 0.5C, and demonstrate superior high-rate charge-discharge capability and cycling stability (the reversible charge capacity is 77.8 mA h g(-1) with a capacity retention of 99.45% at the rate of 10C after 800 cycles). The 1D structure is considered to contribute remarkably to increased rate capability and stability. This simple and scalable method indicates that the Na2Li2Ti6O14 nanofibers have a practical application potential for high performance lithium-ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461092500027 Publication Date 2018-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-1553 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.036 Times cited 3 Open Access Not_Open_Access
Notes ; The authors acknowledge financial support from the National Natural Science Foundation of China (21571110), Natural Science Foundation of Zhejiang Province (LY18B010003), and the Ningbo Key Innovation Team (2014B81005), and sponsorship by the K.C. Wong Magna Fund in Ningbo University. ; Approved Most recent IF: 4.036
Call Number UA @ admin @ c:irua:158566 Serial 5258
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
Title Transport of cystine across xC-antiporter Type A1 Journal article
Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
Volume 664 Issue Pages 117-126
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461411200014 Publication Date 2019-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.165 Times cited 3 Open Access OpenAccess
Notes Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183
Permanent link to this record
 

 
Author Bencs, L.; Spolnik, Z.; Worobiec, A.; Samek, L.; Jutte, B.A.H.G.; Van Grieken, R.
Title Effects of IR heating on distribution and transport of gaseous air pollutants in urban and mountain churches in Poland Type A1 Journal article
Year 2019 Publication Journal of cultural heritage Abbreviated Journal
Volume 36 Issue Pages 200-209
Keywords A1 Journal article; Art; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract The spatial distribution and temporal concentration variation of a set of gaseous air components (e.g., CO2, CO, H2CO, H2O) have been monitored with a multi-channel photoacoustic gas-analyzer in an urban church ( Saint Catherine's, Cracow) and a mountain church ( Saint Michaels Archangel, Szalowa) of Poland, in order to assess the likely effects of air pollution indoors under the influence of provisory electrical infrared (IR) heaters and without heating. Likewise, the ventilation characteristic and the leakage of these buildings with different constructions (i.e., plastered stone and wooden structures) with the assistance of decay curves of SF6 tracer gas was evaluated and compared. The wooden building in Szalowa, due to its more open structure, developed about one order higher ventilation rates (e.g., 0.9-1.3 h(-1)) than the stone church in Cracow (e.g., 0.1 h(-1)). The IR-heating affected only modestly the ventilation rate of the wooden church (e.g., 1.2-1.6 h(-1)), but it increased significantly that of the plastered stone church (e.g., 0.27 h(-1)). The ventilation rates were also assessed with the use of the CO2 curve decay method, and satisfactory agreement was found with those observed by the use of SF6 tracer. The spatial distribution of the studied gaseous pollutants (CO2, H2O) was found to be in some occasions nonhomogeneous in both buildings, due to the active usage of the IR-heating, especially, during a couple of consecutive liturgical services. Besides the pollution events due to ingress of gaseous air pollutants, present at enhanced levels outdoors, increased CO, CO2 and H2CO peaks were observed indoors too, which, in most cases, could be associated with incense burning. (C) 2018 Elsevier Masson SAS. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460311800021 Publication Date 2018-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:158579 Serial 7847
Permanent link to this record
 

 
Author Milovanović, S.P.; Covaci, L.; Peeters, F.M.
Title Strain fields in graphene induced by nanopillar mesh Type A1 Journal article
Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 125 Issue 8 Pages 082534
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The mechanical and electronic properties of a graphene membrane placed on top of a triangular superlattice of nanopillars are investigated. We use molecular dynamics simulations to access the deformation fields and the tight-binding approaches to calculate the electronic properties. Ripples form in the graphene layer that span across the unit cell, connecting neighboring pillars, in agreement with recent experiments. We find that the resulting pseudo-magnetic field (PMF) varies strongly across the unit cell. We investigate the dependence of PMF on unit cell boundary conditions, height of the pillars, and the strength of the van der Waals interaction between graphene and the substrate. We find direct correspondence with typical experiments on pillars, showing intrinsic “slack” in the graphene membrane. PMF values are confirmed by the local density of states calculations performed at different positions of the unit cell showing pseudo-Landau levels with varying spacings. Our findings regarding the relaxed membrane configuration and the induced strains are transferable to other flexible 2D membranes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460033800038 Publication Date 2019-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 5 Open Access
Notes ; S.P.M. is supported by the Flemish Science Foundation (FWO). ; Approved Most recent IF: 2.068
Call Number UA @ admin @ c:irua:158605 Serial 5231
Permanent link to this record
 

 
Author Kahraman, Z.; Kandemir, A.; Yagmurcukardes, M.; Sahin, H.
Title Single-layer Janus-type platinum dichalcogenides and their heterostructures Type A1 Journal article
Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 123 Issue 7 Pages 4549-4557
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Ultrathin two-dimensional Janus-type platinum dichalcogenide crystals formed by two different atoms at opposite surfaces are investigated by performing state-of-the-art density functional theory calculations. First, it is shown that single-layer PtX2 structures (where X = S, Se, or Te) crystallize into the dynamically stable IT phase and are indirect band gap semiconductors. It is also found that the substitutional chalcogen doping in all PtX2 structures is favorable via replacement of surface atoms with a smaller chalcogen atom, and such a process leads to the formation of Janus-type platinum dichalcogenides (XPtY, where X and Y stand for S, Se, or Te) which are novel single-layer crystals. While all Janus structures are indirect band gap semiconductors as their binary analogues, their Raman spectra show distinctive features that stem from the broken out-of-plane symmetry. In addition, it is revealed that the construction of Janus crystals enhances the piezoelectric constants of PtX2 crystals significantly both in the in plane and in the out-of-plane directions. Moreover, it is shown that vertically stacked van der Waals heterostructures of binary and ternary (Janus) platinum dichalcogenides offer a wide range of electronic features by forming bilayer heterojunctions of type-I, type-II, and type-III, respectively. Our findings reveal that Janus-type ultrathin platinum dichalcogenide crystals are quite promising materials for optoelectronic device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459836900071 Publication Date 2019-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. and Z.K. acknowledge financial support from the TUBITAK under the project number 117F095. This work is supported by the Flemish Science Foundation (FWO-Vl) by a post-doctoral fellowship (M.Y.). H.S. acknowledges support from Turkiye Bilimler Akademisi-Turkish Academy of Sciences under the GEBIP program. ; Approved Most recent IF: 4.536
Call Number UA @ admin @ c:irua:158617 Serial 5229
Permanent link to this record
 

 
Author Demiroglu, I.; Peeters, F.M.; Gulseren, O.; Cakir, D.; Sevik, C.
Title Alkali metal intercalation in MXene/graphene heterostructures : a new platform for ion battery applications Type A1 Journal article
Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 10 Issue 4 Pages 727-734
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Na, K, and Ca atoms on MXene/graphene heterostructures of MXene systems Sc2C(OH)(2), Ti2CO2, and V2CO2 are systematically investigated by using first-principles methods. We found that alkali metal intercalation is energetically favorable and thermally stable for Ti2CO2/graphene and V2CO2/graphene heterostructures but not for Sc2C(OH)(2). Diffusion kinetics calculations showed the advantage of MXene/graphene heterostructures over sole MXene systems as the energy barriers are halved for the considered alkali metals. Low energy barriers are found for Na and K ions, which are promising for fast charge/discharge rates. Calculated voltage profiles reveal that estimated high capacities can be fully achieved for Na ion in V2CO2/graphene and Ti2CO2/graphene heterostructures. Our results indicate that Ti2CO2/graphene and V2CO2/graphene electrode materials are very promising for Na ion battery applications. The former could be exploited for low voltage applications while the latter will be more appropriate for higher voltages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459948800005 Publication Date 2019-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 67 Open Access
Notes ; We acknowledge the support from the TUBITAK (116F080) and the BAGEP Award of the Science Academy. Part of this work was supported by the FLAG -ERA project TRANS-2D-TMD. A part of this work was supported by University of North Dakota Early Career Award (Grant number: 20622-4000-02624). We also acknowledge financial support from ND EPSCoR through NSF grant OIA-1355466. Computational resources were provided by the High Performance and Grid Computing Center (TRGrid e-Infrastructure) of TUBITAK ULAKBIM, the National Center for High Performance Computing (UHeM) of Istanbul Technical University, and Computational Research Center (HPC Linux cluster) at the University of North Dakota. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. ; Approved Most recent IF: 9.353
Call Number UA @ admin @ c:irua:158618 Serial 5194
Permanent link to this record
 

 
Author Lozano, D.P.; Couet, S.; Petermann, C.; Hamoir, G.; Jochum, J.K.; Picot, T.; Menendez, E.; Houben, K.; Joly, V.; Antohe, V.A.; Hu, M.Y.; Leu, B.M.; Alatas, A.; Said, A.H.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Piraux, L.; Van de Vondel, J.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 6 Pages 064512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (T-c). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of T-c. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and T-c of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in T-c.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459322400005 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes ; We would like to thanks Jeroen Scheerder and Wout Keijers for their help and assistance during the low-temperature measurements. This work was supported by the Research Foundation Flanders (FWO), the Concerted Research Action (GOA/14/ 007), the Federation Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and the Fonds de la Recherche Scientifique -FNRS under Grant No. T.0006.16. The authors acknowledge Hercules Stichting (Project Nos. AKUL/13/19 and AKUL/13/25). D.P.L. thanks the FWO for financial support. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158621 Serial 5212
Permanent link to this record
 

 
Author Mefford, J.T.; Kurilovich, A.A.; Saunders, J.; Hardin, W.G.; Abakumov, A.M.; Forslund, R.P.; Bonnefont, A.; Dai, S.; Johnston, K.P.; Stevenson, K.J.
Title Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1-xSrxCoO3-\delta perovskite composite electrodes Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 6 Pages 3327-3338
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Perovskite oxides are active room-temperature bifunctional oxygen electrocatalysts in alkaline media, capable of performing the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with lower combined overpotentials relative to their precious metal counterparts. However, their semiconducting nature necessitates the use of activated carbons as conductive supports to generate applicably relevant current densities. In efforts to advance the performance and theory of oxide electrocatalysts, the chemical and physical properties of the oxide material often take precedence over contributions from the conductive additive. In this work, we find that carbon plays an important synergistic role in improving the performance of La1-xSrxCoO3- (0 x 1) electrocatalysts through the activation of O-2 and spillover of radical oxygen intermediates, HO2- and O-2(-), which is further reduced through chemical decomposition of HO2- on the perovskite surface. Through a combination of thin-film rotating disk electrochemical characterization of the hydrogen peroxide intermediate reactions (hydrogen peroxide reduction reaction (HPRR), hydrogen peroxide oxidation reaction (HPOR)) and oxygen reduction reaction (ORR), surface chemical analysis, HR-TEM, and microkinetic modeling on La1-xSrxCoO3- (0 x 1)/carbon (with nitrogen and non-nitrogen doped carbons) composite electrocatalysts, we deconvolute the mechanistic aspects and contributions to reactivity of the oxide and carbon support.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459584900049 Publication Date 2019-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 5 Open Access OpenAccess
Notes ; Financial support for this work was provided by the R. A. Welch Foundation (grants F-1529 and F-1319). S. D. was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. ; Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:158625 Serial 5244
Permanent link to this record
 

 
Author Tang, T.; Strokal, M.; van Vliet, M.T.H.; Seuntjens, P.; Burek, P.; Kroeze, C.; Langan, S.; Wada, Y.
Title Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide Type A1 Journal article
Year 2019 Publication Current Opinion in Environmental Sustainability Abbreviated Journal
Volume 36 Issue Pages 39-48
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Global water quality (WQ) modeling is an emerging field. In this article, we identify the missing linkages between global and basin/local-scale WQ models, and discuss the possibilities to fill these gaps. We argue that WQ models need stronger linkages across spatial scales. This would help to identify effective scale-specific WQ management options and contribute to future development of global WQ models. Two directions are proposed to improve the linkages: nested multiscale WQ modeling towards enhanced water management, and development of next-generation global WQ models based-on basin/local-scale mechanistic understanding. We highlight the need for better collaboration among WQ modelers and policy-makers in order to deliver responsive water policies and management strategies across scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460234600006 Publication Date 2018-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-3435 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:158643 Serial 7568
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V.
Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
Year 2019 Publication Catalysts Abbreviated Journal Catalysts
Volume 9 Issue 1 Pages 51
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459732000051 Publication Date 2019-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 3.082
Call Number UA @ admin @ c:irua:158666 Serial 5268
Permanent link to this record
 

 
Author Clima, S.; McMitchell, S.R.C.; Florent, K.; Nyns, L.; Popovici, M.; Ronchi, N.; Di Piazza, L.; Van Houdt, J.; Pourtois, G.
Title First-principles perspective on poling mechanisms and ferroelectric/antiferroelectric behavior of Hf1-xZrxO2 for FEFET applications Type P1 Proceeding
Year 2018 Publication 2018 Ieee International Electron Devices Meeting (iedm) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We investigate at the atomic level the most probable phase transformations under strain, that are responsible for the ferroelectric/ antiferroelectric behavior in Hf1-xZrxO2 materials. Four different crystalline phase transformations exhibit a polar/non-polar transition: monoclinic-to-orthorhombic requires a gliding strain tensor, orthorhombic-to-orthorhombic transformation does not need strain to polarize the material, whereas tetragonal-to-cubic cell compression and tetragonal-to-orthorhombic cell elongation destabilizes the non-polar tetragonal phase, facilitating the transition towards a polar atomic configuration, therefore changing the polarization-electric field loop from antiferroelectric to ferroelectric. Oxygen vacancies can reduce drastically the polarization reversal barriers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459882300073 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-72811-987-8; 978-1-72811-987-8 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:158693 Serial 7972
Permanent link to this record
 

 
Author Sankaran, K.; Swerts, J.; Carpenter, R.; Couet, S.; Garello, K.; Evans, R.F.L.; Rao, S.; Kim, W.; Kundu, S.; Crotti, D.; Kar, G.S.; Pourtois, G.
Title Evidence of magnetostrictive effects on STT-MRAM performance by atomistic and spin modeling Type P1 Proceeding
Year 2018 Publication 2018 Ieee International Electron Devices Meeting (iedm) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract For the first time, we demonstrate, using an atomistic description of a 30nm diameter spin-transfer-torque magnetic random access memories (STT-MRAM), that the difference in mechanical properties of its sub-nanometer layers induces a high compressive strain in the magnetic tunnel junction (MTJ) and leads to a detrimental magnetostrictive effect. Our model explains the issues met in engineering the electrical and magnetic performances in scaled STT-MRAM devices. The resulting high compressive strain built in the stack, particularly in the MgO tunnel barrier (t-MgO), and its associated non-uniform atomic displacements, impacts on the quality of the MTJ interface and leads to strain relieve mechanisms such as surface roughness and adhesion issues. We illustrate that the strain gradient induced by the different materials and their thicknesses in the stacks has a negative impact on the tunnel magneto-resistance (TMR), on the magnetic nucleation process and on the STT-MRAM performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459882300147 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-72811-987-8; 978-1-72811-987-8 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:158694 Serial 7942
Permanent link to this record
 

 
Author Al-Emam, E.; Motawea, A.G.; Janssens, K.; Caen, J.
Title Evaluation of polyvinyl alcohol–borax/agarose (PVA–B/AG) blend hydrogels for removal of deteriorated consolidants from ancient Egyptian wall paintings Type A1 Journal article
Year 2019 Publication Heritage science Abbreviated Journal
Volume 7 Issue 7 Pages 22
Keywords A1 Journal article; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract This study concerns the assessment of a new polyvinyl alcohol–borax/agarose blend hydrogel (PVA–B/AG) tailored for the conservation of ancient Egyptian wall paintings. The increasing problems of deteriorated consolidants affecting ancient wall paintings have attracted the interest of conservation scientists in the last 20 years. The ability of a new blend for removing aged Paraloid® B-72 layers from painted stone and plaster samples has been evaluated. The hydrogel blend was used to expose the aged Paraloid in a controlled manner to six different cleaning system (CS). CS1–CS4 consist of solvents or solvent mixtures; CS5 and CS6 are nanostructured fluids (NSFs). The evaluation of the removal process was carried out by quantitative and qualitative methods, namely, visual examination, 3D microscopy, contact angle and colorimetric measurements and by Fourier transform infra-red spectrometry in reflectance mode. The results showed that the PVA–B/AG blend hydrogel, loaded with specific cleaning systems, was able to remove deteriorated B-72 and allowed to restore the painted surface to a state close to the original one. The PVA–B/AG blend showed good workability, permitting it to be easily cut, shaped, applied and removed. It could also be verified by means of different investigation methods that the blend left no detectable residues. As a final realistic check of the method, the PVA–B/AG hydrogel loaded with the best functioning cleaning system (CS3) was used to remove an aged consolidant layer from an ancient Egyptian wall painting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000463733900001 Publication Date 2019-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7445 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes ; Ehab Al-Emam acknowledges the Egyptian Ministry of Higher Education for funding his PhD scholarship. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158879 Serial 5615
Permanent link to this record
 

 
Author Lou, W.-K.
Title The electrical properties of low low dimensional topological insulators Type Doctoral thesis
Year 2012 Publication Abbreviated Journal
Volume Issue Pages 186 p.
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links (up) UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:158894 Serial 7858
Permanent link to this record
 

 
Author Srivastava, A.; Van Passel, S.; Laes, E.
Title Dissecting demand response : a quantile analysis of flexibility, household attitudes, and demographics Type A1 Journal article
Year 2019 Publication Energy Research and Social Science Abbreviated Journal
Volume 52 Issue 52 Pages 169-180
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract Demand response (DR) can aid with grid integration of renewables, ensuring security of supply, and reducing generation costs. However, not enough is known about how residential customers’ perceptions of DR shape their response to such programs. This paper offers a deeper understanding of – and reveals the heterogeneity in – this relationship by conducting a quantile regression analysis of a Belgian DR trial, combining data on response with information on household attitudes towards smart appliances. Results overall suggest that improving response requires subtle shifts in electricity consumption behaviour, which can be achieved through changes in user perceptions. Specifically, if customers are inclined to be flexible, a stronger perception of smart appliances as being beneficial can greatly improve response. With those who are less flexible, the cost of smart appliances is a bigger concern. Thus, when designing DR programs, policymakers should aim to promote modest behaviour changes – so as to minimise inconvenience – in customers, by improving awareness on the benefits of smart appliances. Uptake of such DR programs may be improved by explaining the financial benefits or offering incentives to less flexible population segments. Lastly, improving response among older population segments will require a deeper investigation into their concerns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000468215900016 Publication Date 2019-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-6296 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor Times cited 1 Open Access
Notes ; This work continued on the results and data of the project Linear that was supported by the Flemish Ministry of Science and organised by the Institute for Science and Technology (IWT). The authors gratefully acknowledge the support extended by Wim Cardinaels at VITO in helping them access the underlying Linear data. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:158910 Serial 6183
Permanent link to this record
 

 
Author Bogaerts, A.
Title Editorial Catalysts: Special Issue on Plasma Catalysis Type Editorial
Year 2019 Publication Catalysts Abbreviated Journal Catalysts
Volume 9 Issue 2 Pages 196
Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, and CH4 conversion into higher hydrocarbons or oxygenates [...]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460702200090 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 1 Open Access OpenAccess
Notes Approved Most recent IF: 3.082
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159153 Serial 5166
Permanent link to this record
 

 
Author Jannis, D.; Müller-Caspary, K.; Béché, A.; Oelsner, A.; Verbeeck, J.
Title Spectroscopic coincidence experiments in transmission electron microscopy Type A1 Journal article
Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 114 Issue 14 Pages 143101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate the feasibility of coincidence measurements on a conventional transmission electron microscope, revealing the temporal

correlation between electron energy loss spectroscopy (EELS) and energy dispersive X-ray (EDX) spectroscopy events. We make use of a

delay line detector with ps-range time resolution attached to a modified EELS spectrometer. We demonstrate that coincidence between both

events, related to the excitation and deexcitation of atoms in a crystal, provides added information not present in the individual EELS or

EDX spectra. In particular, the method provides EELS with a significantly suppressed or even removed background, overcoming the many

difficulties with conventional parametric background fitting as it uses no assumptions on the shape of the background, requires no user input

and does not suffer from counting noise originating from the background signal. This is highly attractive, especially when low concentrations

of elements need to be detected in a matrix of other elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464450200022 Publication Date 2019-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 18 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G093417 ; Horizon 2020 Framework Programme, 823717 ESTEEM3 ; Helmholtz Association, VH-NG-1327 ; Approved Most recent IF: 3.411
Call Number EMAT @ emat @UA @ admin @ c:irua:159155 Serial 5168
Permanent link to this record
 

 
Author Chekol Zewdie, M.; Van Passel, S.; Cools, J.; Tenessa, D.B.; Ayele, Z.A.; Tsegaye, E.A.; Minale, A.S.; Nyssen, J.
Title Direct and indirect effect of irrigation water availability on crop revenue in northwest Ethiopia : a structural equation model Type A1 Journal article
Year 2019 Publication Agricultural Water Management Abbreviated Journal Agr Water Manage
Volume 220 Issue 220 Pages 27-35
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract Development of a clear understanding of the relationship between the availability of dam-driven irrigation water and crop revenue is important in poverty reduction and food security process. As a result, large research efforts are devoted to understanding the relationship between the availability of irrigation water and crop revenue. However, earlier studies do have several limitations. For example, without considering its indirect effect, prior studies focused solely on the direct effect of availability of irrigation water on crop revue. In this study, using a structural equation model analysis, the direct and indirect effect of availability of dam-driven irrigation water on crop revenue is decomposed and quantified specifically for the Koga irrigation scheme, located in the Mecha district of Amhara region in Ethiopia. A primary data set was collected from a randomly selected sample of 450 households in the Koga irrigation scheme. More than half of the households (254) are supported by the Koga Dam irrigation water during the dry season, and the other 196 households depended only on rainfall. The results of the study showed that, in addition to its direct effect, the availability of irrigation water indirectly affected crop revenue through receptivity of the farmers to use modern farm inputs. Around 27 percent of the total effect of dam-driven irrigation water on crop revenue was mediated by farmers’ receptivity to use yield-enhancing modern farm inputs. The results of this study suggested that the availability of irrigation water is essential to improve both crop revenue and receptivity of the farmers to use modern farm inputs. This finding also drives a strategic framework that the receptivity of the farmers to use modern farm inputs is crucial for utilizing the positive effects of irrigation water availability on crop revenue.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000470941300003 Publication Date 2019-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-3774 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 2.848 Times cited 1 Open Access
Notes ; The authors would like to thank Bahir Dar University – Institutional University Cooperation (BDU-IUC) VLIR_UOS project for providing us enough funds for the completion of this study. Special gratitude is given to Abrehet Kahassay and Kassahun Birhanu for helping us to map the study area; and to the data collectors (Hilemichael Fentahun, Etsehewot Birara, and Tsegachewu Degu) for their commitment. The authors gratefully acknowledge the Koga Irrigation Scheme office managers, Tewachewu Abebe, and his colleagues for their support during the data collection. The authors also acknowledge the farmers (respondents) for their willingness to spend time responding honestly to questions. ; Approved Most recent IF: 2.848
Call Number UA @ admin @ c:irua:159246 Serial 6182
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Peeters, F.M.
Title Graphene-based heterostructures with moire superlattice that preserve the Dirac cone: a first-principles study Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 25 Pages 255302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In van der Waals heterostructures consisting of graphene and a substrate, lattice mismatch often leads to a moire pattern with a huge supercell, preventing its treatment within first- principles calculations. Previous theoretical works considered mostly simple stacking models such as AB, AA with straining the lattice of graphene to match that of the substrate. Here, we propose a moire superlattice build from graphene and porous graphene or graphyne like monolayers, having a lower interlayer binding energy, needing little strain in order to match the lattices. In contrast to the results from the simple stacking models, the present ab initio calculations for the moire superlattices show different properties in lattice structure, energy, and band structures. For example, the Dirac cone at the K point is preserved and a linear energy dispersion near the Fermi level is obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464184300001 Publication Date 2019-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 4 Open Access
Notes ; This work is supported by the Collaborative Innovation Center of Quantum Matter, the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl) and the FLAG-ERA project TRANS-2D-TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI, and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. ; Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:159314 Serial 5215
Permanent link to this record
 

 
Author Yuan, S.; Pu, Z.; Zhou, H.; Yu, J.; Amiinu, I.S.; Zhu, J.; Liang, Q.; Yang, J.; He, D.; Hu, Z.; Van Tendeloo, G.; Mu, S.
Title A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values Type A1 Journal article
Year 2019 Publication Nano energy Abbreviated Journal Nano Energy
Volume 59 Issue 59 Pages 472-480
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The development of a stable, efficient and economic catalyst for hydrogen evolution reaction (HER) of water splitting is one of the most hopeful approaches to confront the environmental and energy crisis. A two-step method is employed to obtain metal clusters (Ru, N, Pd etc.) combining single cobalt atoms anchored on nitrogen-doped carbon (Ru/Pt/Pd@Co-SAs/N-C). Based on the synergistic effect between Ru clusters and single cobalt atoms, Ru@Co-SAs/N-C exhibits an outstanding HER electrocatalytic activity. Specifically, Ru@Co-SAs/N-C only needs 7 mV overpotential at 10 mA cm(-2) in 1 M KOH solution, which is much better than commercial 20 wt% PVC (40 mV) catalyst. Density functional theory (DFT) calculations further reveal the synergy effect between surface Ru nanoclusters and Co-SAs/N-C toward hydrogen adsorption for HER. Additionally, Ru@CoSAs/N-C also exhibits excellent catalytic ability and durability under acidic and neutral media. The present study opens a new avenue towards the design of metal clusters/single cobalt atoms heterostructures with outstanding performance toward HER and beyond.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000463032200051 Publication Date 2019-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 33 Open Access Not_Open_Access: Available from 01.11.2019
Notes ; S.Y., Z.P. and H.Z. contributed equally to this work. This work was financed by the National Natural Science Foundation of China (Grant No. 51372186, 51672204, 51701146) and the Fundamental Research Funds for the Central Universities (WUT: 2017III055, 2018III039GX, 2018IVA095). We express heartfelt thanks to Prof. Gaoke Zhang for the supply of computational resources in the School of Resources and Environmental Engineering, Wuhan University of Technology. ; Approved Most recent IF: 12.343
Call Number UA @ admin @ c:irua:159330 Serial 5240
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Multicomponent screening and superfluidity in gapped electron-hole double bilayer graphene with realistic bands Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 14 Pages 144517
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superfluidity has recently been reported in double electron-hole bilayer graphene. The multiband nature of the bilayers is important because of the very small band gaps between conduction and valence bands. The long-range nature of the superfluid pairing interaction means that screening must be fully taken into account. We have carried out a systematic mean-field investigation that includes (i) contributions to screening from both intraband and interband excitations, (ii) the low-energy band structure of bilayer graphene with its small band gap and flattened Mexican-hat-like low-energy bands, (iii) the large density of states at the bottom of the bands, (iv) electron-hole pairing in the multibands, and (v) electron-hole pair transfers between the conduction and valence band condensates. We find that the superfluidity strongly modifies the intraband contributions to the screening, but that the interband contributions are unaffected. Unexpectedly, a net effect of the screening is to suppress Josephson-like pair transfers and to confine the superfluid pairing entirely to the conduction-band condensate even for very small band gaps, making the system behave similarly to a one-band superfluid.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465160000004 Publication Date 2019-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl) and the Methusalem Foundation. We thank Mohammad Zarenia and Alfredo VargasParedes for useful discussions. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:159332 Serial 5221
Permanent link to this record
 

 
Author Torre, I.; de Castro, L.V.; Van Duppen, B.; Barcons Ruiz, D.; Peeters, F.M.; Koppens, F.H.L.; Polini, M.
Title Acoustic plasmons at the crossover between the collisionless and hydrodynamic regimes in two-dimensional electron liquids Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 14 Pages 144307
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Hydrodynamic flow in two-dimensional electron systems has so far been probed only by dc transport and scanning gate microscopy measurements. In this work we discuss theoretically signatures of the hydrodynamic regime in near-field optical microscopy. We analyze the dispersion of acoustic plasmon modes in two-dimensional electron liquids using a nonlocal conductivity that takes into account the effects of (momentumconserving) electron-electron collisions, (momentum-relaxing) electron-phonon and electron-impurity collisions, and many-body interactions beyond the celebrated random phase approximation. We derive the dispersion and, most importantly, the damping of acoustic plasmon modes and their coupling to a near-field probe, identifying key experimental signatures of the crossover between collisionless and hydrodynamic regimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465160000003 Publication Date 2019-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work has been sponsored by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 785219 “Graphene Core2” and via the European Research Council (ERC) Grant Agreement No. 786285. B.V.D. is supported by a post-doctoral fellowship of the Flemish Science Foundation (FWO-Vl). F.H.L.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, Generalitat de Catalunya through the CERCA program, and the Mineco grant Plan Nacional (FIS2016-81044-P) and the Agency for Management of University and Research Grants (AGAUR) 2017 SGR 1656. F.M.P. and L.V.d.C. were supported by the Methusalem Program of the Flemish Government. We thank Niels Hesp and Hanan Hertzig Sheinfux for useful discussions. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:159333 Serial 5193
Permanent link to this record
 

 
Author Tonkikh, A.A.; Tsebro, V.I.; Obraztsova, E.A.; Rybkovskiy, D.V.; Orekhov, A.S.; Kondrashov, I.I.; Kauppinen, E.I.; Chuvilin, A.L.; Obraztsova, E.D.
Title Films of filled single-wall carbon nanotubes as a new material for high-performance air-sustainable transparent conductive electrodes operating in a wide spectral range Type A1 Journal article
Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 11 Issue 14 Pages 6755-6765
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In this paper we show the advantages of transparent high conductive films based on filled single-wall carbon nanotubes. The nanotubes with internal channels filled with acceptor molecules (copper chloride or iodine) form networks demonstrating significantly improved characteristics. Due to the charge transfer between the nanotubes and filler, the doped-nanotube films exhibit a drop in electrical sheet resistance of an order of magnitude together with a noticeable increase of film transparency in the visible and near-infrared spectral range. The thermoelectric power measurements show a significant improvement of air-stability of the nanotube network in the course of the filling procedure. For the nanotube films with an initial transparency of 87% at 514 nm and electrical sheet resistance of 862 Ohm sq(-1) we observed an improvement of transparency up to 91% and a decrease of sheet resistance down to 98 Ohm sq(-1). The combination of the nanotube synthesis technique and molecules for encapsulation has been optimized for applications in optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464454400024 Publication Date 2019-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 2 Open Access Not_Open_Access: Available from 06.09.2019
Notes ; The work was supported by the RFBR project 18-29-19113-mk, grant no. 311533 of Academy of Finland, Russian Federation President Program for young scientist MK-3140.2018.2. Also, the reported study was funded by RFBR and Moscow city Government according to the research project no. 19-32-70004. TEM measurements were performed with financial support from the Ministry of Science and Higher Education of the Russian Federation within the state assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences. ; Approved Most recent IF: 7.367
Call Number UA @ admin @ c:irua:159339 Serial 5249
Permanent link to this record