toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Blommaerts, N.; Asapu, R.; Claes, N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
  Title Gas phase photocatalytic spiral reactor for fast and efficient pollutant degradation Type A1 Journal article
  Year 2017 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
  Volume 316 Issue 316 Pages 850-856
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Photocatalytic reactors for the degradation of gaseous organic pollutants often suffer from major limitations such as small reaction area, sub-optimal irradiation conditions and thus limited reaction rate. In this work, an alternative solution is presented that involves a glass tube coated on the inside with (silvermodified) TiO2 and spiraled around a UVA lamp. First, the spiral reactor is coated from the inside with TiO2 using an experimentally verified procedure that is optimized toward UV light transmission. This procedure is kept as simple as possible and involves a single casting step of a 1 wt% suspension of TiO2 in ethanol through the spiral. This results in a coated tube that absorbs nearly all incident UV light under the experimental conditions used. The optimized coated spiral reactor is then benchmarked to a conventional annular photoreactor of the same outer dimensions and total catalyst loading over a broad range of experimental conditions. Although residence time distribution experiments indicate slightly longer dwelling of molecules in the spiral reactor, no significant difference in by-passing of gas between the spiral reactor and the annular reactor can be claimed. Acetaldehyde degradation efficiency of 100% is obtained with the spiral reactor for a residence time as low as 60 s, whereas the annular reactor could not achieve full degradation even at 1000 s residence time. In a final case study, addition of long-term stable silver nanoparticles, protected by an ultra-thin polymer shell applied via the layer-by-layer (LbL) method, to the spiral reactor coating is shown to double the degradation efficiency and provides an interesting strategy to cope with higher pollutant concentrations without changing the overall dimensions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000398985200089 Publication Date 2017-02-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 6.216 Times cited 30 Open Access OpenAccess
  Notes N.B. wishes to thank the University of Antwerp – Belgium for financial support. N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078- COLOURATOM). S.W.V. acknowledges the Research Foundation – Flanders (FWO) for a postdoctoral fellowship. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); ecas_sara Approved Most recent IF: 6.216
  Call Number EMAT @ emat @ c:irua:140925UA @ admin @ c:irua:140925 Serial 4481
Permanent link to this record
 

 
Author Lu, J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D.
  Title Internal architecture of coffin-shaped ZSM-5 zeolite crystals with hourglass contrast unravelled by focused ion beam-assisted transmission electron microscopy: INTERNAL ARCHITECTURE OF COFFIN-SHAPED Type A1 Journal article
  Year 2017 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford
  Volume 265 Issue 265 Pages 27-33
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Optical microscopy, focused ion beam and transmission electron microscopy are combined to study the internal architecture in a coffin-shaped ZSM-5 crystal showing an hourglass contrast in optical microscopy. Based on parallel lamellas from different positions in the crystal, the orientation relationships between the intergrowth components of the crystal are studied and the internal architecture and growth mechanism are illustrated. The crystal is found to contain two pyramid-like components aside from a central component. Both pyramid-like components are rotated by 90 degrees along the common c-axis and with respect to the central component while the interfaces between the components show local zig-zag feature, the latter indicating variations in relative growth velocity of the two components. The pyramid-like intergrowth components are larger and come closer to one another in the middle of the crystal than at the edges, but they do not connect. A model of multisite nucleation and growth of 90 degrees intergrowth components is proposed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000392487400004 Publication Date 2016-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-2720 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 1.692 Times cited 4 Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, G.0603.10N ; Approved Most recent IF: 1.692
  Call Number EMAT @ emat @ c:irua:141015 Serial 4437
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.
  Title Comment on “Generalized exclusion processes : transport coefficients” Type A1 Journal article
  Year 2016 Publication Physical review E Abbreviated Journal Phys Rev E
  Volume 93 Issue 93 Pages 046101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment,we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013)].
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000374962100019 Publication Date 2016-04-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2470-0045;2470-0053; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.366 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.366
  Call Number UA @ lucian @ c:irua:141060 Serial 4591
Permanent link to this record
 

 
Author Partoens, B.
  Title Spinorbit interactions : hide and seek Type A1 Journal article
  Year 2014 Publication Nature physics Abbreviated Journal Nat Phys
  Volume 10 Issue Pages 333-334
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract It is commonly believed that solids with spatial inversion symmetry do not display spinorbit effects. However, first-principles calculations now reveal unexpected spin structure for centrosymmetric crystals
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000335371200003 Publication Date 2014-04-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1745-2473; 1745-2481 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 22.806 Times cited 8 Open Access
  Notes Approved Most recent IF: 22.806; 2014 IF: 20.147
  Call Number UA @ lucian @ c:irua:141068 Serial 4608
Permanent link to this record
 

 
Author Zhuge, X.; Jinnai, H.; Dunin-Borkowski, R.E.; Migunov, V.; Bals, S.; Cool, P.; Bons, A.-J.; Batenburg, K.J.
  Title Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 175 Issue 175 Pages 87-96
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
  Abstract Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new

iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the

proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000403342500008 Publication Date 2017-01-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 22 Open Access OpenAccess
  Notes This work has been supported in part by the Stichting voor de Technische Wetenschappen (STW) through a personal grant (Veni,13610), and was in part by ExxonMobil Chemical Europe Inc. The authors further acknowledge financial support from the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). R.D.B. is grateful for funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ ERC grant agreement number 320832. Thomas Altantzis is gratefully acknowledged for acquiring the Anatase nanosheets dataset. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.843
  Call Number EMAT @ emat @ c:irua:141218UA @ admin @ c:irua:141218 Serial 4485
Permanent link to this record
 

 
Author Li, L.L.; Zarenia, M.; Xu, W.; Dong, H.M.; Peeters, F.M.
  Title Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 95 Issue 95 Pages 045409
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000391856000006 Publication Date 2017-01-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 14 Open Access
  Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grants No. 11304316, No. 11574319, and No. 11604380), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:141444 Serial 4555
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Mortazavi, B.; Ahzi, S.; Peeters, F.M.; Khraisheh, M.K.
  Title Effect of straining graphene on nanopore creation using Si cluster bombardment: A reactive atomistic investigation Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 120 Issue 120 Pages 225108
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Graphene nanosheets have recently received a revival of interest as a new class of ultrathin, high-flux, and energy-efficient sieving membranes because of their unique two-dimensional and atomically thin structure, good flexibility, and outstanding mechanical properties. However, for practical applications of graphene for advanced water purification and desalination technologies, the creation of well controlled, high-density, and subnanometer diameter pores becomes a key factor. Here, we conduct reactive force-field molecular dynamics simulations to study the effect of external strain on nanopore creation in the suspended graphene by bombardment with Si clusters. Depending on the size and energy of the clusters, different kinds of topography were observed in the graphene sheet. In all the considered conditions, tensile strain results in the creation of nanopores with regular shape and smooth edges. On the contrary, compressive strain increases the elastic response of graphene to irradiation that leads to the formation of net-like defective structures with predominantly carbon atom chains. Our findings show the possibility of creating controlled nanopores in strained graphene by bombardment with Si clusters. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000391535900022 Publication Date 2016-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 10 Open Access
  Notes ; ; Approved Most recent IF: 2.068
  Call Number UA @ lucian @ c:irua:141451 Serial 4554
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Tyablikov, O.A.; Hadermann, J.; Abakumov, A.M.
  Title Crystal Structure, Defects, Magnetic and Dielectric Properties of the Layered Bi3n+1Ti7Fe3n-3,O9n+11 Perovskite-Anatase lntergrowths Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 56 Issue 56 Pages 931-942
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The Bi3n+1Ti7Fe3n-3,O9n+11 materials are built of (001)(p) plane parallel perovskite blocks with a thickness of n (Ti,Fe)O-6 octahedra, separated by periodic translational interfaces. The interfaces are based on anatase-like chains of edge -sharing (Ti,Fe)O-6 octahedra. Together with the octahedra of the perovskite blocks, they create S-shaped tunnels stabilized by lone pair Bi3+ cations. In this work, the structure of the n = 4-6 Bi3n+1Ti7Fe3n-3,O9n+11 homologues is analyzed in detail using advanced transmission electron microscopy, powder X-ray diffraction, and Mossbauer spectroscopy. The connectivity of the anatase-like chains to the perovskite blocks results in,a 3ap periodicity along the interfaces, so that they can be located either on top of each other or with shifts of +/- a(p) along [100](p). The ordered arrangement of the interfaces gives rise to orthorhombic Immm and monoclinic A2/m polymorphs with the unit cell parameters a = 3a(p), b = b(p), c = 2(n + 1)c(p) and a = 3a(p), b = b(p), c = 2(n + 1)c(p) – a(p), respectively. While the n = 3 compound is orthorhombic, the monoclinic modification is more favorable in higher homologues. The Bi3n+1Ti7Fe3n-3,O9n+11 structures demonstrate intricate patterns of atomic displacements in the perovskite blocks, which are supported by the stereochemical activity of the Bi3+ cations. These patterns are coupled to the cationic coordination of the oxygen atoms in the (Ti,Fe)O-2 layers at the border of the perovskite blocks. The coupling is strong in the 1/ = 3, 4 homologues, but gradually reduces with the increasing thickness of the perovskite blocks, so that, in the n = 6 compound, the dominant mode of atomic displacements is aligned along the interface planes. The displacements in the adjacent perovskite blocks tend to order antiparallel, resulting in an overall antipolar structure. The Bi3n+1Ti7Fe3n-3,O9n+11 materials demonstrate an unusual diversity of structure defects. The n = 4-6 homologues are robust antiferromagnets below T-N = 135, 220, and 295 K, respectively. They show a high dielectric constant that weakly increases with temperature and is relatively insensitive to the Ti/Fe ratio.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos 000392262400029 Publication Date 2016-12-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
  Notes ; The work was supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 4.857
  Call Number UA @ lucian @ c:irua:141471 Serial 4495
Permanent link to this record
 

 
Author Mohammed, M.; Verhulst, A.S.; Verreck, D.; Van de Put, M.; Simoen, E.; Sorée, B.; Kaczer, B.; Degraeve, R.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G.
  Title Electric-field induced quantum broadening of the characteristic energy level of traps in semiconductors and oxides Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 120 Issue 120 Pages 245704
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The trap-assisted tunneling (TAT) current in tunnel field-effect transistors (TFETs) is one of the crucial factors degrading the sub-60 mV/dec sub-threshold swing. To correctly predict the TAT currents, an accurate description of the trap is required. Since electric fields in TFETs typically reach beyond 10(6) V/cm, there is a need to quantify the impact of such high field on the traps. We use a quantum mechanical implementation based on the modified transfer matrix method to obtain the trap energy level. We present the qualitative impact of electric field on different trap configurations, locations, and host materials, including both semiconductors and oxides. We determine that there is an electric-field related trap level shift and level broadening. We find that these electric-field induced quantum effects can enhance the trap emission rates. Published by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000392174000028 Publication Date 2016-12-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 6 Open Access
  Notes ; This work was supported by imec's Industrial Affiliation Program. D. Verreck acknowledges the support of a PhD stipend from IWT-Vlaanderen. ; Approved Most recent IF: 2.068
  Call Number UA @ lucian @ c:irua:141481 Serial 4593
Permanent link to this record
 

 
Author Wee, L.H.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Zhang, K.; Marleny Rodriguez-Albelo, L.; Masala, A.; Bordiga, S.; Jiang, J.; Navarro, J.A.R.; Kirschhock, C.E.A.; Martens, J.A.
  Title 1D-2D-3D Transformation Synthesis of Hierarchical Metal-Organic Framework Adsorbent for Multicomponent Alkane Separation Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 139 Issue 139 Pages 819-828
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A new hierarchical MOF consisting of Cu(II) centers connected by benzene-tricarboxylates (BTC) is prepared by thermoinduced solid transformation of a dense CuBTC precursor phase. The mechanism of the material formation has been thoroughly elucidated and revealed a transformation of a ribbon-like 1D building unit into 2D layers and finally a 3D network. The new phase contains excess copper, charge compensated by systematic hydroxyl groups, which leads to an open microporous framework with tunable permanent mesoporosity. The new phase is particularly attractive for molecular separation. Energy consumption of adsorptive separation processes can be lowered by using adsorbents that discriminate molecules based on adsorption entropy rather than enthalpy differences. In separation of a 11-component mixture of C-1-C-6 alkanes, the hierarchical phase outperforms the structurally related microporous HKUST-1 as well as silicate-based hierarchical materials. Grand canonical Monte Carlo (GCMC) simulation provides microscopic insight into the structural host-guest interaction, confirming low adsorption enthalpies and significant entropic contributions to the molecular separation. The unique three-dimensional hierarchical structure as well as the systematic presence of Cu(II) unsaturated coordination sites cause this exceptional behavior.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000392459300041 Publication Date 2016-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 33 Open Access Not_Open_Access
  Notes ; L.H.W. and S.T. thank Research Foundation Flanders (FWO) for a postdoctoral research fellowship under contract numbers 12M1415N and G004613N, respectively. J.J. is grateful to the National University of Singapore for financial supports (R261-508-001-646/733 and R-279-000-474-112). J.A.R.N. acknowledges generous funding from Spanish Ministry of Economy (CTQ2014-53486-R) and FEDER and Marie Curie IIF-625939 (L.M.R.A) funding from European Union. J.A.M. gratefully acknowledges financial support from Flemish Government (Long-term structural funding Methusalem). Collaboration among universities was supported by the Belgian Government (IAP-PAI network). We thank E. Gobechiya for XRD measurements. We would like to acknowledge Matthias Thommes for the discussion on the interpretation of N<INF>2</INF> physisorption isotherms. ; Approved Most recent IF: 13.858
  Call Number UA @ lucian @ c:irua:141513 c:irua:141513 c:irua:141513 c:irua:141513 Serial 4492
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Tyablikov, O.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Abakumov, A.M.
  Title Doping of Bi4Fe5O13F with pentagonal Cairo lattice with Cr and Mn: Synthesis, structure and magnetic properties Type A1 Journal article
  Year 2017 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
  Volume 87 Issue 87 Pages 54-60
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The substitution of Cr3+ and Mn3+ for Fe3+ in the Bi4Fe6O13F oxyfluoride featuring the magnetically frustrated pentagonal Cairo lattice is reported. Bi4Fe4.1Cr0.9O13F and BiFe4.2Mn0.8O13F have been prepared using a solid state reaction in inert atmosphere. Their crystal structures were studied with transmission electron microscopy, powder X-ray diffraction and Fe-57 Mossbauer spectroscopy (S.G. P4(2)/mbc, a = 8.27836(2)angstrom, c = 18.00330(9) angstrom, R-F = 0.031 (Bi4Fe4.1Cr0.9O13F)), a= 8.29535(3)angstrom, c= 18.0060(1)angstrom, R-F = 0.027 (Bi4Fe4.1Cr0.9O13F)). The structures are formed by infinite rutile-like chains of the edge sharing BO6 octahedra (B transition metal cations) linked by the Fe2O7 groups of two corner-sharing tetrahedra. The"voids in thus formed framework are occupied by the Bi4F tetrahedra. The Fe-57 Mossbauer spectroscopy reveals that Cr3+ and Mn3+ replace Fe3+. exclusively at the octahedral positions. The Mn- and Cr-doped compounds demonstrate antiferromagnetic ordering below T-N =165 K and 120 K, respectively. (C) 2016 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000392681800009 Publication Date 2016-11-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0025-5408 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.446 Times cited 1 Open Access Not_Open_Access
  Notes ; The work has been supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 2.446
  Call Number UA @ lucian @ c:irua:141535 Serial 4498
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Saniz, R.; Neyts, E.; Partoens, B.
  Title Sulfur-alloyed Cr2O3: a new p-type transparent conducting oxide host Type A1 Journal article
  Year 2017 Publication RSC advances Abbreviated Journal Rsc Adv
  Volume 7 Issue 7 Pages 4453-4459
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Doped Cr2O3 has been shown to be a p-type transparent conducting oxide (TCO). Its conductivity, however, is low. As for most p-type TCOs, the main problem is the high effective hole mass due to flat valence bands. We use first-principles methods to investigate whether one can increase the valence band dispersion (i.e. reduce the hole mass) by anion alloying with sulfur, while keeping the band gap large enough for transparency. The alloying concentrations considered are given by Cr(4)SxO(6-x), with x = 1-5. To be able to describe the electronic properties of these materials accurately, we first study Cr2O3, examining critically the accuracy of different density functionals and methods, including PBE, PBE+U, HSE06, as well as perturbative approaches within the GW approximation. Our results demonstrate that Cr4S2O4 has an optical band gap of 3.08 eV and an effective hole mass of 1.8 m(e). This suggests Cr4S2O4 as a new p-type TCO host candidate.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000393751300030 Publication Date 2017-01-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 9 Open Access OpenAccess
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 3.108
  Call Number UA @ lucian @ c:irua:141543 Serial 4528
Permanent link to this record
 

 
Author Laroussi, M.; Bogaerts, A.; Barekzi, N.
  Title Plasma processes and polymers third special issue on plasma and cancer Type Editorial
  Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 13 Issue 13 Pages 1142-1143
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000393131600001 Publication Date 2016-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 1 Open Access
  Notes Approved Most recent IF: 2.846
  Call Number PLASMANT @ plasmant @ c:irua:141546 Serial 4474
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Jones, L.; Nellist, P.D.; Van Aert, S.
  Title Hybrid statistics-simulations based method for atom-counting from ADF STEM images Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 177 Issue 177 Pages 69-77
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000401219800010 Publication Date 2017-01-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 8 Open Access OpenAccess
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N, and WO.010.16N), and a postdoctoral research Grant to A. De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). The authors are grateful to G.T. Martinez for providing image simulations. Approved Most recent IF: 2.843
  Call Number EMAT @ emat @ c:irua:141718 Serial 4486
Permanent link to this record
 

 
Author Zhong, Z.; Goris, B.; Schoenmakers, R.; Bals, S.; Batenburg, K.J.
  Title A bimodal tomographic reconstruction technique combining EDS-STEM and HAADF-STEM Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 174 Issue 174 Pages 35-45
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A three-dimensional (3D) chemical characterization of nanomaterials can be obtained using tomography based on high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) or energy dispersive X-ray spectroscopy (EDS) STEM. These two complementary techniques have both advantages and disadvantages. The Z-contrast images have good image quality but lack robustness in the compositional analysis, while the elemental maps give more element-specific information, but at a low signal-to-noise ratio and a longer exposure time. Our aim is to combine these two types of complementary information in one single tomographic reconstruction process. Therefore, an imaging model is proposed combining both HAADF-STEM

and EDS-STEM. Based on this model, the elemental distributions can be reconstructed using both types of information simultaneously during the reconstruction process. The performance of the new technique is evaluated using simulated data and real experimental data. The results demonstrate that combining two imaging modalities leads to tomographic reconstructions with suppressed noise and enhanced contrast.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000403342200005 Publication Date 2016-12-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 26 Open Access OpenAccess
  Notes This research is supported by the Dutch Technology Foundation STW (http://www.stw.nl/), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs, Agriculture and Innovation under project number 13314. It is also supported by the Flemish research foundation (FWO Vlaanderen) by project funding (G038116N) and a postdoctoral research grant to B.G. Funding from the European Research Council (Starting Grant No. COLOURATOMS 335078) is acknowledged by S.B. The authors would like to thank Dr. Bernd Rieger and Dr. Richard Aveyard for useful discussions, and Prof. Dr. Luis M. Liz-Marzan for providing the investigated samples. We also acknowledge COST Action MP1207 for networking support. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.843
  Call Number EMAT @ emat @ c:irua:141719UA @ admin @ c:irua:141719 Serial 4484
Permanent link to this record
 

 
Author Tarasov, A.; Hu, Z.-Y.; Meledina, M.; Trusov, G.; Goodilin, E.; Van Tendeloo, G.; Dobrovolsky, Y.
  Title One-Step Microheterogeneous Formation of Rutile@Anatase Core–Shell Nanostructured Microspheres Discovered by Precise Phase Mapping Type A1 Journal article
  Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 121 Issue 121 Pages 4443-4450
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Nanostructured core−shell microspheres with a rough rutile core and a thin anatase shell are synthesized via a one-step heterogeneous templated hydrolysis process of TiCl4 vapor on the aerosol water−air interface. The rutile-in-anatase core−shell structure has been evidenced by different electron microscopy techniques, including electron energy-loss spectroscopy and 3D electron tomography. A new mechanism for the formation of a crystalline rutile core inside the anatase shell is proposed based on a statistical evaluation of a large number of electron microscopy data. We found that the control over the TiCl4 vapor pressure, the ratio between TiCl4 and H2O aerosol, and the reaction conditions plays a crucial role in the formation of the core−shell morphology and increases the yield of nanostructured microspheres.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000395616200038 Publication Date 2017-03-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 4 Open Access OpenAccess
  Notes Z.-Y.H., M. M., and G.V.T. acknowledge support from the the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 4.536
  Call Number EMAT @ emat @ c:irua:141720 Serial 4472
Permanent link to this record
 

 
Author Alves, L.L.; Bogaerts, A.
  Title Special Issue on Numerical Modelling of Low-Temperature Plasmas for Various Applications – Part I: Review and Tutorial Papers on Numerical Modelling Approaches Type Editorial
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 14 Issue 14 Pages 1690011
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2017-01-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850 ISBN Additional Links (up) UA library record
  Impact Factor 2.846 Times cited 3 Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.846
  Call Number PLASMANT @ plasmant @ c:irua:141721 Serial 4475
Permanent link to this record
 

 
Author Benetti, G.; Cavaliere, E.; Canteri, A.; Landini, G.; Rossolini, G.M.; Pallecchi, L.; Chiodi, M.; Van Bael, M.J.; Winckelmans, N.; Bals, S.; Gavioli, L.
  Title Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater
  Volume 5 Issue 5 Pages 036105
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000398951000014 Publication Date 2017-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2166-532X ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 4.335 Times cited 21 Open Access OpenAccess
  Notes We thank Urs Gfeller for the XRF measurements, Francesco Banfi for valuable discussions on the manuscript and Giulio Viano for his valuable support in the microbiological analysis. The authors acknowledge the financial support of Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants and from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). REFERENCES Approved Most recent IF: 4.335
  Call Number EMAT @ emat @ c:irua:141723UA @ admin @ c:irua:141723 Serial 4479
Permanent link to this record
 

 
Author Vagov, A.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Vinokur, V.M.; Aguiar, J.A.; Peeters, F.M.
  Title Superconductivity between standard types: Multiband versus single-band materials Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 93 Issue 93 Pages 174503
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000375527500001 Publication Date 2016-05-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 37 Open Access
  Notes Conselho Nacional de Desenvolvimento Científico e Tecnológico, 307552/2012-8 141911/2012-3 ; Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco, APQ-0589-1.05/08 ; U.S. Department of Energy; Approved Most recent IF: 3.836
  Call Number CMT @ cmt @ c:irua:141732 Serial 4480
Permanent link to this record
 

 
Author van der Stam, W.; Geuchies, J.J.; Altantzis, T.; van den Bos, K.H.W.; Meeldijk, J.D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C.
  Title Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3Perovskite Nanocrystals through Cation Exchange Type A1 Journal article
  Year 2017 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 139 Issue 139 Pages 4087-4097
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic

anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1−xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 < x ≤ 0.1), with preservation of the original NC shape. The size of the parent NCs is also preserved in the product NCs, apart from a small (few

%) contraction of the unit cells upon incorporation of the guest cations. The partial Pb2+ for M2+ exchange leads to a blue-shift of the optical spectra, while maintaining the high photoluminescence quantum yields (>50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known

system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000397477700027 Publication Date 2017-03-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 535 Open Access OpenAccess
  Notes W.v.d.S. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under grant number ECHO.712.012.001. J.J.G. and D.V. acknowledge financial support from the Debye Graduate program. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). K.H.W.v.d.B., S.B., S.V.A. and T.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N), a Ph.D. grant to K.H.W.v.d.B, and a postdoctoral research grant to T.A. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 13.858
  Call Number EMAT @ emat @ c:irua:141754UA @ admin @ c:irua:141754 Serial 4482
Permanent link to this record
 

 
Author Neyts, E.C.; Brault, P.
  Title Molecular Dynamics Simulations for Plasma-Surface Interactions: Molecular Dynamics Simulations… Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 14 Issue 14 Pages 1600145
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma-surface interactions are in general highly complex due to the interplay of many concurrent processes. Molecular dynamics simulations provide insight in some of these processes, subject to the accessible time and length scales, and the availability of suitable force fields. In this introductory tutorial-style review, we aim to describe the current capabilities and limitations of molecular dynamics simulations in this field, restricting ourselves to low-temperature nonthermal plasmas. Attention is paid to the simulation of the various fundamental processes occurring, including sputtering, etching, implantation, and deposition, as well as to what extent the basic plasma components can be accounted for, including ground state and excited species, electric fields, ions, photons, and electrons. A number of examples is provided, giving an bird’s eye overview of the current state of the field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000393184600009 Publication Date 2016-09-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 13 Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.846
  Call Number PLASMANT @ plasmant @ c:irua:141758 Serial 4488
Permanent link to this record
 

 
Author Belov, I.; Vanneste, J.; Aghaee, M.; Paulussen, S.; Bogaerts, A.
  Title Synthesis of Micro- and Nanomaterials in CO2and CO Dielectric Barrier Discharges: Synthesis of Micro- and Nanomaterials… Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 14 Issue 14 Pages 1600065
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Dielectric Barrier Discharges operating in CO and CO2 form solid products at atmospheric pressure. The main differences between both plasmas and their deposits were analyzed, at similar energy input. GC measurements revealed a mixture of CO2, CO, and O2 in the CO2 DBD exhaust, while no O2 was found in the CO plasma. A coating of nanoparticles composed of Fe, O, and C was produced by the CO2 discharge, whereas, a microscopic dendrite-like carbon structure was formed in the CO plasma. Fe3O4 and Fe crystalline phases were found in the CO2 sample. The CO

deposition was characterized as an amorphous structure, close to polymeric CO (p-CO). Interestingly, p-CO is not formed in the CO2 plasma, in spite of the significant amounts of CO produced (up to 30% in the reactor exhaust).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000397476000007 Publication Date 2016-07-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 10 Open Access Not_Open_Access
  Notes European Union Seventh Framework Programme FP7-PEOPLE-2013-ITN, 606889 ; Approved Most recent IF: 2.846
  Call Number PLASMANT @ plasmant @ c:irua:141759 Serial 4487
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Karakulina, O.M.; Batuk, M.; Cabioc’h, T.; Hadermann, J.; Delville, R.; Lambrinou, K.; Vleugels, J.
  Title Synthesis of MAX Phases in the Zr-Ti-Al-C System Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 56 Issue 56 Pages 3489-3498
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350–1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard’s law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard’s law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000397171100045 Publication Date 2017-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 26 Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, G.0431.10N.F ; Agentschap voor Innovatie door Wetenschap en Technologie, 131081 ; European Atomic Energy Community, 604862 ; SCK-CEN Academy for Nuclear Science and Technology; Hercules Foundation, Project/Award no: AKUL/1319 Project/Award no: ZW09-09 ; Approved Most recent IF: 4.857
  Call Number EMAT @ emat @ c:irua:141794 Serial 4491
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Kiss’ovski, Z.
  Title Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
  Volume 26 Issue 26 Pages 055013
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this study, we present a computational model of a cylindrical electric probe in atmospheric pressure argon plasma. The plasma properties are varied in terms of density and electron temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron energy distribution functions are also obtained and compared. The model is based on the fluid description of plasma within the COMSOL software package. The results for the ion saturation current are compared and show good agreement with existing analytical Langmuir probe theories. A strong dependence between the ion saturation current and electron transport properties was observed, and attributed to the effects of ambipolar diffusion.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000398327900002 Publication Date 2017-04-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1361-6595 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.302 Times cited 4 Open Access OpenAccess
  Notes Approved Most recent IF: 3.302
  Call Number PLASMANT @ plasmant @ c:irua:141914 Serial 4535
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Neyts, E.C.
  Title Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon
  Volume 118 Issue 118 Pages 452-457
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Selective etching allows for obtaining carbon nanotubes with a specific chirality. While plasma-assisted etching has already been used to separate metallic tubes from their semiconducting counterparts, little is known about the nanoscale mechanisms of the etching process. We combine (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations to study H-etching of CNTs. In particular, during the hydrogenation and subsequent etching of both the carbon cap and the tube, they sequentially transform to different carbon nanostructures, including carbon nanosheet, nanowall, and polyyne chains, before they are completely removed from the surface of a substrate-bound Ni-nanocluster.We also found that onset of the etching process is different in the cases of the cap and the tube, although the overall etching scenario is similar in both cases. The entire hydrogenation/etching process for both cases is analysed in detail, comparing with available theoretical and experimental evidences.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000401120800053 Publication Date 2017-03-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 2 Open Access OpenAccess
  Notes U. K. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 6.337
  Call Number PLASMANT @ plasmant @ c:irua:141915 Serial 4531
Permanent link to this record
 

 
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S.
  Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem
  Volume 10 Issue 10 Pages 1039-1055
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000398182800002 Publication Date 2017-02-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1864-5631 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 7.226 Times cited 75 Open Access OpenAccess
  Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226
  Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V.
  Title Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 95 Issue 95 Pages 144401
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The Dzyaloshinskii-Moriya interaction (DMI) is a chiral interaction that favors formation of domain walls. Recent experiments and ab initio calculations show that there are multiple ways to modify the strength of the interfacially induced DMI in thin ferromagnetic films with perpendicular magnetic anisotropy. In this paper we reveal theoretically the effects of spatially varied DMI on the magnetic state in thin films. In such heterochiral 2D structures we report several emergent phenomena, ranging from the equilibrium spin canting at the interface between regions with different DMI, over particularly strong confinement of domain walls and skyrmions within high-DMI tracks, to advanced applications such as domain tailoring nearly at will, design of magnonic waveguides, and much improved skyrmion racetrack memory.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000399382100003 Publication Date 2017-04-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 60 Open Access
  Notes Fonds Wetenschappelijk Onderzoek, G098917N ; Approved Most recent IF: 3.836
  Call Number CMT @ cmt @ c:irua:141917 Serial 4534
Permanent link to this record
 

 
Author Khalilov, U.; Bogaerts, A.; Hussain, S.; Kovacevic, E.; Brault, P.; Boulmer-Leborgne, C.; Neyts, E.C.
  Title Nanoscale mechanisms of CNT growth and etching in plasma environment Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 50 Issue 50 Pages 184001
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma-enhanced chemical deposition (PECVD) of carbon nanotubes has already been shown to allow chirality control to some extent. In PECVD, however, etching may occur simultaneously with the growth, and the occurrence of intermediate processes further significantly complicates the growth process.

We here employ a computational approach with experimental support to study the plasma-based formation of Ni nanoclusters, Ni-catalyzed CNT growth and subsequent etching processes, in order to understand the underpinning nanoscale mechanisms. We find that hydrogen is the dominant factor in both the re-structuring of a Ni film and the subsequent appearance of Ni nanoclusters, as well as in the CNT nucleation and etching processes. The obtained results are compared with available theoretical and experimental studies and provide a deeper understanding of the occurring nanoscale mechanisms in plasma-assisted CNT nucleation and growth.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000398300900001 Publication Date 2017-04-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 6 Open Access OpenAccess
  Notes UK gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof A C T van Duin for sharing the ReaxFF code. Approved Most recent IF: 2.588
  Call Number PLASMANT @ plasmant @ c:irua:141918 Serial 4533
Permanent link to this record
 

 
Author Lepot, K.; Addad, A.; Knoll, A.H.; Wang, J.; Troadec, D.; Béché, A.; Javaux, E.J.
  Title Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 8 Issue 8 Pages 14890
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500–600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown. Here we show that specific microfossil populations of the 1.88 Ga Gunflint Iron Formation contain Fe-silicate and Fe-carbonate nanocrystal concentrations in cell interiors. Fe minerals are absent in/on all organically preserved cell walls. These features are consistent with in vivo intracellular Fe biomineralization, with subsequent in situ recrystallization, but contrast with known patterns of post-mortem Fe mineralization. The Gunflint populations that display relatively large cells (thick-walled spheres, filament-forming rods) and intra-microfossil Fe minerals are consistent with oxygenic photosynthesizers but not with other Fe-mineralizing microorganisms studied so far. Fe biomineralization may have protected oxygenic photosynthesizers against Fe2+ toxicity during the Palaeoproterozoic.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000397129900001 Publication Date 2017-03-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 20 Open Access OpenAccess
  Notes We thank J.-P. Cullus (thin sections), G. Spronck and C. Henrist (TEM), M. Cabié and C. Dominici (FIB), S. Bernard and C. Karunakaran (STXM), F. Bourdelle and G. Ji (EELS), P. Recourt (SEM). This study was co-funded by FRFC Grant no. 2.4558.09F (E.J.J.), CNRS-INSU (K.L.), FNRS (K.L.), ERC StG ELiTE Grant no. 308074 (E.J.J.), BELSPO IAP PLANET TOPERS (E.J.J.), NASA Astrobiology Institute (A.H.K.), Conseil Régional du Nord-Pas de Calais+European Regional Development Fund+CNRS-INSU (TEM in Lille), FP7-ESMI no. 262348 (TEM at EMAT Antwerp) and ANR-15-CE31-0003-01 (M6fossils, K.L.). We thank Noah Planavsky and two anonymous reviewers for thorough reviews that helped improve the paper. Approved Most recent IF: 12.124
  Call Number EMAT @ emat @ c:irua:141919 Serial 4536
Permanent link to this record
 

 
Author Sieger, M.; Pahlke, P.; Lao, M.; Eisterer, M.; Meledin, A.; Van Tendeloo, G.; Ottolinger, R.; Haenisch, J.; Holzapfel, B.; Usoskin, A.; Kursumovic, A.; MacManus-Driscoll, J.L.; Stafford, B.H.; Bauer, M.; Nielsch, K.; Schultz, L.; Huehne, R.
  Title Tailoring microstructure and superconducting properties in thick BaHfO3 and Ba2YNb/Ta)O-6 doped YBCO films on technical templates Type A1 Journal article
  Year 2017 Publication IEEE transactions on applied superconductivity Abbreviated Journal
  Volume 27 Issue 4 Pages 6601407
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The current transport capability of YBa2Cu3O7-x(YBCO) based coated conductors (CCs) is mainly limited by two features: the grain boundaries of the used textured template, which are transferred into the superconducting film through the buffer layers, and the ability to pin magnetic flux lines by incorporation of defined defects in the crystal lattice. By adjusting the deposition conditions, it is possible to tailor the pinning landscape in doped YBCO in order to meet specific working conditions (T, B) for CC applications. To study these effects, we deposited YBCO layers with a thickness of about 1-2 mu m using pulsed laser deposition on buffered rolling-assisted biaxially textured Ni-W substrates as well as on metal tapes having either an ion-beam-texturedYSZbuffer or an MgO layer textured by inclined substrate deposition. BaHfO3 and the mixed double-perovskite Ba2Y(Nb/Ta)O-6 were incorporated as artificial pinning centers in these YBCO layers. X-ray diffraction confirmed the epitaxial growth of the superconductor on these templates as well as the biaxially oriented incorporation of the secondary phase additions in the YBCO matrix. A critical current density J(c) of more than 2 MA/cm(2) was achieved at 77 K in self-field for 1-2 mu m thick films. Detailed TEM (transmission electron microscopy) studies revealed that the structure of the secondary phase can be tuned, forming c-axis aligned nanocolumns, ab-oriented platelets, or a combination of both. Transport measurements show that the J(c) anisotropy in magnetic fields is reduced by doping and the peak in the J(c) (theta) curves can be correlated to the microstructural features.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000394588100001 Publication Date 2016-12-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1051-8223 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 12 Open Access OpenAccess
  Notes ; This work was supported by EUROTAPES, a collaborative project funded by the European Commission's Seventh Framework Program (FP7/2007-2013) under Grant Agreement no. 280432. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:141961 Serial 4693
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: