|   | 
Details
   web
Records
Author Stosic, D.; Mulkers, J.; Van Waeyenberge, B.; Ludermir, T.B.; Milošević, M.V.
Title Paths to collapse for isolated skyrmions in few-monolayer ferromagnetic films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 21 Pages 214418
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic skyrmions are topological spin configurations in materials with chiral Dzyaloshinskii-Moriya interaction (DMI), that are potentially useful for storing or processing information. To date, DMI has been found in few bulk materials, but can also be induced in atomically thin magnetic films in contact with surfaces with large spin-orbit interactions. Recent experiments have reported that isolated magnetic skyrmions can be stabilized even near room temperature in few-atom-thick magnetic layers sandwiched between materials that provide asymmetric spin-orbit coupling. Here we present the minimum-energy path analysis of three distinct mechanisms for the skyrmion collapse, based on ab initio input and the performed atomic-spin simulations. We focus on the stability of a skyrmion in three atomic layers of Co, either epitaxial on the Pt(111) surface or within a hybrid multilayer where DMI nontrivially varies per monolayer due to competition between different symmetry breaking from two sides of the Co film. In laterally finite systems, their constrained geometry causes poor thermal stability of the skyrmion toward collapse at the boundary, which we show to be resolved by designing the high-DMI structure within an extended film with lower or no DMI.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000404015500001 Publication Date 2017-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 48 Open Access
Notes This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). Approved Most recent IF: 3.836
Call Number CMT @ cmt @c:irua:144865 Serial 4704
Permanent link to this record
 

 
Author Hafiz, H.; Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Callewaert, V.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Yamada, R.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H.; Bansil, A.
Title Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering Type A1 Journal article
Year 2017 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 3 Issue 8 Pages e1700971
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411589900055 Publication Date 2017-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (grant no. DE-FG02-07ER46352) and benefited from the Northeastern University’s Advanced Scientific Computation Center and the National Energy Research Scientific Computing Center supercomputing center through DOE grant no. DEAC02-05CH11231. The work at Gunma University, Japan Synchrotron Radiation Research Institute (JASRI), and Kyoto University was supported by the Japan Science and Technology Agency. K.S. was supported by Grant-in-Aid for Young Scientists (B) from MEXT KAKENHI under grant nos. 24750065 and 15K17873. The Compton scattering experiments were performed with the approval of JASRI (proposal no. 2014A1289). V.C. was supported by the FWO-Vlaanderen through project no. G. 1161 0224.14N. Approved Most recent IF: NA
Call Number CMT @ cmt @c:irua:145034 Serial 4637
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M.
Title Cobalt location in p -CoO x / n -SnO 2 nanocomposites: Correlation with gas sensor performances Type A1 Journal Article
Year 2017 Publication Journal Of Alloys And Compounds Abbreviated Journal J Alloy Compd
Volume 721 Issue Pages 249-260
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405252400030 Publication Date 2017-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited Open Access Not_Open_Access
Notes This work was supported by ERA-Net.Plus grant N 096 FONSENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. Approved Most recent IF: 3.133
Call Number EMAT @ emat @ Serial 4711
Permanent link to this record
 

 
Author Sevik, C.; Wallbank, J.R.; Gulseren, O.; Peeters, F.M.; Çakir, D.
Title Gate induced monolayer behavior in twisted bilayer black phosphorus Type A1 Journal article
Year 2017 Publication 2D materials Abbreviated Journal 2D Mater
Volume 4 Issue 3 Pages 035025
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Optical and electronic properties of black phosphorus strongly depend on the number of layers and type of stacking. Using first-principles calculations within the framework of density functional theory, we investigate the electronic properties of bilayer black phosphorus with an interlayer twist angle of 90 degrees. These calculations are complemented with a simple (k) over right arrow . (p) over right arrow model which is able to capture most of the low energy features and is valid for arbitrary twist angles. The electronic spectrum of 90 degrees twisted bilayer black phosphorus is found to be x-y isotropic in contrast to the monolayer. However x-y anisotropy, and a partial return to monolayer-like behavior, particularly in the valence band, can be induced by an external out-of-plane electric field. Moreover, the preferred hole effective mass can be rotated by 90 degrees simply by changing the direction of the applied electric field. In particular, a +0.4 (-0.4) V angstrom(1) out-of-plane electric field results in a similar to 60% increase in the hole effective mass along the y (x) axis and enhances the m(y)*/m(x)* (m(x)*/m(y)*) ratio as much as by a factor of 40. Our DFT and (k) over right arrow . (p) over right arrow simulations clearly indicate that the twist angle in combination with an appropriate gate voltage is a novel way to tune the electronic and optical properties of bilayer phosphorus and it gives us a new degree of freedom to engineer the properties of black phosphorus based devices.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000406926600001 Publication Date 2017-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 13 Open Access
Notes ; This work was supported by the bilateral project between the The Scientific and Technological Research Council of Turkey (TUBITAK) and FWO-Flanders, Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. We acknowledge the support from TUBITAK (Grant No. 115F024), ERC Synergy grant Hetero2D and the EU Graphene Flagship Project. We also thank Vladimir Fal'ko for helpful discussions. ; Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:145151 Serial 4717
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Peeters, F.M.; Novoselov, K.S.; Neek-Amal, M.
Title Spatial design and control of graphene flake motion Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 6 Pages 060101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000406860300001 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. M.N.-A. was supported by Iran National Science Foundation (INSF). K.S.N. was supported by the EU Graphene Flagship Program, European Research Council Synergy Grant Hetero2D, the Royal Society, Engineering and Physical Research Council (UK), US Army Research Office. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145166 Serial 4724
Permanent link to this record
 

 
Author Ata, I.; Ben Dkhil, S.; Pfannmoeller, M.; Bals, S.; Duche, D.; Simon, J.-J.; Koganezawa, T.; Yoshimoto, N.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J.; Baeuerle, P.
Title The influence of branched alkyl side chains in A-D-A oligothiophenes on the photovoltaic performance and morphology of solution-processed bulk-heterojunction solar cells Type A1 Journal article
Year 2017 Publication Organic chemistry frontiers : an international journal of organic chemistry Abbreviated Journal Org Chem Front
Volume 4 Issue 4 Pages 1561-1573
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Besides providing sufficient solubility, branched alkyl chains also affect the film-forming and packing properties of organic semiconductors. In order to avoid steric hindrance as it is present in wide-spread alkyl chains comprising a branching point position at the C2-position, i.e., 2-ethylhexyl, the branching point can be moved away from the pi-conjugated backbone. In this report, we study the influence of the modification of the branching point position from the C2-position in 2-hexyldecylamine (1) to the C4-position in 4-hexyldecylamine (2) connected to the central dithieno[3,2-b: 2', 3'-d] pyrrole (DTP) moiety in a well-studied A-D-A oligothiophene on the optoelectronic properties and photovoltaic performance in solution- processed bulk heterojunction solar cells (BHJSCs) with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor material. Post-treatment of the photoactive layers is performed via solvent vapor annealing (SVA) in order to improve the film microstructure of the bulk heterojunction. The time evolution of nanoscale morphological changes is followed by combining scanning transmission electron microscopy with low-energy-loss spectroscopic imaging (STEM-SI), solid-state absorption spectroscopy, and two-dimensional grazing incidence X-ray diffraction (2D-GIXRD). Our results show an improvement of the photovoltaic performance that is dependent on the branching point position in the donor oligomer. Optical spacers are utilized to increase light absorption inside the co-oligomer 2-based BHJSCs leading to increased power conversion efficiencies (PCEs) of 8.2% when compared to the corresponding co-oligomer 1-based devices. A STEM-SI analysis of the respective device cross-sections of active layers containing 1 and 2 as donor materials indeed reveals significant differences in their respective active layer morphologies.
Address
Corporate Author Thesis
Publisher RSC Publishing Place of Publication London Editor
Language Wos 000406374800013 Publication Date 2017-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-4129 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.955 Times cited 24 Open Access OpenAccess
Notes ; We acknowledge financial support by the European Commission under the project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594) and S.B. acknowledges the ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 4.955
Call Number UA @ lucian @ c:irua:145176UA @ admin @ c:irua:145176 Serial 4727
Permanent link to this record
 

 
Author Longo, R.; Ferrarotti, M.; Garcia Sánchez, C.; Derudi, M.; Parente, A.
Title Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings Type A1 Journal article
Year 2017 Publication Journal of wind engineering and industrial aerodynamics Abbreviated Journal J Wind Eng Ind Aerod
Volume 167 Issue Pages 160-182
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract When dealing with Atmospheric Boundary Layer (ABL) simulations, commercial computational fluid dynamics (CFD) acquires a strategic resonance. Thanks to its good compromise between accuracy of results and calculation time, RANS still represents a valid alternative to more resource-demanding methods. However, focusing on the models' performances in urban studies, LES generally outmatches RANS results, even if the former is at least one order of magnitude more expensive. Consequently, the present work aims to propose a variety of approaches meant to solve some of the major problems linked to RANS simulations and to further improve its accuracy in typical urban contexts. All of these models are capable of switching from an undisturbed flux formulation to a disturbed one through a local deviation or a marker function. For undisturbed flows, a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles. Around obstacles, Non-Linear Eddy-Viscosity closures are adopted, due to their prominent capability in capturing the anisotropy of turbulence. The purpose of this work is then to propose a new Building Influence Area concept and to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000405766600013 Publication Date 2017-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-6105 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.049 Times cited 9 Open Access Not_Open_Access
Notes ; ; Approved Most recent IF: 2.049
Call Number UA @ lucian @ c:irua:145191 Serial 4713
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmeneva, M.A.; Huygh, S.; Surmenev, R.A.; Neyts, E.C.
Title Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 29 Pages 15687-15695
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To gain insight into the nature of the adhesion mechanism between hydroxyapatite (HA) and rutile (rTiO(2)), the mutual affinity between their surfaces was systematically studied using density functional theory (DFT). We calculated both bulk and surface properties of HA and rTiO(2), and explored the interfacial bonding mechanism of amorphous HA (aHA) surface onto amorphous as well as stoichiometric and nonstoichiometric crystalline rTiO(2). Formation energies of bridging and subbridging oxygen vacancies considered in the rTiO(2)(110) surface were evaluated and compared with other theoretical and experimental results. The interfacial interaction was evaluated through the work of adhesion. For the aHA/rTiO(2)(110) interfaces, the work of adhesion is found to depend strongly on the chemical environment of the rTiO(2)(110) surface. Electronic analysis indicates that the charge transfer is very small in the case of interface formation between aHA and crystalline rTiO(2)(110). In contrast, significant charge transfer occurs between aHA and amorphous rTiO(2) (aTiO(2)) slabs during the formation of the interface. Charge density difference (CDD) analysis indicates that the dominant interactions in the interface have significant covalent character, and in particular the Ti-O and Ca-O bonds. Thus, the obtained results reveal that the aHA/aTiO(2) interface shows a more preferable interaction and is thermodynamically more stable than other interfaces. These results are particularly important for improving the long-term stability of HA-based implants.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000406726200022 Publication Date 2017-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:145195 Serial 4715
Permanent link to this record
 

 
Author Milovanović, S.P.; Tadic, M.Z.; Peeters, F.M.
Title Graphene membrane as a pressure gauge Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 4 Pages 043101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700035 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 11 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program, the Erasmus+ programme, and the Serbian Ministry of Education, Science and Technological Development. ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:145202 Serial 4718
Permanent link to this record
 

 
Author Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M.
Title Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs Type A1 Journal article
Year 2017 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 111 Issue 4 Pages 041901
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (k(Dia)) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of k(Dia) in the measured 25-225 degrees C range. Device simulation using the experimental jDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD. Published by AIP Publishing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000406779700008 Publication Date 2017-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 78 Open Access Not_Open_Access
Notes ; The authors are grateful to Professor Michael Uren and Dr. Roland B. Simon (University of Bristol) for helpful discussions and to Dr. Sien Drijkoningen (Hasselt University) for taking the SEM micrographs. This work was in part supported by DARPA under Contract No. FA8650-15-C-7517, monitored by Dr. Avram Bar Cohen and Dr. John Blevins, and supported by Dr. Joseph Maurer and Dr. Abirami Sivananthan. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. Y.Z. acknowledges China Scholarship Council for the financial support. S.K. and J.V. acknowledge the FWO-Vlaanderen for financial support under contract G.0044.13N “Charge ordering.” ; Approved Most recent IF: 3.411
Call Number UA @ lucian @ c:irua:145203 Serial 4728
Permanent link to this record
 

 
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M.
Title Excitons and trions in monolayer transition metal dichalcogenides : a comparative study between the multiband model and the quadratic single-band model Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 3 Pages 035131
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single- band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single- band model when (interband) interactions are strong.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000405706600005 Publication Date 2017-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145209 Serial 4716
Permanent link to this record
 

 
Author Domingos, J.L.C.; Peeters, F.M.; Ferreira, W.P.
Title Self-assembly of rigid magnetic rods consisting of single dipolar beads in two dimensions Type A1 Journal article
Year 2017 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 96 Issue 1 Pages 012603
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Molecular dynamics simulations are used to investigate the structural properties of a two-dimensional ensemble of magnetic rods, which are modeled as aligned single dipolar beads. The obtained self-assembled configurations can be characterized as (1) clusters, (2) percolated, and (3) ordered structures, and their structural properties are investigated in detail. By increasing the aspect ratio of the magnetic rods, we show that the percolation transition is suppressed due to the reduced mobility of the rods in two dimensions. Such a behavior is opposite to the one observed in three dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual nonmonotonic behavior of the nematic order is observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000405713900014 Publication Date 2017-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0045;2470-0053; ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 8 Open Access
Notes ; This work was supported by the Brazilian agencies FUNCAP, CAPES, program Science without borders, and CNPq (Project No. 400748/2013-4), the joint CNPq-FWO bilateral project, and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 2.366
Call Number UA @ lucian @ c:irua:145210 Serial 4723
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K. M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C.
Title Atomistic simulations of graphite etching at realistic time scales Type A1 Journal article
Year 2017 Publication Chemical science Abbreviated Journal Chem Sci
Volume 8 Issue 10 Pages 7160-7168
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hydrogen–graphite interactions are relevant to a wide variety of applications, ranging from astrophysics to fusion devices and nano-electronics. In order to shed light on these interactions, atomistic simulation using Molecular Dynamics (MD) has been shown to be an invaluable tool. It suffers, however, from severe timescale

limitations. In this work we apply the recently developed Collective Variable-Driven Hyperdynamics (CVHD) method to hydrogen etching of graphite for varying inter-impact times up to a realistic value of 1 ms, which corresponds to a flux of 1020 m2 s1. The results show that the erosion yield, hydrogen surface coverage and species distribution are significantly affected by the time between impacts. This can be explained by the higher probability of C–C bond breaking due to the prolonged exposure to thermal stress and the subsequent transition from ion- to thermal-induced etching. This latter regime of thermal-induced etching – chemical erosion – is here accessed for the first time using atomistic simulations. In conclusion, this study demonstrates that accounting for long time-scales significantly affects ion bombardment simulations and should not be neglected in a wide range of conditions, in contrast to what is typically assumed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411730500055 Publication Date 2017-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 3 Open Access OpenAccess
Notes DIFFER is part of the Netherlands Organisation for Scientic Research (NWO). K. M. B. is funded as a PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientic Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government – department EWI. Approved Most recent IF: 8.668
Call Number PLASMANT @ plasmant @c:irua:145519 Serial 4707
Permanent link to this record
 

 
Author Bal, K.M.; Cautereels, J.; Blockhuys, F.
Title Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains : R2P-N=S=N-PR2 and R2P-N=S=N-AsR2 Type A1 Journal article
Year 2017 Publication Journal of molecular structure Abbreviated Journal J Mol Struct
Volume 1132 Issue Pages 102-108
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The conformational and configurational preferences of Me2PNSNPMe2 (3) and Me2PNSNAsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000393254400015 Publication Date 2016-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2860 ISBN Additional Links (up) UA library record; WoS full record
Impact Factor 1.753 Times cited Open Access Not_Open_Access: Available from 03.10.2019
Notes Approved Most recent IF: 1.753
Call Number UA @ lucian @ c:irua:145533 Serial 4726
Permanent link to this record
 

 
Author Pour, M.D.; Motiee, N.; Barati, A.A.; Taheri, F.; Azadi, H.; Gebrehiwot, K.; Lebailly, P.; Van Passel, S.; Witlox, F.
Title Impacts of the Hara biosphere reserve on livelihood and welfare in Persian Gulf Type A1 Journal article
Year 2017 Publication Ecological Economics Abbreviated Journal Ecol Econ
Volume 141 Issue Pages 76-86
Keywords A1 Journal article; Economics; Engineering Management (ENM)
Abstract Despite the importance of biosphere reserves in Iran's livelihood and welfare, the economic significance of Hara Biosphere Reserve has never been comprehensively studied. This study examines the current importance of Hara Biosphere Reserve (HBR) in local livelihood and welfare. Using a household survey, data were collected through a questionnaire, key informant interviews and direct observations. Two hundred and forty-four households were randomly selected from 10 villages through proportional sampling. Results showed that non-environmental income was the first driver of the total income, poverty alleviation and narrowing income inequality gap. Park income was the second. The results also showed that excluding park income from total income would significantly increase headcount poverty, widen the poverty gap, and raise the Gini coefficient. Wealthier households had the greatest absolute income from the environment, including forest, fishing and fodder. However, the poorest group had smallest absolute income from these sources. Thus, the study demonstrated that wealthier households are responsible for the overharvesting of environmental resources. Interestingly, the study showed that wealthier households are more dependent on profitable environmental incomes sources while the poorest are more dependent on non-profitable ones. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000410013200008 Publication Date 2017-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009; 1873-6106 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 2.965
Call Number UA @ admin @ c:irua:145602 Serial 6214
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Peeters, F.M.
Title Inhomogeneous phases in coupled electron-hole bilayer graphene sheets : charge density waves and coupled wigner crystals Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 11510
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recently proposed accurate correlation energies are used to determine the phase diagram of strongly coupled electron-hole graphene bilayers. The control parameters of the phase diagram are the charge carrier density and the insulating barrier thickness separating the bilayers. In addition to the electron-hole superfluid phase we find two new inhomogeneous ground states, a one dimensional charge density wave phase and a coupled electron-hole Wigner crystal. The elementary crystal structure of bilayer graphene plays no role in generating these new quantum phases, which are completely determined by the electrons and holes interacting through the Coulomb interaction. The experimental parameters for the new phases lie within attainable ranges and therefore coupled electron-hole bilayer graphene presents itself as an experimental system where novel emergent many-body phases can be realized.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000410739000008 Publication Date 2017-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 13 Open Access
Notes ; We thank Alex Hamilton, Bart Partoens, and Andrea Perali for useful discussions. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:145620 Serial 4742
Permanent link to this record
 

 
Author Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P.M.; Milošević, M.V.
Title Evolution of multigap superconductivity in the atomically thin limit : strain-enhanced three-gap superconductivity in monolayer MgB2 Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages 094510
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from first principles, we show the formation and evolution of superconducting gaps in MgB2 at its ultrathin limit. Atomically thin MgB2 is distinctly different from bulk MgB2 in that surface states become comparable in electronic density to the bulklike sigma and pi bands. Combining the ab initio electron-phonon coupling with the anisotropic Eliashberg equations, we showthat monolayer MgB2 develops three distinct superconducting gaps, on completely separate parts of the Fermi surface due to the emergent surface contribution. These gaps hybridize nontrivially with every extra monolayer added to the film owing to the opening of additional coupling channels. Furthermore, we reveal that the three-gap superconductivity in monolayer MgB2 is robust over the entire temperature range that stretches up to a considerably high critical temperature of 20 K. The latter can be boosted to >50K under biaxial tensile strain of similar to 4%, which is an enhancement that is stronger than in any other graphene-related superconductor known to date.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000410166800008 Publication Date 2017-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 56 Open Access
Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), and the Rontgen-Angstrom Cluster. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules Foundation and the Flemish Government (EWI Department). Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145623 Serial 4741
Permanent link to this record
 

 
Author Michel, K.H.; Scuracchio, P.; Peeters, F.M.
Title Sound waves and flexural mode dynamics in two-dimensional crystals Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages 094302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and outof-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000409246200003 Publication Date 2017-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145630 Serial 4751
Permanent link to this record
 

 
Author Leus, K.; Perez, J.P.H.; Folens, K.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P.
Title UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions Type A1 Journal article
Year 2017 Publication Faraday discussions Abbreviated Journal Faraday Discuss
Volume 201 Issue Pages 145-161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The dithiol functionalized UiO-66-(SH)(2) is developed as an efficient adsorbent for the removal of mercury in aqueous media. Important parameters for the application of MOFs in real-life circumstances include: stability and recyclability of the adsorbents, selectivity for the targeted Hg species in the presence of much higher concentrations of interfering species, and ability to purify wastewater below international environmental limits within a short time. We show that UiO-66-(SH)(2) meets all these criteria.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000409366000009 Publication Date 2017-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6640 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.588 Times cited 18 Open Access Not_Open_Access
Notes ; J. P. H. P. is grateful for the funding from the Vlaamse Interuniversitaire Raad-Universitaire Ontwikkelingssamenwerking (VLIR-UOS). K. L. acknowledges the financial support from the Ghent University BOF Postdoctoral Grant (01P06813T). ; Approved Most recent IF: 3.588
Call Number UA @ lucian @ c:irua:145653 Serial 4757
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.
Title Anisotropic hybrid excitation modes in monolayer and double-layer phosphorene on polar substrates Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 11 Pages 115402
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the anisotropic hybrid surface optical (SO) phonon-plasmon dispersion relations in monolayer and double-layer phosphorene systems located on the polar substrates, such as SiO2, h-BN, and Al2O3. We calculate these hybrid modes by using the dynamical dielectric function in the random phase approximation in which the electron-electron interaction and long-range electric field generated by the substrate SO phonons via Frohlich interaction are taken into account. In the long-wavelength limit, we obtain some analytical expressions for the hybrid SO phonon-plasmon dispersion relations which agree with those obtained from the loss function. Our results indicate a strong anisotropy in SO phonon-plasmon modes, which are stronger along the light-mass direction in our heterostructures. Furthermore, we find that the type of substrate has a significant effect on the dispersion relations of the coupled modes. Importantly, the hybrid excitations are apparently sensitive to the misalignment and separation between layers in double-layer phosphorene.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000408826200004 Publication Date 2017-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145665 Serial 4737
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Dietz, W.; Verwerft, M.
Title Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes Type A1 Journal article
Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater
Volume 493 Issue Pages 154-167
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or “15-15Ti”) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium- Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 degrees C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 degrees C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 degrees C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 degrees C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures. (C) 2017 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000408044000018 Publication Date 2017-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3115 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 5 Open Access OpenAccess
Notes ; ; Approved Most recent IF: 2.048
Call Number UA @ lucian @ c:irua:145686 Serial 4753
Permanent link to this record
 

 
Author Tang, Y.; Sena, R.P.; Aydeev, M.; Battle, P.D.; Cadogan, J.M.; Hadermann, J.; Hunter, E.C.
Title Magnetic properties of the 6H perovskite Ba3Fe2TeO9 Type A1 Journal article
Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 253 Issue Pages 347-354
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A polycrystalline sample of Ba3Fe2TeO9 having the 6H perovskite structure has been prepared in a solid-state reaction and studied by a combination of electron microscopy, Mossbauer spectroscopy, magnetometry, X-ray diffraction and neutron diffraction. Partial ordering of Fe3+ and Te6+ cations occurs over the six-coordinate sites; the corner-sharing octahedra are predominantly occupied by the former and the face-sharing octahedra by a 1:1 mixture of the two. On cooling through the temperature range 18 < T/K < 295 an increasing number of spins join an antiferromagnetic backbone running through the structure while the remainder show complex relaxation effects. At 3 K an antiferromagnetic phase and a spin glass coexist.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000406572600047 Publication Date 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 6 Open Access OpenAccess
Notes ; We thank EPSRC for financial support through grant EP/M018954/1. ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:145692 Serial 4743
Permanent link to this record
 

 
Author Rezaei, M.; Sisakht, E.T.; Fazileh, F.; Aslani, Z.; Peeters, F.M.
Title Tight-binding model investigation of the biaxial strain induced topological phase transition in GeCH3 Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 8 Pages 085441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose a tight-binding (TB) model, that includes spin-orbit coupling (SOC), to describe the electronic properties of methyl-substituted germanane (GeCH3). This model gives an electronic spectrum in agreement with first principle results close to the Fermi level. Using the Z(2) formalism, we show that a topological phase transition from a normal insulator (NI) to a quantum spin Hall (QSH) phase occurs at 11.6% biaxial tensile strain. The sensitivity of the electronic properties of this system on strain, in particular its transition to the topological insulating phase, makes it very attractive for applications in strain sensors and other microelectronic applications.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000408570800004 Publication Date 2017-08-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145697 Serial 4755
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-Fard, T.; Farmanbar, M.; Peeters, F.M.
Title Strong anisotropic optical conductivity in two-dimensional puckered structures : the role of the Rashba effect Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 7 Pages 075411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000407097100005 Publication Date 2017-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145725 Serial 4752
Permanent link to this record
 

 
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M.
Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue 15 Pages 8782-8792
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000407405500026 Publication Date 2017-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:145727 Serial 4744
Permanent link to this record
 

 
Author Xiao, Y.M.; Xu, W.; Peeters, F.M.; Van Duppen, B.
Title Multicomponent plasmons in monolayer MoS2 with circularly polarized optical pumping Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 8 Pages 085405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By making use of circularly polarized light and electrostatic gating, monolayer molybdenum disulfide (ML – MoS2) can form a platform supporting multiple types of charge carriers. They can be discriminated by their spin, valley index, or whether they are electrons or holes. We investigate the collective properties of those charge carriers and are able to identify distinct plasmon modes. We analyze the corresponding dispersion relation, lifetime, and oscillator strength, and calculate the phase relation between the oscillations in the different components of the plasmon modes. All platforms in ML-MoS2 support a long-wavelength root q plasmon branch at zero kelvins. In addition to this, for an n-component system, n-1 distinct plasmon modes appear as acoustic modes with linear dispersion in the long-wavelength limit. These modes correspond to out-of-phase oscillations in the different fermion liquids and have, although being damped, a relatively long lifetime. Additionally, we also find distinct modes at large wave vectors that are more strongly damped by intraband processes.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000406861600001 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; Y.M.X. acknowledges financial support from the China Scholarship Council (CSC). B.V.D. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. This work was also supported by the National Natural Science Foundation of China (Grants No. 11574319 and No. 11304272), the Ministry of Science and Technology of China (Grant No. 2011YQ130018), the Department of Science and Technology of Yunnan Province, the Applied Basic Research Foundation of Yunnan Province (2013FD003), and the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145729 Serial 4745
Permanent link to this record
 

 
Author Yang, C.; Laberty-Robert, C.; Batuk, D.; Cibin, G.; Chadwick, A.V.; Pimenta, V.; Yin, W.; Zhang, L.; Tarascon, J.-M.; Grimaud, A.
Title Phosphate ion functionalization of perovskite surfaces for enhanced oxygen evolution reaction Type A1 Journal article
Year 2017 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 8 Issue 15 Pages 3466-3472
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recent findings revealed that surface oxygen can participate in the oxygen evolution reaction (OER) for the most active catalysts, which eventually triggers a new mechanism for which the deprotonation of surface intermediates limits the OER activity. We propose in this work a “dual strategy” in which tuning the electronic properties of the oxide, such as La1-xSrxCoO3-delta, can be dissociated from the use of surface functionalization with phosphate ion groups (P-i) that enhances the interfacial proton transfer. Results show that the P-i functionalized La0.5Sr0.5CoO3-delta gives rise to a significant enhancement of the OER activity when compared to La0.5Sr0.5Co3-delta and LaCoO3. We further demonstrate that the P-i surface functionalization selectivity enhances the activity when the OER kinetics is limited by the proton transfer. Finally, this work suggests that tuning the catalytic activity by such a “dual approach” may be a new and largely unexplored avenue for the design of novel high-performance catalysts.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000407191300003 Publication Date 2017-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 31 Open Access OpenAccess
Notes ; C.Y., J.-M.T., D.B., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. ; Approved Most recent IF: 9.353
Call Number UA @ lucian @ c:irua:145730 Serial 4747
Permanent link to this record
 

 
Author Drijkoningen, S.; Pobedinskas, P.; Korneychuk, S.; Momot, A.; Balasubramaniam, Y.; Van Bael, M.K.; Turner, S.; Verbeeck, J.; Nesladekt, M.; Haenen, K.
Title On the Origin of Diamond Plates Deposited at Low Temperature Type A1 Journal article
Year 2017 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 17 Issue 8 Pages 4306-4314
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The crucial requirement for diamond growth at low temperatures, enabling a wide range of new applications, is a high plasma density at a low gas pressure, which leads to a low thermal load onto sensitive substrate materials. While these conditions are not within reach for resonance cavity plasma systems, linear antenna microwave delivery systems allow the deposition of high quality diamond films at temperatures around 400 degrees C and at pressures below 1 mbar. In this work the codeposition of high quality plates and octahedral diamond grains in nanocrystalline films is reported. In contrast to previous reports claiming the need for high temperatures (T >= 850 degrees C), low temperatures (320 degrees C <= T <= 410 degrees C) were sufficient to deposit diamond plate structures. Cross-sectional high resolution transmission electron microscopy studies show that these plates are faulty cubic diamond terminated by large {111} surface facets with very little sp(2) bonded carbon in the grain boundaries. Raman and electron energy loss spectroscopy studies confirm a high diamond quality, above 93% sp(3) carbon content. Three potential mechanisms, that can account for the initial development of the observed plates rich with stacking faults, and are based on the presence of impurities, are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000407089600031 Publication Date 2017-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 23 Open Access Not_Open_Access
Notes ; The Research Foundation – Flanders (FWO) is gratefully acknowledged for financial support in the form of the Postdoctoral Fellowships of P.P. and S.T., contract G.0044.13N “Charge ordering” (S.K., J.V.), the Methusalem “Nano” network, and the Hercules-linear antenna and Raman equipment. ; Approved Most recent IF: 4.055
Call Number UA @ lucian @ c:irua:145735UA @ admin @ c:irua:145735 Serial 4746
Permanent link to this record
 

 
Author Zebrowski, D.P.; Peeters, F.M.; Szafran, B.
Title Double quantum dots defined in bilayer graphene Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 3 Pages 035434
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Artificial molecular states of double quantum dots defined in bilayer graphene are studied with the atomistic tight-binding method and its low-energy continuum approximation. We indicate that the extended electron wave functions have opposite parities on sublattices of the layers and that the ground-state wave-function components change from bonding to antibonding with the interdot distance. In the weak-coupling limit, the one most relevant for quantum dots defined electrostatically, the signatures of the interdot coupling include, for the two-electron ground state, formation of states with symmetric or antisymmetric spatial wave functions split by the exchange energy. In the high-energy part of the spectrum the states with both electrons in the same dot are found with the splitting of energy levels corresponding to simultaneous tunneling of the electron pair from one dot to the other.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000406284200005 Publication Date 2017-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145758 Serial 4739
Permanent link to this record
 

 
Author Sathiya, M.; Thomas, J.; Batuk, D.; Pimenta, V.; Gopalan, R.; Tarascon, J.-M.
Title Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-Ion cells based on P2-NaxMO2 electrodes Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 14 Pages 5948-5956
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sodium ion battery technology is gradually advancing and can be viewed as a viable alternative to lithium ion batteries in niche applications. One of the promising positive electrode candidates is P2 type layered sodium transition metal oxide, which offers attractive sodium ion conductivity. However, the reversible capacity of P2 phases is limited by the inability to directly synthesize stoichiometric compounds with a sodium to transition metal ratio equal to 1. To alleviate this issue, we report herein the in situ synthesis of P2-NaxO2 (x <= 0.7, M = transition metal ions)-Na2CO3 composites. We find that sodium carbonate acts as a sacrificial salt, providing Na+ ion to increase the reversible capacity of the P2 phase in sodium ion full cells, and also as a useful additive that stabilizes the formation of P2 over competing P3 phases. We offer a new phase diagram for tuning the synthesis of the P2 phase under various experimental conditions and demonstrate, by in situ XRD analysis, the role of Na2CO3 as a sodium reservoir in full sodium ion cells. These results provide insights into the practical use of P2 layered materials and can be extended to a variety of other layered phases.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000406573200026 Publication Date 2017-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access Not_Open_Access
Notes ; M.S., J.T., and R.G. acknowledge the financial support received from the Department of Science and Technology (DST-SERC), Government of India under the funding from the TRC Grant Agreement No. AI/1/65/ARCI/2014. The authors are thankful to Dr. Sundararajan, Chairman, TRC and Dr. G. Padmanabham, Director, ARCI for helpful discussions. Initial microscopy analysis by Dr. M. B. Sahana, Dr. Prabu, and Mr. Ravi Gautham of ARCI are greatly acknowledged. The elemental analysis by Dr. Domitille Giaume, IRCP – ENSCP, Chimie Paris Tech, Paris is greatly acknowledged. ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:145759 Serial 4740
Permanent link to this record