|
Record |
Links |
|
Author |
Xiao, Y.M.; Xu, W.; Peeters, F.M.; Van Duppen, B. |
|
|
Title |
Multicomponent plasmons in monolayer MoS2 with circularly polarized optical pumping |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
96 |
Issue |
8 |
Pages |
085405 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
By making use of circularly polarized light and electrostatic gating, monolayer molybdenum disulfide (ML – MoS2) can form a platform supporting multiple types of charge carriers. They can be discriminated by their spin, valley index, or whether they are electrons or holes. We investigate the collective properties of those charge carriers and are able to identify distinct plasmon modes. We analyze the corresponding dispersion relation, lifetime, and oscillator strength, and calculate the phase relation between the oscillations in the different components of the plasmon modes. All platforms in ML-MoS2 support a long-wavelength root q plasmon branch at zero kelvins. In addition to this, for an n-component system, n-1 distinct plasmon modes appear as acoustic modes with linear dispersion in the long-wavelength limit. These modes correspond to out-of-phase oscillations in the different fermion liquids and have, although being damped, a relatively long lifetime. Additionally, we also find distinct modes at large wave vectors that are more strongly damped by intraband processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Physical Society |
Place of Publication |
New York, N.Y |
Editor |
|
|
|
Language |
|
Wos |
000406861600001 |
Publication Date |
2017-08-04 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
2 |
Open Access |
|
|
|
Notes |
; Y.M.X. acknowledges financial support from the China Scholarship Council (CSC). B.V.D. is supported by the Flemish Science Foundation (FWO-Vl) through a postdoctoral fellowship. This work was also supported by the National Natural Science Foundation of China (Grants No. 11574319 and No. 11304272), the Ministry of Science and Technology of China (Grant No. 2011YQ130018), the Department of Science and Technology of Yunnan Province, the Applied Basic Research Foundation of Yunnan Province (2013FD003), and the Chinese Academy of Sciences. ; |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
UA @ lucian @ c:irua:145729 |
Serial |
4745 |
|
Permanent link to this record |