toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume Issue Pages 142953-29  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000986051300001 Publication Date 2023-04-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:195603 Serial 7264  
Permanent link to this record
 

 
Author Sahun, M.; Privat-Maldonado, A.; Lin, A.; De Roeck, N.; Van de Heyden, L.; Hillen, M.; Michiels, J.; Steenackers, G.; Smits, E.; Ariën, K.K.; Jorens, P.G.; Delputte, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of SARS-CoV-2 and other enveloped and non-enveloped viruses with non-thermal plasma for hospital disinfection Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract As recently highlighted by the SARS-CoV-2 pandemic, viruses have become an increasing burden for health, global economy, and environment. The control of transmission by contact with contaminated materials represents a major challenge, particularly in hospital environments. However, the current disinfection methods in hospital settings suffer from numerous drawbacks. As a result, several medical supplies that cannot be properly disinfected are not reused, leading to severe shortages and increasing amounts of waste, thus prompting the search for alternative solutions. In this work, we report that non-thermal plasma (NTP) can effectively inactivate SARS-CoV-2 from non-porous and porous materials commonly found in healthcare facilities. We demonstrated that 5 min treatment with a dielectric barrier discharge NTP can inactivate 100% of SARS-CoV-2 (Wuhan and Omicron strains) from plastic material. Using porcine respiratory coronavirus (surrogate for SARS-CoV-2) and coxsackievirus B3 (highly resistant non-enveloped virus), we tested the NTP virucidal activity on hospital materials and obtained complete inactivation after 5 and 10 min, respectively. We hypothesize that the produced reactive species and local acidification contribute to the overall virucidal effect of NTP. Our results demonstrate the potential of dielectric barrier discharge NTPs for the rapid, efficient, and low-cost disinfection of healthcare materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000964269500001 Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number UA @ admin @ c:irua:194897 Serial 7269  
Permanent link to this record
 

 
Author Tchakoua, T.; Gerrits, N.; Smeets, E.W.F.; Kroes, G.-J. url  doi
openurl 
  Title SBH17 : benchmark database of barrier heights for dissociative chemisorption on transition metal surfaces Type A1 Journal article
  Year 2023 Publication Journal of chemical theory and computation Abbreviated Journal  
  Volume 19 Issue 1 Pages 245-270  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Accurate barriers for rate controlling elementary reactions on metal surfaces are key to understanding, controlling, and predicting the rate of heterogeneously catalyzed processes. While barrier heights for gas phase reactions have been extensively benchmarked, dissociative chemisorption barriers for the reactions of molecules on metal surfaces have received much less attention. The first database called SBH10 and containing 10 entries was recently constructed based on the specific reaction parameter approach to density functional theory (SRP-DFT) and experimental results. We have now constructed a new and improved database (SBH17) containing 17 entries based on SRP-DFT and experiments. For this new SBH17 benchmark study, we have tested three algorithms (high, medium, and light) for calculating barrier heights for dissociative chemisorption on metals, which we have named for the amount of computational effort involved in their use. We test the performance of 14 density functionals at the GGA, GGA+vdW-DF, and meta-GGA rungs. Our results show that, in contrast with the previous SBH10 study where the BEEF-vdW-DF2 functional seemed to be most accurate, the workhorse functional PBE and the MS2 density functional are the most accurate of the GGA and meta-GGA functionals tested. Of the GGA+vdW functionals tested, the SRP32-vdW-DF1 functional is the most accurate. Additionally, we found that the medium algorithm is accurate enough for assessing the performance of the density functionals tested, while it avoids geometry optimizations of minimum barrier geometries for each density functional tested. The medium algorithm does require metal lattice constants and interlayer distances that are optimized separately for each functional. While these are avoided in the light algorithm, this algorithm is found not to give a reliable description of functional performance. The combination of relative ease of use and demonstrated reliability of the medium algorithm will likely pave the way for incorporation of the SBH17 database in larger databases used for testing new density functionals and electronic structure methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903286100001 Publication Date 2022-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 5.5; 2023 IF: 5.245  
  Call Number UA @ admin @ c:irua:193426 Serial 7274  
Permanent link to this record
 

 
Author Nematollahi, P. pdf  url
doi  openurl
  Title Selectivity of Mo-NC sites for electrocatalytic N₂ reduction : a function of the single atom position on the surface and local carbon topologies Type A1 Journal article
  Year 2023 Publication Applied surface science Abbreviated Journal  
  Volume 612 Issue Pages 155908-155909  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Transition metal (TM) doped two-dimensional single-atom catalysts are known as a promising class of catalysts for electrocatalytic gas conversion. However, the detailed mechanisms that occur at the surface of these catalysts are still unknown. In the present work, we simulate three Mo-doped nitrogenated graphene structures. In each catalyst, the position of the Mo active site and the corresponding local carbon topologies are different, i.e. MoN4C10 with in-plane Mo atom, MoN4C8 in which Mo atom bridges two adjacent armchair-like graphitic edges, and MoN2C3 in which Mo is doped at the edge of the graphene sheet. Using Density Functional Theory (DFT) calculations we discuss the electrocatalytic activity of Mosingle bondNsingle bondC structures for nitrogen reduction reaction (NRR) with a focus on unraveling the corresponding mechanisms concerning different Mo site positions and C topologies. Our results indicate that the position of the active site centers has a great effect on its electrocatalytic behavior. The gas phase N2 efficiently reduces to ammonia on MoN4C8 via the distal mechanism with an onset potential of −0.51 V. We confirm that the proposed pyridinic structure, MoN4C8, can catalyze NRR effectively with a low overpotential of 0.35 V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000901469900003 Publication Date 2022-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number UA @ admin @ c:irua:192430 Serial 7275  
Permanent link to this record
 

 
Author Baetens, D.; Schoofs, K.; Somers, N.; Denys, S. pdf  url
doi  openurl
  Title A brief review on Multiphysics modelling of the various physical and chemical phenomena occurring in active oxidation reactors Type A1 Journal article
  Year 2023 Publication Current opinion in green and sustainable chemistry Abbreviated Journal  
  Volume 40 Issue Pages 100764-100766  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Heterogeneous photocatalysis can be used as an advanced oxidation technology frequently studied for application in photoreactors for air and water treatment. Extensive experimental investigation entails high costs and is also time consuming. Multiphysics modelling, a relatively new numerical method, provides a cost-effective and valuable alternative. By reconstructing the reactor geometry in dedicated software, meshing it and solving for occurring physical and chemical phenomena, Multiphysics models can be used to evaluate the performance of different reactor designs, increase insight into the occurring phenomena and study the influence of operational parameters on reactor performance. Finally, Multiphysics models are also developed for various applications like optimising the operational parameters, creating the ideal reactor design or scaling up a lab-scale reactor to a realistic prototype.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000947344000001 Publication Date 2023-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2452-2236 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.3 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 9.3; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195208 Serial 7278  
Permanent link to this record
 

 
Author Shi, P.; Wang, L.; Quinn, B.K.K.; Gielis, J. url  doi
openurl 
  Title A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds Type A1 Journal article
  Year 2023 Publication Symmetry Abbreviated Journal Symmetry-Basel  
  Volume 15 Issue 1 Pages 231-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Preston's equation is a general model describing the egg shape of birds. The parameters of Preston's equation are usually estimated after re-expressing it as the Todd-Smart equation and scaling the egg's actual length to two. This method assumes that the straight line through the two points on an egg's profile separated by the maximum distance (i.e., the longest axis of an egg's profile) is the mid-line. It hypothesizes that the photographed egg's profile is perfectly bilaterally symmetrical, which seldom holds true because of photographic errors and placement errors. The existing parameter estimation method for Preston's equation considers an angle of deviation for the longest axis of an egg's profile from the mid-line, which decreases prediction errors to a certain degree. Nevertheless, this method cannot provide an accurate estimate of the coordinates of the egg's center, and it leads to sub-optimal parameter estimation. Thus, it is better to account for the possible asymmetry between the two sides of an egg's profile along its mid-line when fitting egg-shape data. In this paper, we propose a method based on the optimization algorithm (optimPE) to fit egg-shape data and better estimate the parameters of Preston's equation by automatically searching for the optimal mid-line of an egg's profile and testing its validity using profiles of 59 bird eggs spanning a wide range of existing egg shapes. We further compared this method with the existing one based on multiple linear regression (lmPE). This study demonstrated the ability of the optimPE method to estimate numerical values of the parameters of Preston's equation and provide the theoretical egg length (i.e., the distance between two ends of the mid-line of an egg's profile) and the egg's maximum breadth. This provides a valuable approach for comparing egg shapes among conspecifics or across different species, or even different classes (e.g., birds and reptiles), in future investigations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000927531000001 Publication Date 2023-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 1.457  
  Call Number UA @ admin @ c:irua:195347 Serial 7279  
Permanent link to this record
 

 
Author Skorikov, A.; Batenburg, K.J.; Bals, S. pdf  url
doi  openurl
  Title Analysis of 3D elemental distribution in nanomaterials : towards higher throughput and dose efficiency Type A1 Journal article
  Year 2023 Publication Journal of microscopy Abbreviated Journal  
  Volume 289 Issue 3 Pages 157-163  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Many advanced nanomaterials rely on carefully designed morphology and elemental distribution to achieve their functionalities. Among the few experimental techniques that can directly visualise the 3D elemental distribution on the nanoscale are approaches based on electron tomography in combination with energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). Unfortunately, these highly informative methods are severely limited by the fundamentally low signal-to-noise ratio, which makes long experimental times and high electron irradiation doses necessary to obtain reliable 3D reconstructions. Addressing these limitations has been the major research question for the development of these techniques in recent years. This short review outlines the latest progress on the methods to reduce experimental time and electron irradiation dose requirements for 3D elemental distribution analysis and gives an outlook on the development of this field in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000910532600001 Publication Date 2022-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2 Times cited 2 Open Access (up) OpenAccess  
  Notes ERC Consolidator Grant, Grant/Award Number: 815128 Approved Most recent IF: 2; 2023 IF: 1.692  
  Call Number UA @ admin @ c:irua:193428 Serial 7281  
Permanent link to this record
 

 
Author Orozco-Jimenez, A.J.; Pinilla-Fernandez, D.A.; Pugliese, V.; Bula, A.; Perreault, P.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Angular momentum based-analysis of gas-solid fluidized beds in vortex chambers Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 457 Issue Pages 141222-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Gas-solid vortex chambers are a promising alternative for reactive and non-reactive processes requiring enhanced heat and mass transfer rates and order-of-milliseconds contact time. The conservation of angular momentum is instrumental in understanding how the interactions between gas, particulate solids, and chamber walls influence the formation of a rotating solids bed. Therefore, this work applies the conservation of angular momentum to derive a model that gives the average angular velocity of solids in terms of gas injection velocity, wall-solids bed drag coefficient, gas and particle properties, and chamber geometry. Three datasets from published studies, comprising 1 g-Geldart B- and d-type particles in different vortex chambers, validate the model results. Using a sensitivity analysis, we assessed the effect of input variables on the average angular velocity of solids, average void fraction, and average bed height. Results indicate that the top and bottom end-wall boundaries exert the most significant braking effect on the rotating solids bed compared with the cylindrical outer wall and gas injection boundaries. The wall-solids bed drag coefficient appears independent of the gas injection velocity for a wide range of operating conditions. The proposed model is a valuable tool for analyzing and comparing gas–solid vortex typologies, unraveling improvement opportunities, and scale-up.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000951011600001 Publication Date 2022-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:192868 Serial 7282  
Permanent link to this record
 

 
Author Peeters, H.; Lenaerts, S.; Verbruggen, S.W. url  doi
openurl 
  Title Benchmarking the photocatalytic self-cleaning activity of industrial and experimental materials with ISO 27448:2009 Type A1 Journal article
  Year 2023 Publication Materials Abbreviated Journal Materials  
  Volume 16 Issue 3 Pages 1119-13  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Various industrial surface materials are tested for their photocatalytic self-cleaning activity by performing the ISO 27448:2009 method. The samples are pre-activated by UV irradiation, fouled with oleic acid and irradiated by UV light. The degradation of oleic acid over time is monitored by taking water contact angle measurements using a contact angle goniometer. The foulant, oleic acid, is an organic acid that makes the surface more hydrophobic. The water contact angle will thus decrease over time as the photocatalytic material degrades the oleic acid. In this study, we argue that the use of this method is strongly limited to specific types of surface materials, i.e., only those that are hydrophilic and smooth in nature. For more hydrophobic materials, the difference in the water contact angles of a clean surface and a fouled surface is not measurable. Therefore, the photocatalytic self-cleaning activity cannot be established experimentally. Another type of material that cannot be tested by this standard are rough surfaces. For rough surfaces, the water contact angle cannot be measured accurately using a contact angle goniometer as prescribed by the standard. Because of these limitations, many potentially interesting industrial substrates cannot be evaluated. Smooth samples that were treated with an in-house developed hydrophilic titania thin film (PCT/EP2018/079983) showed a great photocatalytic self-cleaning performance according to the ISO standard. Apart from discussing the pros and cons of the current ISO standard, we also stress how to carefully interpret the results and suggest alternative testing solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930734100001 Publication Date 2023-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: 2.654  
  Call Number UA @ admin @ c:irua:193337 Serial 7284  
Permanent link to this record
 

 
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A. pdf  url
doi  openurl
  Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
  Year 2023 Publication Materials characterization Abbreviated Journal  
  Volume 200 Issue Pages 112886-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977059100001 Publication Date 2023-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714  
  Call Number UA @ admin @ c:irua:195598 Serial 7291  
Permanent link to this record
 

 
Author Bian, G.; Ageeva, O.; Roddatis, V.; Li, C.; Pennycook, T.J.; Habler, G.; Abart, R. url  doi
openurl 
  Title Crystal structure controls on oriented primary magnetite micro-inclusions in plagioclase From oceanic gabbro Type A1 Journal article
  Year 2023 Publication Journal of petrology Abbreviated Journal  
  Volume 64 Issue 3 Pages egad008-18  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Oriented needle-, lath- and plate-shaped magnetite micro-inclusions in rock forming plagioclase from mafic intrusive rocks, were investigated using correlated optical microscopy and scanning transmission electron microscopy. The magnetite micro-inclusions were analysed on cuts parallel and perpendicular to the inclusion-elongation directions. The crystal structures of the two phases are in direct contact along the interfaces. The shape, shape orientation and crystallographic orientation relationships between the magnetite micro-inclusions and the plagioclase host appear to be controlled by the tendency of the system to optimise lattice match along the interfaces. The elongation direction of the inclusions ensures good match between prominent oxygen layers in the magnetite and plagioclase crystal structures across the interfaces bounding the inclusions parallel to their elongation direction. In cross-section, additional modes of lattice match, such as the commensurate impingement of magnetite and plagioclase lattice planes along the interfaces, the parallel alignment of the interfaces to low-index lattice planes of magnetite or plagioclase, or the parallel alignment to low index lattice planes of both phases are observed, which appear to control the selection of interface facets, as well as the shape and crystallographic orientation relationships between magnetite micro-inclusions and plagioclase host. The systematics of the inclusion cross-sectional shapes and crystallographic orientation relationships indicate recrystallisation of magnetite with potential implications for natural remanent magnetisation of magnetite-bearing plagioclase grains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001010636400007 Publication Date 2023-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3530 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.28  
  Call Number UA @ admin @ c:irua:195160 Serial 7292  
Permanent link to this record
 

 
Author Alloul, A.; Blansaer, N.; Cabecas Segura, P.; Wattiez, R.; Vlaeminck, S.E.; Leroy, B. pdf  url
doi  openurl
  Title Dehazing redox homeostasis to foster purple bacteria biotechnology Type A1 Journal article
  Year 2023 Publication Trends in biotechnology : regular edition Abbreviated Journal  
  Volume 41 Issue 1 Pages 106-119  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Purple non-sulfur bacteria (PNSB) show great potential for environmental and industrial biotechnology, producing microbial protein, biohydrogen, polyhydroxyalkanoates (PHAs), pigments, etc. When grown photoheterotrophically, the carbon source is typically more reduced than the PNSB biomass, which leads to a redox imbalance. To mitigate the excess of electrons, PNSB can exhibit several ‘electron sinking’ strategies, such as CO2 fixation, N2 fixation, and H2 and PHA production. The lack of a comprehensive (over)view of these redox strategies is hindering the implementation of PNSB for biotechnology applications. This review aims to present the state of the art of redox homeostasis in phototrophically grown PNSB, presenting known and theoretically expected strategies, and discussing them from stoichiometric, thermodynamic, metabolic, and economic points of view.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000923198400001 Publication Date 2022-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1879-3096;0167-7799 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.3 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 17.3; 2023 IF: 11.126  
  Call Number UA @ admin @ c:irua:192944 Serial 7294  
Permanent link to this record
 

 
Author Harrabi, K.; Gasmi, K.; Mekki, A.; Bahlouli, H.; Kunwar, S.; Milošević, M.V. pdf  url
doi  openurl
  Title Detection and measurement of picoseconds-pulsed laser energy using a NbTiN superconducting filament Type A1 Journal article
  Year 2023 Publication IEEE transactions on applied superconductivity Abbreviated Journal  
  Volume 33 Issue 5 Pages 2400205-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract investigate non-equilibrium states created by a laser beam incident on a superconducting NbTiN filament subject to an electrical pulse at 4 K. In absence of the laser excitation, when the amplitude of the current pulse applied to the filament exceeds the critical current value, we monitored the delay time td that marks the collapse of the superconducting phase which is then followed by a voltage rise. We linked the delay time to the applied current using the time-dependent Ginzburg-Landau (TDGL) theory, which enabled us to deduce the cooling (or heat-removal) time from the fit to the experimental data. Subsequently, we exposed the filament biased with a current pulse close to its critical value to a focused laser beam, inducing a normal state in the impact region of the laser beam. We showed that the energy of the incident beam and the incurred delay time are related to each other by a simple expression, that enables direct measurement of incident beam energy by temporal monitoring of the transport response. This method can be extended for usage in single-photon detection regime, and be used for accurate calibration of an arbitrary light source.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946265900016 Publication Date 2023-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.8 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 1.8; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195110 Serial 7295  
Permanent link to this record
 

 
Author Li, C.-F.; Chen, L.-D.; Wu, L.; Liu, Y.; Hu, Z.-Y.; Cui, W.-J.; Dong, W.-D.; Liu, X.; Yu, W.-B.; Li, Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title Directly revealing the structure-property correlation in Na+-doped cathode materials Type A1 Journal article
  Year 2023 Publication Applied surface science Abbreviated Journal  
  Volume 612 Issue Pages 155810-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The introduction of Na+ is considered as an effective way to improve the performance of Ni-rich cathode materials. However, the direct structure-property correlation for Na+ doped NCM-based cathode materials remain unclear, due to the difficulty of local and accurate structural characterization for light elements such as Li and Na. Moreover, there is the complexity of the modeling for the whole Li ion battery (LIB) system. To tackle the above-mentioned issues, we prepared Na+-doped LiNi0.6Co0.2Mn0.2O2 (Na-NCM622) material. The crystal structure change and the lattice distortion with picometers precision of the Na+-doped material is revealed by Cs-corrected scanning transmission electron microscopy (STEM). Density functional theory (DFT) and the recently proposed electrochemical model, i.e., modified Planck-Nernst-Poisson coupled Frumkin-Butler-Volmer (MPNP-FBV), has been applied to reveal correlations between the activation energy and the charge transfer resistance at multiscale. It is shown that Na+ doping can reduce the activation energy barrier from. G = 1.10 eV to 1.05 eV, resulting in a reduction of the interfacial resistance from 297 O to 134 Omega. Consequently, the Na-NCM622 cathode delivers a superior capacity retention of 90.8 % (159 mAh.g(-1)) after 100 cycles compared to the pristine NCM622 (67.5 %, 108 mAh.g(-1)). Our results demonstrate that the kinetics of Li+ diffusion and the electrochemical reaction can be enhanced by Na+ doping the cathode material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000892940300001 Publication Date 2022-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 3.387  
  Call Number UA @ admin @ c:irua:192758 Serial 7296  
Permanent link to this record
 

 
Author Muys, M.; González Cámara, S.J.; Derese, S.; Spiller, M.; Verliefde, A.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein Type A1 Journal article
  Year 2023 Publication The science of the total environment Abbreviated Journal  
  Volume 866 Issue Pages 161172-161179  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non‑sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000922040000001 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 9.8; 2023 IF: 4.9  
  Call Number UA @ admin @ c:irua:192943 Serial 7297  
Permanent link to this record
 

 
Author Xie, Y.; Jia, M.; De Wilde, F.; Daeninck, K.; De Clippeleir, H.; Verstraete, W.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Feasibility of packed-bed trickling filters for partial nitritation/anammox : effects of carrier material, bottom ventilation openings, hydraulic loading rate and free ammonia Type A1 Journal article
  Year 2023 Publication Bioresource technology Abbreviated Journal  
  Volume 373 Issue Pages 128713-128719  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study pioneers the feasibility of cost-effective partial nitritation/anammox (PN/A) in packed-bed trickling filters (TFs). Three parallel TFs tested different carrier materials, the presence or absence of bottom ventilation openings, hydraulic loading rates (HLR, 0.4–2.2 m3 m−2 h−1), and free ammonia (FA) levels on synthetic medium. The inexpensive Argex expanded clay was recommended due to the similar nitrogen removal rates as commercially used plastics. Top-only ventilation at an optimum HLR of 1.8 m3 m−2 h−1 could remove approximately 60% of the total nitrogen load (i.e., 300 mg N L-1 d−1, 30 °C) and achieve relatively low NO3–-N accumulation (13%). Likely FA levels of around 1.3–3.2 mg N L-1 suppressed nitratation. Most of the total nitrogen removal took place in the upper third of the reactor, where anammox activity was highest. Provided further optimizations, the results demonstrated TFs are suitable for low-energy shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000945892500001 Publication Date 2023-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 5.651  
  Call Number UA @ admin @ c:irua:193652 Serial 7306  
Permanent link to this record
 

 
Author Duden, E.I.; Savaci, U.; Turan, S.; Sevik, C.; Demiroglu, I. pdf  url
doi  openurl
  Title Intercalation of argon in honeycomb structures towards promising strategy for rechargeable Li-ion batteries Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue 8 Pages 085301-85311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract High-performance rechargeable batteries are becoming very important for high-end technologies with their ever increasing application areas. Hence, improving the performance of such batteries has become the main bottleneck to transferring high-end technologies to end users. In this study, we propose an argon intercalation strategy to enhance battery performance via engineering the interlayer spacing of honeycomb structures such as graphite, a common electrode material in lithium-ion batteries (LIBs). Herein, we systematically investigated the LIB performance of graphite and hexagonal boron nitride (h-BN) when argon atoms were sent into between their layers by using first-principles density-functional-theory calculations. Our results showed enhanced lithium binding for graphite and h-BN structures when argon atoms were intercalated. The increased interlayer space doubles the gravimetric lithium capacity for graphite, while the volumetric capacity also increased by around 20% even though the volume was also increased. The ab initio molecular dynamics simulations indicate the thermal stability of such graphite structures against any structural transformation and Li release. The nudged-elastic-band calculations showed that the migration energy barriers were drastically lowered, which promises fast charging capability for batteries containing graphite electrodes. Although a similar level of battery promise was not achieved for h-BN material, its enhanced battery capabilities by argon intercalation also support that the argon intercalation strategy can be a viable route to enhance such honeycomb battery electrodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000899825400001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:193399 Serial 7313  
Permanent link to this record
 

 
Author Rivas-Murias, B.; Testa-Anta, M.; Skorikov, A.S.; Comesana-Hermo, M.; Bals, S.; Salgueirino, V. pdf  url
doi  openurl
  Title Interfaceless exchange bias in CoFe₂O₄ nanocrystals Type A1 Journal article
  Year 2023 Publication Nano letters Abbreviated Journal  
  Volume 23 Issue 5 Pages 1688-1695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxidized cobalt ferrite nanocrystals with a modified distribution of the magnetic cations in their spinel structure give place to an unusual exchange-coupled system with a double reversal of the magnetization, exchange bias, and increased coercivity, but without the presence of a clear physical interface that delimits two well-differentiated magnetic phases. More specifically, the partial oxidation of cobalt cations and the formation of Fe vacancies at the surface region entail the formation of a cobalt-rich mixed ferrite spinel, which is strongly pinned by the ferrimagnetic background from the cobalt ferrite lattice. This particular configuration of exchange-biased magnetic behavior, involving two different magnetic phases but without the occurrence of a crystallographically coherent interface, revolu-tionizes the established concept of exchange bias phenomenology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000940892000001 Publication Date 2023-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 4 Open Access (up) OpenAccess  
  Notes M.T.-A. acknowledges financial support from the Spanish Ministerio de Ciencia e Innovaci?n under grant FJC2021- 046680-I. S.B. acknowledges funding from the European Research Council under the European Union?s Horizon 2020 research and innovation program (ERC Consolidator Grant N o 815128 REALNANO) . V.S. acknowledges the financial support from the Spanish Ministerio de Ciencia e Innovaci?n under project PID2020-119242-I00 and from the European Union under project H2020-MSCA-RISE-2019 PEPSA-MATE (project number 872233) . Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number UA @ admin @ c:irua:195186 Serial 7315  
Permanent link to this record
 

 
Author Gonzalez, V.; Fazlic, I.; Cotte, M.; Vanmeert, F.; Gestels, A.; De Meyer, S.; Broers, F.; Hermans, J.; van Loon, A.; Janssens, K.; Noble, P.; Keune, K. url  doi
openurl 
  Title Lead(II) formate in Rembrandt's Night Watch : detection and distribution from the macro- to the micro-scale Type A1 Journal article
  Year 2023 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The Night Watch, painted in 1642 and on view in the Rijksmuseum in Amsterdam, is considered Rembrandt's most famous work. X-ray powder diffraction (XRPD) mapping at multiple length scales revealed the unusual presence of lead(II) formate, Pb(HCOO)(2), in several areas of the painting. Until now, this compound was never reported in historical oil paints. In order to get insights into this phenomenon, one possible chemical pathway was explored thanks to the preparation and micro-analysis of model oil paint media prepared by heating linseed oil and lead(II) oxide (PbO) drier as described in 17(th) century recipes. Synchrotron radiation based micro-XRPD (SR-mu-XRPD) and infrared microscopy were combined to identify and map at the micro-scale various neo-formed lead-based compounds in these model samples. Both lead(II) formate and lead(II) formate hydroxide Pb(HCOO)(OH) were detected and mapped, providing new clues regarding the reactivity of lead driers in oil matrices in historical paintings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000920584500001 Publication Date 2023-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 16.6; 2023 IF: 11.994  
  Call Number UA @ admin @ c:irua:194279 Serial 7318  
Permanent link to this record
 

 
Author Souza, J.C.B.; Vizarim, N.P.; Reichhardt, C.J.O.; Reichhardt, C.; Venegas, P.A. pdf  url
doi  openurl
  Title Magnus induced diode effect for skyrmions in channels with periodic potentials Type A1 Journal article
  Year 2023 Publication Journal of physics : condensed matter Abbreviated Journal  
  Volume 35 Issue 1 Pages 015804-15810  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using a particle based model, we investigate the skyrmion dynamical behavior in a channel where the upper wall contains divots of one depth and the lower wall contains divots of a different depth. Under an applied driving force, skyrmions in the channels move with a finite skyrmion Hall angle that deflects them toward the upper wall for -x direction driving and the lower wall for +x direction driving. When the upper divots have zero height, the skyrmions are deflected against the flat upper wall for -x direction driving and the skyrmion velocity depends linearly on the drive. For +x direction driving, the skyrmions are pushed against the lower divots and become trapped, giving reduced velocities and a nonlinear velocity-force response. When there are shallow divots on the upper wall and deep divots on the lower wall, skyrmions get trapped for both driving directions; however, due to the divot depth difference, skyrmions move more easily under -x direction driving, and become strongly trapped for +x direction driving. The preferred -x direction motion produces what we call a Magnus diode effect since it vanishes in the limit of zero Magnus force, unlike the diode effects observed for asymmetric sawtooth potentials. We show that the transport curves can exhibit a series of jumps or dips, negative differential conductivity, and reentrant pinning due to collective trapping events. We also discuss how our results relate to recent continuum modeling on a similar skyrmion diode system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880827900001 Publication Date 2022-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 2.649  
  Call Number UA @ admin @ c:irua:192031 Serial 7320  
Permanent link to this record
 

 
Author Dinger, J.; Friedrich, T.; Reimann, T.; Toepfer, J. url  doi
openurl 
  Title NiMn₂O₄ revisited : temperature-dependent cation distribution from in situ neutron diffraction and thermopower studies Type A1 Journal article
  Year 2023 Publication Journal of the American Ceramic Society Abbreviated Journal  
  Volume 106 Issue 3 Pages 1834-1847  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The cation distribution of the negative temperature coefficient (NTC) thermistor spinel NiMn2O4 was studied in the temperature range from 55 to 900 degrees C, using a combined in situ neutron diffraction and thermopower study. Rietveld refinements of in situ neutron diffraction data reveal a temperature dependence of the degree of inversion with an inversion parameter of 0.70(1) at 900 degrees C and 0.87(1) at 55 degrees C. Thermopower measurements were evaluated using a modified Heikes formula, and the [Mn4+]/[Mn3+] ratio on octahedral sites of the spinel structure was calculated considering spin and orbital degeneracy. The inversion degree and disproportionation parameter, determined independently as function of temperature, were used to calculate the cation distribution of NiMn2O4 in the whole temperature range. At high temperature, within the stability range of the spinel, the cation distribution is characterized by a moderate degree of inversion with a concentration of NiB2+${\mathrm{Ni}}\mathrm{B}<  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880360600001 Publication Date 2022-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.9; 2023 IF: 2.841  
  Call Number UA @ admin @ c:irua:192087 Serial 7326  
Permanent link to this record
 

 
Author Vladimirova, N.V.; Frolov, A.S.; Sanchez-Barriga, J.; Clark, O.J.; Matsui, F.; Usachov, D.Y.; Muntwiler, M.; Callaert, C.; Hadermann, J.; Neudachina, V.S.; Tamm, M.E.; Yashina, L.V. pdf  url
doi  openurl
  Title Occupancy of lattice positions probed by X-ray photoelectron diffraction : a case study of tetradymite topological insulators Type A1 Journal article
  Year 2023 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 36 Issue Pages 102516-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Occupancy of different structural positions in a crystal lattice often seems to play a key role in material prop-erties. Several experimental techniques have been developed to uncover this issue, all of them being mostly bulk sensitive. However, many materials including topological insulators (TIs), which are among the most intriguing modern materials, are intended to be used in devices as thin films, for which the sublattice occupancy may differ from the bulk. One of the possible approaches to occupancy analysis is X-ray Photoelectron Diffraction (XPD), a structural method in surface science with chemical sensitivity. We applied this method in a case study of Sb2(Te1-xSex)3 mixed crystals, which belong to prototypical TIs. We used high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) as a reference method to verify our analysis. We revealed that the XPD data for vacuum cleaved bulk crystals are in excellent agreement with the reference ones. Also, we demonstrate that the anion occupancy near a naturally formed surface can be rather different from that of the bulk. The present results are relevant for a wide range of compositions where the system remains a topological phase, as we ultimately show by probing the transiently occupied topological surface state above the Fermi level by ultrafast photoemission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000901694900001 Publication Date 2022-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:193502 Serial 7327  
Permanent link to this record
 

 
Author Hillen, M.; Sels, S.; Ribbens, B.; Verspeek, S.; Janssens, K.; Van der Snickt, G.; Steenackers, G. url  doi
openurl 
  Title Qualitative Comparison of Lock-in Thermography (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-Wave Infrared for the Inspection of Paintings Type A1 Journal article
  Year 2023 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 13 Issue 7 Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract When studying paintings with active infrared thermography (IRT), minimizing the temperature fluctuations and thermal shock during a measurement becomes important. Under these conditions, it might be beneficial to use lock-in thermography instead of the conventionally used pulse thermography (PT). This study compared the observations made with lock-in thermography (LIT) and pulse phase thermography (PPT) with halogen light excitation. Three distinctly different paintings were examined. The LIT measurements caused smaller temperature fluctuations and, overall, the phase images appeared to have a higher contrast and less noise. However, in the PPT phase images, the upper paint layer was less visible, an aspect which is of particular interest when trying to observe subsurface defects or the structure of the support. The influence of the spectral range of the cameras on the results was also investigated. All measurements were taken with a mid-wave infrared (MWIR) and long wave infrared (LWIR) camera. The results show that there is a significant number of direct reflection artifacts, caused by the use of the halogen light sources when using the MWIR camera. Adding a long-pass filter to the MWIR camera eliminated most of these artifacts. All results are presented in a side-by-side comparison.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000972133900001 Publication Date 2023-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 2.7; 2023 IF: 1.679  
  Call Number UA @ admin @ c:irua:194898 Serial 7333  
Permanent link to this record
 

 
Author Ciocarlan, R.-G.; Blommaerts, N.; Lenaerts, S.; Cool, P.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Recent trends in plasmon‐assisted photocatalytic CO₂ reduction Type A1 Journal article
  Year 2023 Publication Chemsuschem Abbreviated Journal  
  Volume 16 Issue 5 Pages e202201647-25  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)  
  Abstract Direct photocatalytic reduction of CO2 has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO2 photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO2 towards more practical gases or liquid fuels (CH4, CO, CH3OH/CH3CH2OH) in this manner. This Review therefore aims at providing insights in current developments of photocatalysts consisting of only plasmonic nanoparticles and semiconductor materials. By classifying recent studies based on product selectivity, this Review aims to unravel common trends that can provide effective information on ways to improve the photoreduction yield or possible means to shift the selectivity towards desired products, thus generating new ideas for the way forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000926901300001 Publication Date 2023-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 7.226  
  Call Number UA @ admin @ c:irua:193633 Serial 7335  
Permanent link to this record
 

 
Author Borah, R.; Ag, K.R.; Minja, A.C.; Verbruggen, S.W. pdf  url
doi  openurl
  Title A review on self‐assembly of colloidal nanoparticles into clusters, patterns, and films : emerging synthesis techniques and applications Type A1 Journal article
  Year 2023 Publication Small methods Abbreviated Journal  
  Volume Issue Pages 1-32  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000940393200001 Publication Date 2023-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 12.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:194597 Serial 7336  
Permanent link to this record
 

 
Author Soenen, M.; Bacaksiz, C.; Menezes, R.M.; Milošević, M.V. url  doi
openurl 
  Title Stacking-dependent topological magnons in bilayer CrI₃ Type A1 Journal article
  Year 2023 Publication Physical review materials Abbreviated Journal  
  Volume 7 Issue 2 Pages 024421-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the potential of atomically thin magnets towards achieving tunable high-frequency magnonics, we detail the spin-wave dispersion of bilayer CrI3. We demonstrate that the magnonic behavior of the bilayer strongly depends on its stacking configuration and the interlayer magnetic ordering, where a topological band gap opens in the dispersion caused by the Dzyaloshinskii-Moriya and Kitaev interactions, classifying bilayer CrI3 as a topological magnon insulator. We further reveal that both the size and the topology of the band gap in a CrI3 bilayer with an antiferromagnetic interlayer ordering are tunable by an external magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000943169600001 Publication Date 2023-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:195179 Serial 7338  
Permanent link to this record
 

 
Author Smeyers, R.; Milošević, M.V.; Covaci, L. url  doi
openurl 
  Title Strong gate-tunability of flat bands in bilayer graphene due to moiré encapsulation between hBN monolayers Type A1 Journal article
  Year 2023 Publication Nanoscale Abbreviated Journal  
  Volume 15 Issue 9 Pages 4561-4569  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract When using hexagonal boron-nitride (hBN) as a substrate for graphene, the resulting moire pattern creates secondary Dirac points. By encapsulating a multilayer graphene within aligned hBN sheets the controlled moire stacking may offer even richer benefits. Using advanced tight-binding simulations on atomistically-relaxed heterostructures, here we show that the gap at the secondary Dirac point can be opened in selected moire-stacking configurations, and is independent of any additional vertical gating of the heterostructure. On the other hand, gating can broadly tune the gap at the principal Dirac point, and may thereby strongly compress the first moire mini-band in width against the moire-induced gap at the secondary Dirac point. We reveal that in hBN-encapsulated bilayer graphene this novel mechanism can lead to isolated bands flatter than 10 meV under moderate gating, hence presenting a convenient pathway towards electronically-controlled strongly-correlated states on demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000933052600001 Publication Date 2023-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.7; 2023 IF: 7.367  
  Call Number UA @ admin @ c:irua:195249 Serial 7340  
Permanent link to this record
 

 
Author Byrnes, I.; Rossbach, L.M.; Jaroszewicz, J.; Grolimund, D.; Sanchez, D.F.; Gomez-Gonzalez, M.A.; Nuyts, G.; Reinoso-Maset, E.; Janssens, K.; Salbu, B.; Brede, D.A.; Lind, O.C. url  doi
openurl 
  Title Synchrotron XRF and histological analyses identify damage to digestive tract of uranium NP-exposed Daphnia magna Type A1 Journal article
  Year 2023 Publication Environmental science and technology Abbreviated Journal  
  Volume 57 Issue 2 Pages 1071-1079  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Micro-and nanoscopic X-ray techniques were used to investigate the relationship between uranium (U) tissue distributions and adverse effects to the digestive tract of aquatic model organism Daphnia magna following uranium nanoparticle (UNP) exposure. X-ray absorption computed tomography measure-ments of intact daphnids exposed to sublethal concentrations of UNPs or a U reference solution (URef) showed adverse morphological changes to the midgut and the hepatic ceca. Histological analyses of exposed organisms revealed a high proportion of abnormal and irregularly shaped intestinal epithelial cells. Disruption of the hepatic ceca and midgut epithelial tissues implied digestive functions and intestinal barriers were compro-mised. Synchrotron-based micro X-ray fluorescence (XRF) elemental mapping identified U co-localized with morphological changes, with substantial accumulation of U in the lumen as well as in the epithelial tissues. Utilizing high-resolution nano-XRF, 400-1000 nm sized U particulates could be identified throughout the midgut and within hepatic ceca cells, coinciding with tissue damages. The results highlight disruption of intestinal function as an important mode of action of acute U toxicity in D. magna and that midgut epithelial cells as well as the hepatic ceca are key target organs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000910915100001 Publication Date 2023-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 6.198  
  Call Number UA @ admin @ c:irua:193478 Serial 7342  
Permanent link to this record
 

 
Author Borms, L.; Brusselaers, J.; Vrancken, K.C.M.; Deckmyn, S.; Marynissen, P. pdf  url
doi  openurl
  Title Toward resilient organizations after COVID-19 : an analysis of circular and less circular companies Type A1 Journal article
  Year 2023 Publication Resources, conservation and recycling Abbreviated Journal  
  Volume 188 Issue Pages 106681-15  
  Keywords A1 Journal article; Economics; Sustainable Energy, Air and Water Technology (DuEL); Engineering Management (ENM)  
  Abstract The COVID-19 pandemic had large repercussions for our economy and organizations. Improved resilience can give organizations the ability to withstand crises and build back better and faster. This article assesses resilience of organizations and sole proprietorships in the context of the COVID-19 pandemic with eight circular strategies as explanatory variables. Furthermore, these eight circular strategies are also used to assess the organizations' and sole proprietorships' resilience outside of the COVID-19 pandemic. This analysis is conducted to explain how circular strategies can help companies and sole proprietorships maintain stability. The analysis was performed by means of a survey conducted between May and June 2020 in Flanders (Belgium), using a sample of 542 respondents. After performing a regression analysis combined with expert opinions collected through interviews, we find that companies and sole proprietorships with a higher circularity score have a significantly higher resilience score during crises and during normal times, compared to less circular companies. Furthermore, we find that the size of the company does not matter during a crisis to adapt and react flexibly, while it is important when there is no crisis. Finally, we argue that it is the combination of different circular strategies which yields to the highest results for the organizations' resilience and we provide policy recommendations based on the most asked support measures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000867675200008 Publication Date 2022-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.2 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 13.2; 2023 IF: 3.313  
  Call Number UA @ admin @ c:irua:191513 Serial 7344  
Permanent link to this record
 

 
Author Mulder, J.T.; Meijer, M.S.; van Blaaderen, J.J.; du Fosse, I.; Jenkinson, K.; Bals, S.; Manna, L.; Houtepen, A.J. url  doi
openurl 
  Title Understanding and preventing photoluminescence quenching to achieve unity photoluminescence quantum yield in Yb:YLF nanocrystals Type A1 Journal article
  Year 2023 Publication ACS applied materials and interfaces Abbreviated Journal  
  Volume 15 Issue 2 Pages 3274-3286  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ytterbium-doped LiYF4 (Yb:YLF) is a commonly used material for laser applications, as a photon upconversion medium, and for optical refrigeration. As nanocrystals (NCs), the material is also of interest for biological and physical applications. Unfortunately, as with most phosphors, with the reduction in size comes a large reduction of the photoluminescence quantum yield (PLQY), which is typically associated with an increase in surface-related PL quenching. Here, we report the synthesis of bipyramidal Yb:YLF NCs with a short axis of similar to 60 nm. We systematically study and remove all sources of PL quenching in these NCs. By chemically removing all traces of water from the reaction mixture, we obtain NCs that exhibit a near-unity PLQY for an Yb3+ concentration below 20%. At higher Yb3+ concentrations, efficient concentration quenching occurs. The surface PL quenching is mitigated by growing an undoped YLF shell around the NC core, resulting in near-unity PLQY values even for fully Yb3+-based LiYbF4 cores. This unambiguously shows that the only remaining quenching sites in core-only Yb:YLF NCs reside on the surface and that concentration quenching is due to energy transfer to the surface. Monte Carlo simulations can reproduce the concentration dependence of the PLQY. Surprisingly, Fo''rster resonance energy transfer does not give satisfactory agreement with the experimental data, whereas nearest-neighbor energy transfer does. This work demonstrates that Yb3+-based nanophosphors can be synthesized with a quality close to that of bulk single crystals. The high Yb3+ concentration in the LiYbF4/LiYF4 core/shell nanocrystals increases the weak Yb3+ absorption, making these materials highly promising for fundamental studies and increasing their effectiveness in bioapplications and optical refrigeration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000912997300001 Publication Date 2023-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited 3 Open Access (up) OpenAccess  
  Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the Large-Scale Limit of Quantum Mechanics). A.J.H. and I.d.F. further acknowledge the European Research Council Horizon 2020 ERC Grant Agreement No. 678004 (Doping on Demand) for financial support. The authors thank Freddy Rabouw and Andries Meijerink (Utrecht University) for very fruitful discussions and extremely useful advice. The author s thank Jos Thieme for his help with the laser setups used . The authors furthermore thank Niranjan Saikumar for proofreading the manuscript. Approved Most recent IF: 9.5; 2023 IF: 7.504  
  Call Number UA @ admin @ c:irua:194317 Serial 7348  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: