toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Borah, R.; Ag, K.R.; Minja, A.C.; Verbruggen, S.W. pdf  url
doi  openurl
  Title A review on self‐assembly of colloidal nanoparticles into clusters, patterns, and films : emerging synthesis techniques and applications Type A1 Journal article
  Year (down) 2023 Publication Small methods Abbreviated Journal  
  Volume Issue Pages 1-32  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000940393200001 Publication Date 2023-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.4; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:194597 Serial 7336  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: