toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liu, J.; Xu, W.; Xiao, Y.M.; Ding, L.; Li, H.W.; Van Duppen, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Longitudinal and transverse mobilities of n-type monolayer transition metal dichalcogenides in the presence of proximity-induced interactions at low temperature Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 19 Pages 195418-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical investigation on the electronic transport properties of n-type monolayer (ML) transition metal dichalcogenides (TMDs) at low temperature in the presence of proximity-induced interactions such as Rashba spin-orbit coupling (RSOC) and the exchange interaction. The electronic band structure is calculated by solving the Schr & ouml;dinger equation with a k <middle dot> p Hamiltonian, and the electric screening induced by electron-electron interaction is evaluated under a standard random phase approximation approach. In particular, the longitudinal and transverse or Hall mobilities are calculated by using a momentum-balance equation derived from a semiclassical Boltzmann equation, where the electron-impurity interaction is considered as the principal scattering center at low temperature. The obtained results show that the RSOC can induce the in-plane spin components for spin-split subbands in different valleys, while the exchange interaction can lift the energy degeneracy for electrons in different valleys. The opposite signs of Berry curvatures in the two valleys would introduce opposite directions of Lorentz force on valley electrons. As a result, the transverse currents from nondegenerate valleys can no longer be canceled out so that the transverse current or Hall mobility can be observed. Interestingly, we find that at a fixed effective Zeeman field, the lowest spin-split conduction subband in ML-TMDs can be tuned from one in the K'-valley to one in the K-valley by varying the Rashba parameter. The occupation of electrons in different valleys also varies with changing carrier density. Therefore, we can change the magnitude and direction of the Hall current by varying the Rashba parameter, effective Zeeman field, and carrier density by, e.g., the presence of a ferromagnetic substrate and/or applying a gate voltage. By taking the ML-MoS2 as an example, these effects are demonstrated and examined. The important and interesting theoretical findings can be beneficial to experimental observation of the valleytronic effect and to gaining an in-depth understanding of the ML-TMD systems in the presence of proximity-induced interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001237245700001 Publication Date 2024-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:206596 Serial 9302  
Permanent link to this record
 

 
Author Nazar, N.D.; Peeters, F.M.; Costa Filho, R.N.; Vazifehshenas, T. doi  openurl
  Title 8-pmmn borophene : edge states in competition with Landau levels and local vacancy states Type A1 Journal article
  Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal  
  Volume 26 Issue 22 Pages 16153-16159  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The tight-binding method is used to investigate the electronic and magnetic properties of borophene nano-ribbons (BNRs) in the presence of a perpendicular magnetic field. Most BNRs exhibit metallic characteristics due to edge bands. Additionally, the appearance of Landau levels (LLs) is strongly influenced by the edge states, contrasting with the sheet platform which produces distinct LLs. We also investigated single atomic vacancy disorders in BNRs and observed localized vacancy states (LVSs) resulting from atomic disorder. Both LVSs and LLs are influenced by the edge states, underscoring that the electronic and magnetic properties of BNRs are strongly edge-dependent. This aspect is crucial for consideration in experimental, theoretical, and computational studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001230536600001 Publication Date 2024-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.3 Times cited Open Access  
  Notes Approved Most recent IF: 3.3; 2024 IF: 4.123  
  Call Number (up) UA @ admin @ c:irua:206599 Serial 9274  
Permanent link to this record
 

 
Author Song, Y.; Chen, M.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L. pdf  doi
openurl 
  Title Hydrogenation-controlled band engineering of dumbbell graphene Type A1 Journal article
  Year 2024 Publication Nano energy Abbreviated Journal  
  Volume 127 Issue Pages 109763-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The stability of the dumbbell structure has been confirmed by previous theory and experiment. Based on firstprinciples calculations, we proposed hexagonal dumbbell graphene (HDB C10) and rectangular dumbbell graphene (RDB C10) monolayers containing periodically raised C (CR) atoms. They turn out to have high mobility semiconductor properties. By adsorbing H atoms on these CR atoms, their band structures can be widely tuned from semiconductor to semimetal. When considering adsorption of two/four H atoms on the unit cell of the dumbbell structure, the bandgap can be increased, and isolated flat band structures can be obtained by further adding or removing H atoms. Remarkably, two different Dirac band structures can be found in the HDB/RDB C10H2-I monolayers. The HDB C10H2-I shows a Dirac cone with isotropic Fermi velocities, while the RDB C10H2-I monolayer exhibits a quasi-one-dimensional Dirac nodal line with varying Fermi velocities along the XS path. Tight-binding (TB) models are constructed including nearest neighbor (NN) and next NN hopping in order to understand our DFT results. These TB models are related to the Su-Schrieffer-Heeger model, and are able to explain the tunable topological properties of the RDB C10H2-I monolayer. They not only are able to explain the different kinds of Fermi velocity, but also can predict the emergence of topological edge states, providing a good platform for research on Dirac fermions. The HDB/RDB C10 monolayer exhibits more freedom of tunable band structures and more stable hydrogen storage capacity, making it superior to graphene. Finally, possible experimental synthesis paths of these DB monolayers are provided.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001244362400001 Publication Date 2024-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 17.6 Times cited Open Access  
  Notes Approved Most recent IF: 17.6; 2024 IF: 12.343  
  Call Number (up) UA @ admin @ c:irua:206621 Serial 9296  
Permanent link to this record
 

 
Author Thomen, D.M.N.; Sevik, C.; Milošević, M.V.; Teles, L.K.; Chaves, A. url  doi
openurl 
  Title Strain and stacking registry effects on the hyperbolicity of exciton polaritons in few-layer black phosphorus Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 24 Pages 245413-245419  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We analyze, from first -principles calculations, the excitonic properties of monolayer black phosphorus (BP) under strain, as well as of bilayer BP with different stacking registries, as a base platform for the observation and use of hyperbolic polaritons. In the unstrained case, our results confirm the in -plane hyperbolic behavior of polaritons coupled to the ground -state excitons in both mono- and bilayer systems, as observed in recent experiments. With strain, we reveal that the exciton-polariton hyperbolicity in monolayer BP is enhanced (reduced) by compressive (tensile) strain in the zig-zag direction of the crystal. In the bilayer case, different stacking registries are shown to exhibit hyperbolic exciton polaritons with different dispersion, while also peaking at different frequencies. This renders both mechanical stress and stacking registry control as practical tools for tuning physical properties of hyperbolic exciton polaritons in black phosphorus, which facilitates detection and further optoelectronic use of these quasiparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001247621000008 Publication Date 2024-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:206631 Serial 9316  
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Bacaksiz, C.; Frauenheim, T.; Milošević, M.V. url  doi
openurl 
  Title Strong spin-lattice coupling and high-temperature magnetic ordering in monolayer chromium dichalcogenides Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 6 Pages 064001-64009  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We detail the magnetic properties of monolayer CrX2 and its Janus counterparts CrXY (X, Y = S, Se, Te, with X not equal Y) using ab initio methods and Landau-Lifshitz-Gilbert magnetization dynamics, and uncover the pronouncedly strong interplay between their structure symmetry and the magnetic order. The relaxation of nonmagnetic chalcogen atoms, that carry large spin-orbit coupling, changes the energetically preferential magnetic order between in-plane antiferromagnetic and tilted ferromagnetic one. The considered Janus monolayers exhibit sizable Dzyaloshinskii-Moriya interaction, in some cases above 20% of the isotropic exchange, and critical temperature of the long-range magnetic order in the vicinity or even significantly above the room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001247462600001 Publication Date 2024-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number (up) UA @ admin @ c:irua:206660 Serial 9317  
Permanent link to this record
 

 
Author Li, Q.N.; Vasilopoulos, P.; Peeters, F.M.; Xu, W.; Xiao, Y.M.; Milošević, M.V. url  doi
openurl 
  Title Collective excitations in three-dimensional Dirac systems Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 11 Pages 115123-115129  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We provide the plasmon spectrum and related properties of the three-dimensional (3D) Dirac semimetals Na 3 Bi and Cd 3 As 2 based on the random -phase approximation. The necessary one -electron eigenvalues and eigenfunctions are obtained from an effective k <middle dot> p Hamiltonian. Below the energy at which the velocity v z along the k z axis vanishes, the density of states differs drastically from that of a 3D electron gas (3DEG) or graphene. The dispersion relation is anisotropic for wave vectors parallel ( q ) and perpendicular ( q z ) to the ( x , y ) plane and is markedly different than that of graphene or a 3DEG. The same holds for the energy -loss function. Both depend sensitively on the position of the Fermi energy E F relative to the region of the Berry curvature of the bands. For E F below the energy at which v z vanishes, the range of the relevant wave vectors q and q z shrinks, for q z by about one order of magnitude.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001235353700005 Publication Date 2024-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:206669 Serial 9278  
Permanent link to this record
 

 
Author Šoškić, B.N.; Bekaert, J.; Sevik, C.; Šljivančanin, Ž.; Milošević, M.V. pdf  doi
openurl 
  Title First-principles exploration of superconductivity in intercalated bilayer borophene phases Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 6 Pages 064803-64811  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the emergence of phonon-mediated superconductivity in bilayer borophenes by controlled intercalation with elements from the groups of alkali, alkaline-earth, and transition metals, using systematic first-principles and Eliashberg calculations. We show that the superconducting properties are primarily governed by the interplay between the out-of-plane (????????) boron states and the partially occupied in-plane (????+????????,????) bonding states at the Fermi level. Our Eliashberg calculations indicate that intercalation with alkaline-earth-metal elements leads to the highest superconducting critical temperatures (????????). Specifically, Be in ????4, Mg in ????3, and Ca in the kagome bilayer borophene demonstrate superior performance with ???????? reaching up to 58 K. Our study therefore reveals that intercalated bilayer borophene phases are not only more resilient to chemical deterioration, but also harbor enhanced ???????? values compared to their monolayer counterparts, underscoring their substantial potential for the development of boron-based two-dimensional superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001254 Publication Date 2024-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number (up) UA @ admin @ c:irua:206919 Serial 9290  
Permanent link to this record
 

 
Author Paramasivam, S.K.; Gangadharan, S.P.; Milošević, M.V.; Perali, A. url  doi
openurl 
  Title High-Tc Berezinskii-Kosterlitz-Thouless transition in two-dimensional superconducting systems with coupled deep and quasiflat electronic bands with Van Hove singularities Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 110 Issue 2 Pages 024507-24511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the pursuit of higher critical temperature of superconductivity, quasiflat electronic bands and Van Hove singularities in two dimensions (2D) have emerged as a potential approach to enhance Cooper pairing on the basis of mean-field expectations. However, these special electronic features suppress the superfluid stiffness and, hence, the Berezinskii-Kosterlitz-Thouless (BKT) transition in 2D superconducting systems, leading to the emergence of a significant pseudogap regime due to superconducting fluctuations. In the strong-coupling regime, one finds that superfluid stiffness is inversely proportional to the superconducting gap, which is the predominant factor contributing to the strong suppression of superfluid stiffness. Here we reveal that the aforementioned limitation is avoided in a 2D superconducting electronic system with a quasiflat electronic band with a strong pairing strength coupled to a deep band with weak electronic pairing strength. Owing to the multiband effects, we demonstrate a screening-like mechanism that circumvents the suppression of the superfluid stiffness. We report the optimal conditions for achieving a large enhancement of the BKT transition temperature and a substantial shrinking of the pseudogap regime by tuning the intraband couplings and the pair-exchange coupling between the two band-condensates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001267 Publication Date 2024-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:207014 Serial 9295  
Permanent link to this record
 

 
Author Liang, Z.; Batuk, M.; Orlandi, F.; Manuel, P.; Hadermann, J.; Hayward, M.A. url  doi
openurl 
  Title Competition between anion-deficient oxide and oxyhydride phases during the topochemical reduction of LaSrCoRuO₆ Type A1 Journal article
  Year 2024 Publication Inorganic chemistry Abbreviated Journal  
  Volume 63 Issue 28 Pages 12910-12919  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Binary metal hydrides can act as low-temperature reducing agents for complex oxides in the solid state, facilitating the synthesis of anion-deficient oxide or oxyhydride phases. The reaction of LaSrCoRuO6, with CaH2 in a sealed tube yields the face-centered cubic phase LaSrCoRuO3.2H1.9. The reaction with LiH under similar conditions converts LaSrCoRuO6 to a mixture of tetragonal LaSrCoRuO4.8H1.2 and cubic LaSrCoRuO3.3H2.13. The formation of the LaSrCoRuOxHy oxyhydride phases proceeds directly from the parent oxide, with no evidence for anion-deficient LaSrCoRuO6-x intermediates, in contrast with many other topochemically synthesized transition-metal oxyhydrides. However, the reaction between LaSrCoRuO6 and LiH under flowing argon yields a mixture of LaSrCoRuO5 and the infinite layer phase LaSrCoRuO4. The change to all-oxide products when reactions are performed under flowing argon is attributed to the lower hydrogen partial pressure under these conditions. The implications for the reaction mechanism of these topochemical transformations is discussed along with the role of the hydrogen partial pressure in oxyhydride synthesis. Magnetization measurements indicate the LaSrCoRuOxHy phases exhibit local moments on Co and Ru centers, which are coupled antiferromagnetically. In contrast, LaSrCoRuO4 exhibits ferromagnetic behavior with a Curie temperature above 350 K, which can be rationalized on the basis of superexchange coupling between the Co1+ and Ru2+ centers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001259 Publication Date 2024-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved Most recent IF: 4.6; 2024 IF: 4.857  
  Call Number (up) UA @ admin @ c:irua:207018 Serial 9280  
Permanent link to this record
 

 
Author Yuan, M.-M.; Wang, L.-D.; Zhang, J.; Ran, M.-J.; Wang, K.; Hu, Z.-Y.; Van Tendeloo, G.; Li, Y.; Su, B.-L. pdf  doi
openurl 
  Title Cut-off voltage influencing the voltage decay of single crystal lithium-rich manganese-based cathode materials in lithium-ion batteries Type A1 Journal article
  Year 2024 Publication Journal of colloid and interface science Abbreviated Journal  
  Volume 674 Issue Pages 238-248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The voltage decay of Li -rich layered oxide cathode materials results in the deterioration of cycling performance and continuous energy loss, which seriously hinders their application in the high-energy – density lithium -ion battery (LIB) market. However, the origin of the voltage decay mechanism remains controversial due to the complex influences of transition metal (TM) migration, oxygen release, indistinguishable surface/bulk reactions and the easy intra/inter-crystalline cracking during cycling. We investigated the direct cause of voltage decay in micrometer -scale single -crystal Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 (SC-LNCM) cathode materials by regulating the cut-off voltage. The redox of TM and O 2- ions can be precisely controlled by setting different voltage windows, while the cracking can be restrained, and surface/bulk structural evaluation can be monitored because of the large single crystal size. The results show that the voltage decay of SC-LNCM is related to the combined effect of cation rearrangement and oxygen release. Maintaining the discharge cutoff voltage at 3 V or the charging cutoff voltage at 4.5 V effectively mitigates the voltage decay, which provides a solution for suppressing the voltage decay of Lirich and Mn-based layered oxide cathode materials. Our work provides significant insights into the origin of the voltage decay mechanism and an easily achievable strategy to restrain the voltage decay for Li -rich and Mn-based cathode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001261 Publication Date 2024-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; 1095-7103 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 9.9 Times cited Open Access  
  Notes Approved Most recent IF: 9.9; 2024 IF: 4.233  
  Call Number (up) UA @ admin @ c:irua:207026 Serial 9281  
Permanent link to this record
 

 
Author Lavor, I.R.; Tao, Z.H.; Dong, H.M.; Chaves, A.; Peeters, F.M.; Milošević, M.V. pdf  doi
openurl 
  Title Ultrasensitive acoustic graphene plasmons in a graphene-transition metal dichalcogenide heterostructure : strong plasmon-phonon coupling and wavelength sensitivity enhanced by a metal screen Type A1 Journal article
  Year 2024 Publication Carbon Abbreviated Journal  
  Volume 228 Issue Pages 119401-119409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Acoustic plasmons in graphene exhibit strong confinement induced by a proximate metal surface and hybridize with phonons of transition metal dichalcogenides (TMDs) when these materials are combined in a van der Waals heterostructure, thus forming screened graphene plasmon-phonon polaritons (SGPPPs), a type of acoustic mode. While SGPPPs are shown to be very sensitive to the dielectric properties of the environment, enhancing the SGPPPs coupling strength in realistic heterostructures is still challenging. Here we employ the quantum electrostatic heterostructure model, which builds upon the density functional theory calculations for monolayers, to show that the use of a metal as a substrate for graphene-TMD heterostructures (i) vigorously enhances the coupling strength between acoustic plasmons and the TMD phonons, and (ii) markedly improves the sensitivity of the plasmon wavelength on the structural details of the host platform in real space, thus allowing one to use the effect of environmental screening on acoustic plasmons to probe the structure and composition of a van der Waals heterostructure down to the monolayer resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001267 Publication Date 2024-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 10.9 Times cited Open Access  
  Notes Approved Most recent IF: 10.9; 2024 IF: 6.337  
  Call Number (up) UA @ admin @ c:irua:207077 Serial 9325  
Permanent link to this record
 

 
Author Steijlen, A.; Docter, M.; Bastemeijer, J.; Topyla, M.; Moraczewska, M.; Hoekstra, T.; Parrilla, M.; De Wael, K. doi  openurl
  Title A practical guide to build a Raspberry Pi Pico based potentiostat for educational electrochemistry and electronic instrumentation Type A1 Journal article
  Year 2024 Publication Journal of chemical education Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract This manuscript presents the first practical guide to build a Raspberry Pi Pico based potentiostat for electrical and electrochemical instrumentation education. The circuit enables us to perform different types of voltammetry such as cyclic and square wave voltammetry. Voltammograms of paracetamol tablets in a neutral buffer solution were successfully recorded and compared to lab equipment. Thereafter, the effect of different scan rates and different concentrations was studied as a proof of concept. Furthermore, the experiments were expanded with measurements of other pharmaceutical tablets such as vitamin C. Over 80 nanobiology bachelor students successfully built their own potentiostat in an electronic instrumentation course. They validated their systems successfully with electrochemical experiments using paracetamol as a conventional pharmaceutical that can be performed in a classroom. The students acquired a valuable understanding of the electronic building blocks and system architecture within electrochemical instrumentation, equipping them with the requisite knowledge to effectively optimize instrumentation parameters in their future research work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date 2024-08-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9584; 1938-1328 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3 Times cited Open Access  
  Notes Approved Most recent IF: 3; 2024 IF: 1.419  
  Call Number (up) UA @ admin @ c:irua:207478 Serial 9276  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Electrochemical classification of benzodiazepines : a comprehensive approach combining insights from voltammetry and liquid chromatography – mass spectrometry Type A1 Journal article
  Year 2024 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 279 Issue Pages 126623-10  
  Keywords A1 Journal article; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract The growing non-medical use of benzodiazepines (BZs) has led to the emergence of counterfeit BZ pills and new psycho-active substances (NPS) in the BZ class on the illicit market. Comprehensive analytical methods for BZ identification are required to allow law enforcement, first aid responders and drug-checking services to analyze a variety of sample types and contents to make timely decisions on the spot. In this work, the electrochemical behavior of diazepam (DZ), clonazepam (CZ) and alprazolam (AP) is studied on graphite screen-printed electrodes, both with and without dissolved oxygen in the solution, to link their redox signals to their chemical structure. After elucidation of their reduction mechanisms using liquid chromatography coupled to highresolution mass spectrometry, three structural classes (Class 1, Class 2 and Class 3) were defined, each with different redox centers and electrochemical behavior. Subsequently, 22 confiscated pills containing 14 different BZs were correctly assigned to these three structural classes, with the deoxygenated conditions displaying the highest class selectivity. Finally, the three classes were successfully detected after being spiked into five alcoholic beverages in the context of drug-facilitated sexual assault. For analysis in red wine, which complicated the analysis by interfering with Class 1, a dual test strategy in pH 2 and pH 7 was proposed for accurate detection. Its rapid measurements, broad scope and lack of interference from diluents or colors makes this method a promising approach for aiding various services in combating problematic BZ use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001285 Publication Date 2024-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.1 Times cited Open Access  
  Notes Approved Most recent IF: 6.1; 2024 IF: 4.162  
  Call Number (up) UA @ admin @ c:irua:207508 Serial 9285  
Permanent link to this record
 

 
Author Bacaksiz, C.; Fyta, M. url  doi
openurl 
  Title Phthalocyanine adsorbed on monolayer CrI₃ : tailoring their magnetic properties Type A1 Journal article
  Year 2024 Publication ACS Omega Abbreviated Journal  
  Volume 9 Issue 32 Pages 34589-34596  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Metallo-phthalocyanines molecules, especially ironphthalocyanines (Fe-Pc), are often examined due to their rich chemical, magnetic, and optoelectronic features. Due to these, Fe-Pc molecules are promising for applications in gas sensors, field-effect transistors, organic LEDs, and data storage. Motivated by this potential, this study investigates Fe-Pc molecules adsorbed on a magnetic monolayer, CrI3. Using quantum-mechanical simulations, the aim of this work was to find pathways to selectively tune and engineer the magnetic and electronic properties of the molecules when they form hybrid complexes. The results quantitatively underline how adsorption alters the magnetic properties of the Fe-Pc molecules. Interestingly, the analysis points to changes in the molecular magnetic anisotropy when comparing the magnetic moment of the isolated molecule to that of the molecule/monolayer complex formed after adsorption. The presence of iodine vacancies was shown to enhance the magnetic interactions between the iron of the Fe-Pc molecule and the chromium of the monolayer. Our findings suggest ways to control oxygen capture-release properties through material choice and defect creation. Insights into the stability and charge density depletion on the molecule provide critical information for selective tuning of the magnetic properties and engineering of the functionalities of these molecule/material complexes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.1 Times cited Open Access  
  Notes Approved Most recent IF: 4.1; 2024 IF: NA  
  Call Number (up) UA @ admin @ c:irua:207512 Serial 9310  
Permanent link to this record
 

 
Author Khalil, I.; Rigamonti, M.G.; Janssens, K.; Bugaev, A.; Arenas Esteban, D.; Robijns, S.; Donckels, T.; Beydokhti, M.T.; Bals, S.; De Vos, D.; Dusselier, M. doi  openurl
  Title Atomically dispersed ruthenium hydride on beta zeolite as catalysts for the isomerization of muconates Type A1 Journal article
  Year 2024 Publication Nature Catalysis Abbreviated Journal  
  Volume 7 Issue Pages 921-933  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Searching for sustainable polymers requires access to biomass-based monomers. In that sense, glucose-derived cis,cis-muconic acid stands as a high-potential intermediate. However, to unlock its potential, an isomerization to the value-added trans,trans-isomer, trans,trans-muconic acid, is required. Here we develop atomically dispersed low-loaded Ru on beta zeolite catalysts that produce trans,trans-muconate in ethanol with total conversion (to equilibrium) and a selectivity of >95%. We reach very high turnovers per Ru and productivity rates of 427 mM h(-1) (similar to 85 g l(-1) h(-1)), surpassing the bio-based cis,cis-muconic acid production rates by an order of magnitude. By coupling isomerization to Diels-Alder cycloaddition, terephthalate intermediates are produced in around 90% yields, circumventing the isomer equilibrium. Isomerization is promoted by Ru hydride species where the hydrides are generated from the alcohol solvent, as evidenced by Fourier transform infrared spectroscopy. Beyond isomerization, the Ru-zeolite and its hydride-forming capacity could be of use as a heterogeneous catalyst for other hydride chemistries, demonstrated by a successful hydride transfer hydrogenation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001294 Publication Date 2024-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 37.8 Times cited Open Access  
  Notes Approved Most recent IF: 37.8; 2024 IF: NA  
  Call Number (up) UA @ admin @ c:irua:207521 Serial 9277  
Permanent link to this record
 

 
Author Zhang, Y.; Grunewald, L.; Cao, X.; Abdelbarey, D.; Zheng, X.; Rugeramigabo, E.P.; Verbeeck, J.; Zopf, M.; Ding, F. url  doi
openurl 
  Title Unveiling the 3D morphology of epitaxial GaAs/AlGaAs quantum dots Type A1 Journal article
  Year 2024 Publication Nano letters Abbreviated Journal  
  Volume 24 Issue 33 Pages 10106-10113  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Strain-free GaAs/AlGaAs semiconductor quantum dots (QDs) grown by droplet etching and nanohole infilling (DENI) are highly promising candidates for the on-demand generation of indistinguishable and entangled photon sources. The spectroscopic fingerprint and quantum optical properties of QDs are significantly influenced by their morphology. The effects of nanohole geometry and infilled material on the exciton binding energies and fine structure splitting are well-understood. However, a comprehensive understanding of GaAs/AlGaAs QD morphology remains elusive. To address this, we employ high-resolution scanning transmission electron microscopy (STEM) and reverse engineering through selective chemical etching and atomic force microscopy (AFM). Cross-sectional STEM of uncapped QDs reveals an inverted conical nanohole with Al-rich sidewalls and defect-free interfaces. Subsequent selective chemical etching and AFM measurements further reveal asymmetries in element distribution. This study enhances the understanding of DENI QD morphology and provides a fundamental three-dimensional structural model for simulating and optimizing their optoelectronic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.8 Times cited Open Access  
  Notes Approved Most recent IF: 10.8; 2024 IF: 12.712  
  Call Number (up) UA @ admin @ c:irua:207525 Serial 9326  
Permanent link to this record
 

 
Author Tian, X.; Xie, X.; Li, J.; Kong, X.; Gong, W.-J.; Peeters, F.M.; Li, L. doi  openurl
  Title Multiferroic ScLaX₂ (X = P, As, and Sb) monolayers : bidirectional negative Poisson's ratio effects and phase transformations driven by rare-earth (main-group) elements Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 8 Pages 084407-84411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The combination of auxetic property, ferroelasticity, and ferroelectricity in two-dimensional materials offers new avenues for next-generation multifunctional devices. However, two-dimensional materials that simultaneously exhibit those properties are rarely reported. Here, we present a class of two-dimensional Janus-like structures ScLaX2 X 2 (X X = P, As, and Sb) with a rectangular lattice based on first-principles calculations. We predict that those ScLaX2 X 2 monolayers are stable semiconductors with both intrinsic in-plane and out-of-plane auxetic properties, showing a bidirectional negative Poisson's ratio effect. The value of the out-of-plane negative Poisson's ratio effect can reach – 2.28 /- 3.06 /- 3.89. By applying uniaxial strain engineering, two transition paths can be found, including the VA main group element path and the rare-earth metal element path, corresponding to the ferroelastic and the multiferroic (ferroelastic and ferroelectric) phase transition, respectively. For the ScLaSb2 2 monolayer, the external force field can not only control the ferroelastic phase transition, but it can also lead to the reversal of the out-of-plane polarization, exhibiting potential multiferroicity. The coupling between the bidirectional negative Poisson's ratio effect and multiferroicity makes the ScLaX2 X 2 monolayers promising for future device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001293 Publication Date 2024-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number (up) UA @ admin @ c:irua:207592 Serial 9306  
Permanent link to this record
 

 
Author Kandemir, Z.; D'Amico, P.; Sesti, G.; Cardoso, C.; Milošević, M.V.; Sevik, C. doi  openurl
  Title Optical properties of metallic MXene multilayers through advanced first-principles calculations Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 7 Pages 075201-75210  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Having a strong electromagnetic absorption, MXene multilayers are readily envisaged for applications in electromagnetic shields and related prospective technology. However, an ab initio characterization of the optical properties of MXenes is still lacking, due in part to major difficulties with the treatment of metallicity in the first-principles approaches. Here we addressed the latter challenge, after a careful treatment of intraband transitions, to present a thorough analysis of the electronic and optical properties of a selected set of metallic MXene layers based on density functional theory (DFT) and many-body perturbation theory calculations. Our results reveal that the GW corrections are particularly important in regions of the band structure where d and p states hybridize. For some systems, we show that GW corrections open a gap between occupied states, resulting in a band structure that closely resembles that of an intrinsic transparent conductor, thereby opening an additional line of prospective applications for the MXenes family. Nevertheless, GW and Bethe-Salpeter corrections have a minimal influence on the absorption spectra, in contrast to what is typically observed in semiconductor layers. Our present results suggest that calculations within the independent particle approximation (IPA) calculations are sufficiently accurate for assessing the optical characteristics of bulk-layered MXene materials. Finally, our calculated dielectric properties and absorption spectra, in agreement with existing experimental data, confirm the potential of MXenes as effective infrared emitters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number (up) UA @ admin @ c:irua:207597 Serial 9309  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Tuning the quantum phase transition of an ultrathin magnetic topological insulator Type A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 7 Pages 074201-74208  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We explore the effect of thickness, magnetization direction, strain, and gating on the topological quantum phase transition of a thin-film magnetic topological insulator. Reducing the film thickness to the ultrathin regime couples the edge states on the two surfaces, opening a gap known as the hybridization gap, and causing a phase transition from a topological insulator to a normal insulator (NI). An out-of-plane/in-plane magnetization of size proportional to the hybridization gap triggers a phase transition from a normal insulator state to a quantum anomalous Hall (QAH)/semimetal state. A magnetization tilt by angle 0 from the out-of-plane axis influences the topological phase transition in a way that for sufficiently large 0, no phase transition from NI to QAH can be observed regardless of the sample thickness or magnetization, and for 0 close to pi /2 the system transits to a semimetal phase. Furthermore, we demonstrate that compressive/tensile strain can be used to decrease/increase the magnetization threshold for the topological phase transition. Finally, we reveal the effect of a vertical potential acting on the film, be it due to the substrate or applied gating, which breaks inversion symmetry and raises the magnetization threshold for the transition from NI to QAH state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001281 Publication Date 2024-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number (up) UA @ admin @ c:irua:207598 Serial 9324  
Permanent link to this record
 

 
Author Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M. pdf  doi
openurl 
  Title Key electronic parameters of 2H-stacking bilayer MoS₂ on sapphire substrate determined by terahertz magneto-optical measurement in Faraday geometry Type A1 Journal article
  Year 2024 Publication Frontiers of physics Abbreviated Journal  
  Volume 19 Issue 6 Pages 63204-63209  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer (BL) transition metal dichalcogenides (TMDs) are important materials in valleytronics and twistronics. Here we study terahertz (THz) magneto-optical (MO) properties of n-type 2H-stacking BL molybdenum sulfide (MoS2) on sapphire substrate grown by chemical vapor deposition. The AFM, Raman spectroscopy and photoluminescence are used for characterization of the samples. Applying THz time-domain spectroscopy (TDS), in combination with polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through the sample are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular MO conductivities for 2H-stacking BL MoS2 are obtained. Through fitting the experimental results with theoretical formula of MO conductivities for an electron gas, generalized by us previously through the inclusion of photon-induced electronic backscattering effect, we are able to determine magneto-optically the key electronic parameters of BL MoS2, such as the electron density n(e), the electronic relaxation time tau, the electronic localization factor c and, particularly, the effective electron mass m* around Q-point in between the K- and Gamma-point in the electronic band structure. The dependence of these parameters upon magnetic field is examined and analyzed. This is a pioneering experimental work to measure m* around the Q-point in 2H-stacking BL MoS2 and the experimental value is very close to that obtained theoretically. We find that n(e)/tau/ divided by c divided by /m* in 2H-stacking BL MoS2 decreases/increases/decreases/increases with increasing magnetic field. The results obtained from this study can be benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of BL TMD systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001271 Publication Date 2024-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462; 2095-0470 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.5 Times cited Open Access  
  Notes Approved Most recent IF: 7.5; 2024 IF: 2.579  
  Call Number (up) UA @ admin @ c:irua:207600 Serial 9300  
Permanent link to this record
 

 
Author Yari, S.; Bird, L.; Rahimisheikh, S.; Reis, A.C.; Mohammad, M.; Hadermann, J.; Robinson, J.; Shearing, P.R.; Safari, M. pdf  doi
openurl 
  Title Probing charge transport and microstructural attributes in solvent- versus water-based electrodes with a spotlight on Li-S battery cathode Type A1 Journal article
  Year 2024 Publication Advanced energy materials Abbreviated Journal  
  Volume Issue Pages 2402163  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the quest for environmentally benign battery technologies, this study examines the microstructural and transport properties of water-processed electrodes and compares them to conventionally formulated electrodes using the toxic solvent, N-Methyl-2-pyrrolidone (NMP). Special focus is placed on sulfur electrodes utilized in lithium-sulfur batteries for their sustainability and compatibility with diverse binder/solvent systems. The characterization of the electrodes by X-ray micro-computed tomography reveals that in polyvinylidene fluoride (PVDF) Lithium bis(trifluoromethanesulfonyl)imide/NMP, sulfur particles tend to remain in large clusters but break down into finer particles in carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR)/water and lithium polyacrylate (LiPAA)/water dispersions. The findings reveal that in the water-based electrodes, the binder properties dictate the spatial arrangement of carbon particles, resulting in either thick aggregates with short-range connectivity or thin films with long-range connectivity among sulfur particles. Additionally, cracking is found to be particularly prominent in thicker water-based electrodes, propagating especially in regions with larger particle agglomerates and often extending to cause local delamination of the electrodes. These microstructural details are shown to significantly impact the tortuosity and contact resistance of the sulfur electrodes and thereby affecting the cycling performance of the Li-S battery cells. The choice of solvent and binder is crucial in determining particle surface charge, which directly influences active material dispersion and carbon-binder arrangement within the battery porous electrodes. This, in turn, affects ionic and electronic transport properties, ultimately impacting electrochemical performance. Meticulous engineering of the slurry to control these factors is essential for efficient and sustainable water-based electrode processing. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date 2024-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 27.8 Times cited Open Access  
  Notes Approved Most recent IF: 27.8; 2024 IF: 16.721  
  Call Number (up) UA @ admin @ c:irua:207624 Serial 9311  
Permanent link to this record
 

 
Author Pompei, E.; Vlamidis, Y.; Ferbel, L.; Zannier, V.; Rubini, S.; Arenas Esteban, D.; Bals, S.; Marinelli, C.; Pfusterschmied, G.; Leitgeb, M.; Schmid, U.; Heun, S.; Veronesi, S. url  doi
openurl 
  Title Functionalization of three-dimensional epitaxial graphene with metal nanoparticles Type A1 Journal article
  Year 2024 Publication Nanoscale Abbreviated Journal  
  Volume 16 Issue 34 Pages 16107-16118  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate the first successful functionalization of epitaxial three-dimensional graphene with metal nanoparticles. The functionalization is obtained by immersing three-dimensional graphene in a nanoparticle colloidal solution. This method is versatile and demonstrated here for gold and palladium, but can be extended to other types of nanoparticles. We have measured the nanoparticle density on the top surface and in the porous layer volume by scanning electron microscopy and scanning transmission electron microscopy. The samples exhibit a wide coverage of nanoparticles with minimal clustering. We demonstrate that high-quality graphene promotes the functionalization, leading to higher nanoparticle density both on the surface and in the pores. X-ray photoelectron spectroscopy shows the absence of contamination after the functionalization process. Moreover, it confirms the thermal stability of the Au- and Pd-functionalized three-dimensional graphene up to 530 degrees C. Our approach opens new avenues for utilizing three-dimensional graphene as a versatile platform for catalytic applications, sensors, and energy storage and conversion. We report a new technique for fabricating metal-functionalized three-dimensional epitaxial graphene on porous SiC. The process is clean and scalable. The fabricated material exhibits high chemical and thermal stability, and versatility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001283 Publication Date 2024-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364; 2040-3372 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access  
  Notes Approved Most recent IF: 6.7; 2024 IF: 7.367  
  Call Number (up) UA @ admin @ c:irua:207655 Serial 9292  
Permanent link to this record
 

 
Author Ghosh, S.; Pradhan, B.; Bandyopadhyay, A.; Skvortsova, I.; Zhang, Y.; Sternemann, C.; Paulus, M.; Bals, S.; Hofkens, J.; Karki, K.J.; Materny, A. url  doi
openurl 
  Title Rashba-type band splitting effect in 2D (PEA)₂PbI₄ perovskites and its impact on exciton-phonon coupling Type A1 Journal article
  Year 2024 Publication The journal of physical chemistry letters Abbreviated Journal  
  Volume 15 Issue 31 Pages 7970-7978  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Despite a few recent reports on Rashba effects in two-dimensional (2D) Ruddlesden-Popper (RP) hybrid perovskites, the precise role of organic spacer cations in influencing Rashba band splitting remains unclear. Here, using a combination of temperature-dependent two-photon photoluminescence (2PPL) and time-resolved photoluminescence spectroscopy, alongside density functional theory (DFT) calculations, we contribute to significant insights into the Rashba band splitting found for 2D RP hybrid perovskites. The results demonstrate that the polarity of the organic spacer cation is crucial in inducing structural distortions that lead to Rashba-type band splitting. Our investigations show that the intricate details of the Rashba band splitting occur for organic cations with low polarity but not for more polar ones. Furthermore, we have observed stronger exciton-phonon interactions due to the Rashba-type band splitting effect. These findings clarify the importance of selecting appropriate organic spacer cations to manipulate the electronic properties of 2D perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access  
  Notes Approved Most recent IF: 5.7; 2024 IF: 9.353  
  Call Number (up) UA @ admin @ c:irua:207672 Serial 9313  
Permanent link to this record
 

 
Author Zhang, Y.; Grünewald, L.; Cao, X.; Abdelbarey, D.; Zheng, X.; Rugeramigabo, E.P.; Zopf, M.; Verbeeck, J.; Ding, F. doi  openurl
  Title Supplementary Information and Data for “Unveiling the 3D Morphology of Epitaxial GaAs/AlGaAs Quantum Dots” Type Dataset
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Raw and processed TEM and AFM data for the article Unveiling the 3D Morphology of Epitaxial GaAs/AlGaAs Quantum Dots.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ admin @ c:irua:208086 Serial 9319  
Permanent link to this record
 

 
Author Wang, L.; Griffin, D.K.; Romanov, M.N.; Gielis, J. url  doi
openurl 
  Title Comparison of two polar equations in describing the geometries of domestic pigeon (Columba livia domestica) eggs Type A1 Journal article
  Year 2024 Publication Poultry science Abbreviated Journal  
  Volume Issue Pages 104196-104199  
  Keywords A1 Journal article; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Two-dimensional (2D)egg-shape equa-tions are potent mathematical tools, facilitating the description of avian egg geometries in their applied mathematical modelling and poultry science implementations. In the present study, 2 distinct polar equations,namely the Carter-Morley-Jones equation (CMJE) and simplified Gielis equation(SGE), were used to fit the profile geometries of 415 domestic pigeon (Columba livia domestica) eggs based on nonlinear least squares regression methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-5791; 1525-3171 ISBN Additional Links UA library record  
  Impact Factor 4.4 Times cited Open Access  
  Notes Approved Most recent IF: 4.4; 2024 IF: 1.908  
  Call Number (up) UA @ admin @ c:irua:208221 Serial 9279  
Permanent link to this record
 

 
Author Vanhooydonck, A.; Vleugels, J.; Parrilla Pons, M.; Clerx, P.; Watts, R. openurl 
  Title Digital Repository : Optimizing high accuracy 8K LCD 3D-printed Hollow Microneedles: Methodology and ISO-7864:2016 Guided Evaluation for Enhanced Skin Penetration Type Dataset
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Engineering sciences. Technology; Product development; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract This dataset contains 30 STL files of different geometries of microneedles (face angle, inner diameter, outer diameter, wall thickness) which are 3D printable using mSLA printers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://github.com/AndresVHD/Optimizing_high_accuracy_8K-LCD_3D-printed_Hollow_Microneedles-Digital_ Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; https://github.com/AndresVHD/Optimizing_high_accuracy_8K-LCD_3D-printed_Hollow_Microneedles-Digital_Supplement/tree/main/CAD_Files/MN_Configurations  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (up) UA @ admin @ c:irua:208524 Serial 9283  
Permanent link to this record
 

 
Author Tunca, S.; Parrilla, M.; Raj, K.; Nuyts, G.; Verbruggen, S.W.; De Wael, K. pdf  doi
openurl 
  Title Nickel hydroxide nanosphere decorated reduced-TiO₂ nanotubes as supercapacitor electrodes Type A1 Journal article
  Year 2024 Publication Electrochimica acta Abbreviated Journal  
  Volume 505 Issue Pages 144990-11  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract A straightforward electrochemical method was developed to modify titanium dioxide nanotubes (TiO2 NTs), creating oxygen vacancies via electrochemical reduction (ER) and depositing nickel hydroxide nanospheres (Ni (OH)2 NSs). This was done to discover the electrochemical properties of a TiO2 NTs based binder-free supercapacitor electrode. The improved conductivity of the reduced TiO2 NTs (R-TiO2 NTs) electrode provided a 90fold increase in the specific capacitance compared to that of pristine TiO2 NTs. R-TiO2 NTs were further decorated with Ni(OH)2 NSs by an electrodeposition method to further improve the supercapacitive performance. Fabricated R-TiO2 NTs/Ni(OH)2 electrodes exhibited a high areal specific capacitance value of 305.91 mF/cm2 at a current density of 0.75 mA/cm2. The modified electrode shows an improved charge-storage capacity compared to the TiO2 NTs/Ni(OH)2 electrodes, and to previously reported 1D-TiO2/Ni(OH)2 nanocomposite structures. Furthermore, the proposed electrode showed good cyclic stability by retaining 71% of its initial capacitance after 1500 cycles and a promising rate capability with a capacitive retention of 86% while increasing the current density from 0.75 to 5 mA/cm2. Overall, the ER step proved to improve the conductivity of the R-TiO2 NTs, which favors the deposition of the Ni(OH)2 NSs and promotes the Faradaic reactions at the electrode-electrolyte interface demonstrating a promising supercapacitor electrode material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001309 Publication Date 2024-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.6 Times cited Open Access  
  Notes Approved Most recent IF: 6.6; 2024 IF: 4.798  
  Call Number (up) UA @ admin @ c:irua:208529 Serial 9308  
Permanent link to this record
 

 
Author Miao, X.; Milošević, M.; Zhang, C. pdf  doi
openurl 
  Title Magnetic ferroelectric metal in bilayer Fe₃GeTe₂ under interlayer sliding Type A1 Journal article
  Year 2024 Publication Physica: B : condensed matter Abbreviated Journal  
  Volume 694 Issue Pages 416427-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The inherent interlayer freedom in van der Waals stacked materials provides an excellent opportunity to investigate ferroelectric-like behavior through interlayer translation. Based on first-principles calculations, we find that the interlayer sliding in Fe3GeTe2 (FGT) bilayer enables the coexistence of polarization, metallicity, and ferromagnetism. We find that the polarization is induced by the uncompensated vertical interlayer charge transfer, and can be switched by an in-plane interlayer sliding. A moderate biaxial strain can reverse the polarization direction of the sliding FGT bilayer. The vertical polarization disentangles with the in-plane conductivity as was previously seen in the sliding ferroelectric WTe2 bilayer. Our work proposes an extremely rare magnetic ferroelectric metal phase that is useful for magnetoelectric and spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001300 Publication Date 2024-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; 1873-2135 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.8 Times cited Open Access  
  Notes Approved Most recent IF: 2.8; 2024 IF: 1.386  
  Call Number (up) UA @ admin @ c:irua:208567 Serial 9304  
Permanent link to this record
 

 
Author Cadorim, L.R.; Sardella, E.; Milošević, M.V. url  doi
openurl 
  Title Vortical versus skyrmionic states in the topological phase of a twisted bilayer with d-wave superconducting pairing Type A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 110 Issue 6 Pages 064508-64511  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract It was recently shown that a chiral topological phase emerges from the coupling of two twisted monolayers of superconducting Bi2Sr2CaCu2O8+delta for 2 Sr 2 CaCu 2 O 8 +delta for certain twist angles. In this work, we reveal the behavior of such twisted superconducting bilayers with d x 2 – y 2 pairing symmetry in the presence of an applied magnetic field. Specifically, we show that the emergent vortex matter can serve as a smoking gun for the detection of topological superconductivity in such bilayers. Moreover, we report two distinct skyrmionic states that characterize the chiral topological phase and provide a full account of their experimental signatures and their evolution with the twist angle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001290 Publication Date 2024-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number (up) UA @ admin @ c:irua:208602 Serial 9327  
Permanent link to this record
 

 
Author Facetti, J.; Dekov, V.M.; Van Grieken, R. doi  openurl
  Title Heavy metals in sediments from the Paraguay river: a preliminary study Type A1 Journal article
  Year 1998 Publication The science of the total environment Abbreviated Journal  
  Volume 209 Issue Pages 79-86  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000072368900008 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (up) UA @ admin @ c:irua:20961 Serial 8025  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: