toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental materials Abbreviated Journal Dent Mater  
  Volume 32 Issue 12 Pages E327-E337  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000389516400003 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.07 Times cited 47 Open Access  
  Notes Approved Most recent IF: 4.07  
  Call Number UA @ lucian @ c:irua:140246 Serial 4447  
Permanent link to this record
 

 
Author (down) Zhang, F.; Chevalier, J.; Olagnon, C.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Grain-boundary engineering for aging and slow-crack-growth resistant zirconia Type A1 Journal article
  Year 2017 Publication Journal of dental research Abbreviated Journal J Dent Res  
  Volume 96 Issue 7 Pages 774-779  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La2O3) and aluminum oxide (Al2O3) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La2O3 and Al2O3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication St. Louis, Mo. Editor  
  Language Wos 000403934500010 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.755 Times cited 3 Open Access Not_Open_Access  
  Notes ; This research was supported by the Research Fund of KU Leuven under project 0T/ 10/052 and the Research Foundation-Flanders (FWO-Vlaanderen) under grant G.0431.10N. We thank J.W. Seo for TEM and sample preparations. F. Zhang thanks the Research Fund of KU Leuven for her postdoctoral fellowship (PDM/15/153) and the JECS-Trust for the travel grant (No. 201599) to perform double-torsion testing in the MATEIS lab of INSA, Lyon, France. Jerome Chevalier would like to dedicate this paper to Maria Cattani Lorente, who recently passed away under tragic conditions. She was deeply involved in the study of dental zirconia and we will miss her. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. ; Approved Most recent IF: 4.755  
  Call Number UA @ lucian @ c:irua:144161 Serial 4660  
Permanent link to this record
 

 
Author (down) Zhang, F.; Batuk, M.; Hadermann, J.; Manfredi, G.; Mariën, A.; Vanmeensel, K.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. pdf  doi
openurl 
  Title Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation Type A1 Journal article
  Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 106 Issue 106 Pages 48-58  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The hydrothermal aging stability of 3Y-TZP-xM2O3 (M = La, Nd, Sc) was investigated as a function of 0.02–5 mol% M2O3 dopant content and correlated to the overall phase content, t-ZrO2 lattice parameters, grain size distribution, grain boundary chemistry and ionic conductivity.

The increased aging stability with increasing Sc2O3 content and the optimum content of 0.4–0.6 mol% Nd2O3 or 0.2–0.4 mol% La2O3, resulting in the highest aging resistance, could be directly related to the constituent phases and the lattice parameters of the remaining tetragonal zirconia.

At low M2O3 dopant contents ≤0.4 mol%, the different aging behavior of tetragonal zirconia was attributed to the defect structure of the zirconia grain boundary which was influenced by the dopant cation radius. It was observed that the grain boundary ionic resistivity and the aging resistance followed the same trend: La3+ > Nd3+ > Al3+ > Sc3+, proving that hydrothermal aging is driven by the diffusion of water-derived mobile species through the oxygen vacancies. Accordingly, we elucidated the underlying mechanism by which a larger trivalent cation segregating at the zirconia grain boundary resulted in a higher aging resistance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371650300006 Publication Date 2016-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 37 Open Access  
  Notes The authors acknowledge the Research Fund of KU Leuven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post-doctoral fellowship (PDM/15/153). Approved Most recent IF: 5.301  
  Call Number c:irua:132435 Serial 4076  
Permanent link to this record
 

 
Author (down) Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A.M.; Tarascon, J.-M. url  doi
openurl 
  Title Insertion compounds and composites made by ball milling for advanced sodium-ion batteries Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 10308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)(2)F-3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na-1[Fe0.5Mn0.5]O-2 and C/'Na3+xV2(PO4)(2)F-3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369021400002 Publication Date 2016-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 104 Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:131599 Serial 4197  
Permanent link to this record
 

 
Author (down) Zhang, B.; Deschamps, M.; Ammar, M.-R.; Raymundo-Pinero, E.; Hennet, L.; Batuk, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Laser synthesis of hard carbon for anodes in Na-ion battery Type A1 Journal article
  Year 2017 Publication Advanced Materials Technologies Abbreviated Journal  
  Volume 2 Issue 3 Pages 1600227  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398999900003 Publication Date 2016-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access Not_Open_Access  
  Notes ; The RS2E (Reseau sur le StockageElectrochimique de l'Energie) network is acknowledged for the financial support of this work through the ANR project Storex (ANR-10-LABX-76-01). J.-M.T acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC GrantProject 670116-ARPEMA. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:142452 Serial 4666  
Permanent link to this record
 

 
Author (down) Zeng, Y.I.; Menghini, M.; Li, D.Y.; Lin, S.S.; Ye, Z.Z.; Hadermann, J.; Moorkens, T.; Seo, J.W.; Locquet, J.-P.; van Haesendonck, C. doi  openurl
  Title Unexpected optical response of single ZnO nanowires probed using controllable electrical contacts Type A1 Journal article
  Year 2011 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 13 Issue 15 Pages 6931-6935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Relying on combined electron-beam lithography and lift-off methods Au/Ti bilayer electrical contacts were attached to individual ZnO nanowires (NWs) that were grown by a vapor phase deposition method. Reliable Schottky-type as well as ohmic contacts were obtained depending on whether or not an ion milling process was used. The response of the ZnO NWs to ultraviolet light was found to be sensitive to the type of contacts. The intrinsic electronic properties of the ZnO NWs were studied in a field-effect transistor configuration. The transfer characteristics, including gate threshold voltage, hysteresis and operational mode, were demonstrated to unexpectedly respond to visible light. The origin of this effect could be accounted for by the presence of point defects in the ZnO NWs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000288951000019 Publication Date 2011-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.123; 2011 IF: 3.573  
  Call Number UA @ lucian @ c:irua:89378 Serial 3807  
Permanent link to this record
 

 
Author (down) Zeng, Y.-J.; Schouteden, K.; Amini, M.N.; Ruan, S.-C.; Lu, Y.-F.; Ye, Z.-Z.; Partoens, B.; Lamoen, D.; Van Haesendonck, C. pdf  url
doi  openurl
  Title Electronic band structures and native point defects of ultrafine ZnO nanocrystals Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 10617-10622  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from similar to 1.4 nm. With further increase of the thickness to 2 nm, V-O-V-Zn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000355055000063 Publication Date 2015-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 15 Open Access  
  Notes Hercules; EWI Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:126408 Serial 999  
Permanent link to this record
 

 
Author (down) Zeng, Y.-J.; Gauquelin, N.; Li, D.-Y.; Ruan, S.-C.; He, H.-P.; Egoavil, R.; Ye, Z.-Z.; Verbeeck, J.; Hadermann, J.; Van Bael, M.J.; Van Haesendonck, C. pdf  url
doi  openurl
  Title Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity Type A1 Journal article
  Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 7 Issue 7 Pages 22166-22171  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co(3+) in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.  
  Address Solid State Physics and Magnetism Section, KU Leuven , Celestijnenlaan 200 D, BE-3001 Leuven, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000363001500007 Publication Date 2015-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 13 Open Access  
  Notes This work has been supported by the Research Foundation − Flanders (FWO, Belgium) as well as by the Flemish Concerted Research Action program (BOF KU Leuven, GOA/14/007). N. G. and J. V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Flemish Hercules Foundation. The work at Shenzhen University was supported by National Natural Science Foundation of China under Grant No. 61275144 and Natural Science Foundation of SZU. Y.-J. Z. acknowledges funding under grant No. SKL2015-12 from the State Key Laboratory of Silicon Materials; ECASJO_; Approved Most recent IF: 7.504; 2015 IF: 6.723  
  Call Number c:irua:129195 c:irua:129195UA @ admin @ c:irua:129195 Serial 3949  
Permanent link to this record
 

 
Author (down) Zeng, C.Y.; Cao, S.; Li, Y.Y.; Zhao, Z.X.; Yao, X.Y.; Ma, X.; Zhang, X.P. pdf  doi
openurl 
  Title A hidden single-stage martensitic transformation from B2 parent phase to B19 ' martensite phase in an aged Ni51Ti49 alloy Type A1 Journal article
  Year 2019 Publication Materials letters Abbreviated Journal Mater Lett  
  Volume 253 Issue 253 Pages 99-101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The aged Ni-rich NiTi shape memory alloys (SMAs) exhibit the multi-stage martensitic transformation (MMT), which has important influences on functional properties and practical applications of the NiTi SMAs. A hidden single-stage martensitic transformation from B2 parent phase to B19' martensite phase is found in an aged Ni51Ti49 alloy, which happens concurrently with a commonly observed two-stage martensitic transformation B2-R-B19' (R: martensite phase) and actually composes one stage of a multi-stage martensitic transformation (MMT) together with the two-stage one. B2-B19' martensitic transformation occurs in the NiTi matrix containing Ni4Ti3 precipitates with relatively large inter-particle space, while B2-R-B19' transformation takes place in the NiTi matrix with Ni4Ti3 precipitates having relatively small inter-particle space. (C) 2019 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482629500025 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-577x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.572 Times cited Open Access  
  Notes ; This work was supported by the Natural Science Foundation of Guangdong Province under Grant Nos. 2018B0303110012 and 2017A030313323, and the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092. ; Approved Most recent IF: 2.572  
  Call Number UA @ admin @ c:irua:162764 Serial 5381  
Permanent link to this record
 

 
Author (down) Zelonka, K.; Sayer, M.; Freundorfer, A.P.; Hadermann, J. pdf  doi
openurl 
  Title Hydrothermal processing of barium strontium titanate sol-gel composite thin films Type A1 Journal article
  Year 2006 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 41 Issue 12 Pages 3885-3897  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000239022100043 Publication Date 2006-04-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.599; 2006 IF: 0.999  
  Call Number UA @ lucian @ c:irua:60566 Serial 1539  
Permanent link to this record
 

 
Author (down) Zelaya, E.; Tolley, A.; Condo, A.M.; Schumacher, G. pdf  doi
openurl 
  Title Swift heavy ion irradiation of Cu-Zn-Al and Cu-Al-Ni alloys Type A1 Journal article
  Year 2009 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 21 Issue 18 Pages 185009-185009,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effects produced by swift heavy ions in the martensitic (18R) and austenitic phase (beta) of Cu based shape memory alloys were characterized. Single crystal samples with a surface normal close to [210](18R) and [001](beta) were irradiated with 200 MeV of Kr(15+), 230 MeV of Xe(15+), 350 and 600 MeV of Au(26+) and Au(29+). Changes in the microstructure were studied with transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). It was found that swift heavy ion irradiation induced nanometer sized defects in the 18R martensitic phase. In contrast, a hexagonal close-packed phase formed on the irradiated surface of beta phase samples. HRTEM images of the nanometer sized defects observed in the 18R martensitic phase were compared with computer simulated images in order to interpret the origin of the observed contrast. The best agreement was obtained when the defects were assumed to consist of local composition modulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000264934400014 Publication Date 2009-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.649; 2009 IF: 1.964  
  Call Number UA @ lucian @ c:irua:94551 Serial 3399  
Permanent link to this record
 

 
Author (down) Zelaya, E.; Schryvers, D.; Tolley, A.; Fitchner, P.F.P. pdf  doi
openurl 
  Title Cavity nucleation and growth in Cu-Zn-Al irradiated with Cu+ ions at different temperatures Type A1 Journal article
  Year 2010 Publication Intermetallics Abbreviated Journal Intermetallics  
  Volume 18 Issue 4 Pages 493-498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The effects of high dose ion irradiation in β CuZnAl were investigated between room temperature and 150 °C. Single crystal samples with surface normal close to [001]β were irradiated with 300 keV Cu+ ions. Microstructural changes were characterized using transmission electron microscopy. Irradiation induced cavities located on the surface exposed to the irradiation were observed. The morphology, size and density distribution of these cavities were analyzed as a function of different irradiation conditions. The shape and location of the cavities with respect to the irradiation surface were not affected by irradiation temperature or irradiation dose. Instead, the cavity size distribution showed a bi-modal shape for a dose of 15 dpa, regardless of irradiation temperature. For a dose of 30 dpa the bi-modal distribution was only observed after room temperature irradiation. The diffusion effects of vacancies produced by irradiation are analyzed in shape memory CuZnAl alloys, which main characteristic is the diffusionless martensitic transformation. Particularly, the cavity size distributions were analyzed in terms of nucleation, growth and coalescence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Chicago, Ill. Editor  
  Language Wos 000276058200014 Publication Date 2009-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.14 Times cited 1 Open Access  
  Notes Iaea Approved Most recent IF: 3.14; 2010 IF: 2.335  
  Call Number UA @ lucian @ c:irua:80924 Serial 302  
Permanent link to this record
 

 
Author (down) Zelaya, E.; Schryvers, D. doi  openurl
  Title FCC surface precipitation in Cu-Zn-Al after low angle GA+ ion irradiation Type A1 Journal article
  Year 2010 Publication Materials transactions Abbreviated Journal Mater Trans  
  Volume 51 Issue 12 Pages 2177-2180  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The precipitation of a disordered FCC surface structure after low angle Ga+ ion irradiation during focused ion beam thinning of a B2 Cu-Zn-Al alloy with e/a=1.48 is reported. Conventional as well as high-resolution transmission electron microscopy techniques reveal FCC layers on both sides of the thinned sample. The occurrence of this structure is attributed to disordering and dezincification of the alloy resulting from the sputtering process during the irradiation. Changes in crystallographic sample orientation with respect to the incoming ion beam do not have a significant effect on the appearance of the FCC surface structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Sendai Editor  
  Language Wos 000287390300009 Publication Date 2010-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1347-5320;1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.713 Times cited 2 Open Access  
  Notes Bof; Fwo Approved Most recent IF: 0.713; 2010 IF: 0.787  
  Call Number UA @ lucian @ c:irua:85997 Serial 1175  
Permanent link to this record
 

 
Author (down) Zelaya, E.; Schryvers, D. pdf  doi
openurl 
  Title Reducing the formation of FIB-induced FCC layers on Cu-Zn-Al austenite Type A1 Journal article
  Year 2011 Publication Microscopy research and technique Abbreviated Journal Microsc Res Techniq  
  Volume 74 Issue 1 Pages 84-91  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The irradiation effects of thinning a sample of a Cu-Zn-Al shape memory alloy to electron transparency by a Ga+ focused ion beam were investigated. This thinning method was compared with conventional electropolishing and Ar+ ion milling. No implanted Ga was detected but surface FCC precipitation was found as a result of the focused ion beam sample preparation. Decreasing the irradiation dose by lowering the energy and current of the Ga+ ions did not lead to a complete disappearance of the FCC structure. The latter could only be removed after gentle Ar+ ion milling of the sample. It was further concluded that the precipitation of the FCC is independent of the crystallographic orientation of the surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000285976000012 Publication Date 2010-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1059-910X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.147 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.147; 2011 IF: 1.792  
  Call Number UA @ lucian @ c:irua:85994 Serial 2852  
Permanent link to this record
 

 
Author (down) Zelaya, E.; Esquivel, M.R.; Schryvers, D. pdf  doi
openurl 
  Title Evolution of the phase stability of NiAl under low energy ball milling Type A1 Journal article
  Year 2013 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol  
  Volume 24 Issue 6 Pages 1063-1069  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Low energy mechanical alloying of Ni35 at.%Al and Ni40 at.%Al material was performed and the resulting structures were investigated by XRD and TEM. The final intermetallics observed consist of two phases, NiAl(B2) and Ni3Al while 7R and 3R martensite was observed in post-annealed samples. Different integrated milling times were associated to the intermetallic consolidation and initial blend dissociation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Zeist Editor  
  Language Wos 000339175000024 Publication Date 2013-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.659 Times cited 10 Open Access  
  Notes Fwo Approved Most recent IF: 2.659; 2013 IF: 1.642  
  Call Number UA @ lucian @ c:irua:107345 Serial 1102  
Permanent link to this record
 

 
Author (down) Zeegers, M.T.; Kadu, A.; van Leeuwen, T.; Batenburg, K.J. pdf  doi
openurl 
  Title ADJUST : a dictionary-based joint reconstruction and unmixing method for spectral tomography Type A1 Journal article
  Year 2022 Publication Inverse problems Abbreviated Journal Inverse Probl  
  Volume 38 Issue 12 Pages 125002-125033  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Advances in multi-spectral detectors are causing a paradigm shift in x-ray computed tomography (CT). Spectral information acquired from these detectors can be used to extract volumetric material composition maps of the object of interest. If the materials and their spectral responses are known a priori, the image reconstruction step is rather straightforward. If they are not known, however, the maps as well as the responses need to be estimated jointly. A conventional workflow in spectral CT involves performing volume reconstruction followed by material decomposition, or vice versa. However, these methods inherently suffer from the ill-posedness of the joint reconstruction problem. To resolve this issue, we propose 'A Dictionary-based Joint reconstruction and Unmixing method for Spectral Tomography' (ADJUST). Our formulation relies on forming a dictionary of spectral signatures of materials common in CT and prior knowledge of the number of materials present in an object. In particular, we decompose the spectral volume linearly in terms of spatial material maps, a spectral dictionary, and the indicator of materials for the dictionary elements. We propose a memory-efficient accelerated alternating proximal gradient method to find an approximate solution to the resulting bi-convex problem. From numerical demonstrations on several synthetic phantoms, we observe that ADJUST performs exceedingly well compared to other state-of-the-art methods. Additionally, we address the robustness of ADJUST against limited and noisy measurement patterns. The demonstration of the proposed approach on a spectral micro-CT dataset shows its potential for real-world applications. Code is available at https://github.com/mzeegers/ADJUST.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000868885200001 Publication Date 2022-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-5611 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.1  
  Call Number UA @ admin @ c:irua:191536 Serial 7280  
Permanent link to this record
 

 
Author (down) Zanaga, D.; Bleichrodt, F.; Altantzis, T.; Winckelmans, N.; Palenstijn, W.J.; Sijbers, J.; de Nijs, B.; van Huis, M.A.; Sanchez-Iglesias, A.; Liz-Marzan, L.M.; van Blaaderen, A.; Joost Batenburg, K.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Quantitative 3D analysis of huge nanoparticle assemblies Type A1 Journal article
  Year 2016 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 8 Issue 8 Pages 292-299  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Nanoparticle assemblies can be investigated in 3 dimensions using electron tomography. However, it is not straightforward to obtain quantitative information such as the number of particles or their relative position. This becomes particularly difficult when the number of particles increases. We propose a novel approach in which prior information on the shape of the individual particles is exploited. It improves the quality of the reconstruction of these complex assemblies significantly. Moreover, this quantitative Sparse Sphere Reconstruction approach yields directly the number of particles and their position as an output of the reconstruction technique, enabling a detailed 3D analysis of assemblies with as many as 10 000 particles. The approach can also be used to reconstruct objects based on a very limited number of projections, which opens up possibilities to investigate beam sensitive assemblies where previous reconstructions with the available electron tomography techniques failed.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. sara.bals@uantwerpen.be  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366911700028 Publication Date 2015-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 34 Open Access OpenAccess  
  Notes The authors acknowledge financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS, ERC Advanced Grant # 291667 HierarSACol and ERC Advanced Grant 267867 – PLASMAQUO), the European Union under the FP7 (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI and N. 312483 ESTEEM2), and from the Netherlands Organisation for Scientific Research (NWO), project number 639.072.005 and NWO CW 700.57.026. Networking support was provided by COST Action MP1207.; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367  
  Call Number c:irua:131062 c:irua:131062 Serial 3979  
Permanent link to this record
 

 
Author (down) Zanaga, D.; Altantzis, T.; Sanctorum, J.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title An alternative approach for ζ-factor measurement using pure element nanoparticles Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 164 Issue 164 Pages 11-16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is very challenging to measure the chemical composition of hetero nanostructures in a reliable and quantitative manner. Here, we propose a novel and straightforward approach that can be used to quantify energy dispersive X-ray spectra acquired in a transmission electron microscope. Our method is based on a combination of electron tomography and the so-called ζ-factor technique. We will demonstrate the reliability of our approach as well as its applicability by investigating Au-Ag and Au-Pt hetero nanostructures. Given its simplicity, we expect that the method could become a new standard in the field of chemical characterization using electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373526200002 Publication Date 2016-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 19 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS) and the European Union under the FP7 (Integrated Infrastructure Initiative N. 312483 – ESTEEM2). The authors would also like to thank Luis M. Liz-Marzán, Ana Sánchez-Iglesias, Stefanos Mourdikoudis and Cristina Fernández-López for sample provision and useful discussions.; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ Serial 4019  
Permanent link to this record
 

 
Author (down) Zanaga, D.; Altantzis, T.; Sanctorum, J.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title An alternative approach for \zeta-factor measurement using pure element nanoparticles Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 164 Issue Pages 11-16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is very challenging to measure the chemical composition of hetero nanostructures in a reliable and quantitative manner. Here, we propose a novel and straightforward approach that can be used to quantify energy dispersive X-ray spectra acquired in a transmission electron microscope. Our method is based on a combination of electron tomography and the so-called zeta-factor technique. We will demonstrate the reliability of our approach as well as its applicability by investigating Au-Ag and Au-Pt hetero nanostructures. Given its simplicity, we expect that the method could become a new standard in the field of chemical characterization using electron microscopy. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000373526200002 Publication Date 2016-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 19 Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS) and the European Union under the FP7 (Integrated Infrastructure Initiative N. 312483 – ESTEEM2). ; ecas_Sara Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:133259 Serial 4439  
Permanent link to this record
 

 
Author (down) Zanaga, D.; Altantzis, T.; Polavarapu, L.; Liz-Marzán, L.M.; Freitag, B.; Bals, S. pdf  url
doi  openurl
  Title A New Method for Quantitative XEDS Tomography of Complex Heteronanostructures Type A1 Journal article
  Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 396-403  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Reliable quantification of 3D results obtained by X-ray Energy Dispersive Spectroscopy (XEDS) tomography is currently hampered by the presence of shadowing effects and poor spatial resolution. Here, we present a method that overcomes these problems by synergistically combining quantified XEDS data and High Angle Annular Dark Field – Scanning Transmission Electron Microscopy (HAADF-STEM) tomography. As a proof of principle, the approach is applied to characterize a complex Au/Ag nanorattle obtained through a galvanic replacement reaction. However, the technique we propose here is widely applicable to a broad range of nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379970000008 Publication Date 2016-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 29 Open Access OpenAccess  
  Notes The authors acknowledge financial support from European Research Council (ERC Starting Grant # 335078-COLOURATOMS, ERC Advanced Grant # 291667 HierarSACol and ERC Advanced Grant 267867 – PLASMAQUO), the European Union under the FP7 (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI and N. 312483 ESTEEM2).; esteem2jra4; ECASSara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.474  
  Call Number c:irua:132643 c:irua:132643 Serial 4052  
Permanent link to this record
 

 
Author (down) Zanaga, D. url  openurl
  Title Advanced algorithms for quantitative electron tomography Type Doctoral thesis
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Antwerpen Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:146571 Serial 4736  
Permanent link to this record
 

 
Author (down) Zalfani, M.; van der Schueren, B.; Hu, Z.-Y.; Rooke, J.C.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title Novel 3DOM BiVO4/TiO2nanocomposites for highly enhanced photocatalytic activity Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 3 Issue 3 Pages 21244-21256  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Novel 3DOM BiVO4/TiO2 nanocomposites with intimate contact were for the first time synthesized by a hydrothermal method in order to elucidate their visible-light-driven photocatalytic performances. BiVO4 nanoparticles and 3DOM TiO2 inverse opal were fabricated respectively. These materials were characterized by XRD, XPS, SEM, TEM, N2 adsorption–desorption and UV-vis diffuse (UV-vis) and photoluminescence spectroscopies. As references for comparison, a physical mixture of BiVO4 nanoparticles and 3DOM TiO2 inverse opal powder (0.08 : 1), and a BiVO4/P25 TiO2 (0.08 : 1) nanocomposite made also by the hydrothermal method were prepared. The photocatalytic performance of all the prepared materials was evaluated by the degradation of rhodamine B (RhB) as a model pollutant molecule under visible light irradiation. The highly ordered 3D macroporous inverse opal structure can provide more active surface areas and increased mass transfer because of its highly accessible 3D porosity. The results show that 3DOM BiVO4/TiO2 nanocomposites possess a highly prolonged lifetime and increased separation of visible light generated charges and extraordinarily high photocatalytic activity. Owing to the intimate contact between BiVO4 and large surface area 3DOM TiO2, the photogenerated high energy charges can be easily transferred from BiVO4 to the 3DOM TiO2 support. BiVO4 nanoparticles in the 3DOM TiO2 inverse opal structure act thus as a sensitizer to absorb visible light and to transfer efficiently high energy electrons to TiO2 to ensure long lifetime of the photogenerated charges and keep them well separated, owing to the direct band gap of BiVO4 of 2.4 eV, favourably positioned band edges, very low recombination rate of electron–hole pairs and stability when coupled with photocatalysts, explaining the extraordinarily high photocatalytic performance of 3DOM BiVO4/TiO2 nanocomposites. It is found that larger the amount of BiVO4 in the nanocomposite, longer the duration of photogenerated charge separation and higher the photocatalytic activity. This work can shed light on the development of novel visible light responsive nanomaterials for efficient solar energy utilisation by the intimate combination of an inorganic light sensitizing nanoparticle with an inverse opal structure with high diffusion efficiency and high accessible surface area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363163200049 Publication Date 2015-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 88 Open Access  
  Notes This work was realized with the financial support of the Belgian FNRS (Fonds National de la Recherche Scientifique). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is a member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of the University of Namur thanks to Dr P. Louette. This work was also supported by Changjiang Scholars and the Innovative Research Team (IRT1169) of the Ministry of Education of the People's Republic of China. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Membership at the Clare Hall and the financial support of the Department of Chemistry, University of Cambridge. G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 8.867; 2015 IF: 7.443  
  Call Number c:irua:129476 c:irua:129476 Serial 3951  
Permanent link to this record
 

 
Author (down) Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L. pdf  url
doi  openurl
  Title BiVo4/3DOM TiO2 nanocomposites : effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 121-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000393931000013 Publication Date 2016-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 52 Open Access OpenAccess  
  Notes ; This work was realized with the financial support of Chinese Ministry of Education in a framework of the Changjiang Scholar Innovative Research Team Program (IRT_15R52). B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Member, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is also supported by PhD Programs Foundation (20120143120019) of Chinese Ministry of Education, the Wuhan Youth Chenguang Program of Science and Technology (2013070104010003), Hubei Provincial Natural Science Foundation (2014CFB160, 2015CFB516), the National Science Foundation for Young Scholars of China (No. 51502225) and Self-determined and Innovative Research Funds of the SKLWUT (2015-ZD-7). MZ thanks the scholarship support from the Laboratory of Inorganic Materials Chemistry ay the University of Namur. Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of University of Namur thanks to Dr. P. Louette. XRD measurements, UV-vis and photoluminescent spectroscopic analyses and N<INF>2</ INF> adsorption-desorption measurements were made with the facility of the “Plateforme Technologique Physico-Chimique”. ; Approved Most recent IF: 9.446  
  Call Number UA @ lucian @ c:irua:138601 Serial 4405  
Permanent link to this record
 

 
Author (down) Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguig, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L. pdf  url
doi  openurl
  Title BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
  Year 2016 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 121-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393931000013 Publication Date 2016-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 52 Open Access OpenAccess  
  Notes Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 9.446  
  Call Number EMAT @ emat @ Serial 4323  
Permanent link to this record
 

 
Author (down) Zakharova, E.Y.; Kazakov, S.M.; Isaeva, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Kuznetsov, A.N. doi  openurl
  Title Pd5InSe and Pd8In2Se : new metal-rich homological selenides with 2D palladium-indium fragments : synthesis, structure and bonding Type A1 Journal article
  Year 2014 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 589 Issue Pages 48-55  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Two new metal-rich palladium-indium selenides, Pd5InSe and Pd8In2Se, were synthesized using a high-temperature ampoule technique. Their crystal structures were determined from Rietveld analysis of powder diffraction data, supported by energy-dispersive X-ray spectroscopy and selected area electron diffraction. Both compounds crystallize in tetragonal system with P4/mmm space group (Pd5InSe: a = 4.0290(3) angstrom, c = 6.9858(5) angstrom, Z = 1; Pd8In2Se: a = 4.0045(4) angstrom, c = 10.952(1) angstrom, Z = 1). The first compound belongs to the Pd5TlAs structure type, while the second one – to a new structure type. Main structural units in both selenides are indium-centered [Pd12In] cuboctahedra of the tetragonally distorted Cu3Au type, single-and double-stacked along the c axis in Pd5InSe and Pd8In2Se, respectively, alternating with [Pd8Se] rectangular prisms. DFT electronic structure calculations predict both compounds to be 3D metallic conductors and Pauli-like paramagnets. According to the bonding analysis based on the electron localization function topology, both compounds feature multi-centered palladium-indium interactions in their heterometallic fragments. (C) 2013 Elsevier B. V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000330181400008 Publication Date 2013-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.133; 2014 IF: 2.999  
  Call Number UA @ lucian @ c:irua:114840 Serial 3552  
Permanent link to this record
 

 
Author (down) Zaikina, J.V.; Kovnir, K.A.; Sobolev, A.V.; Presniakov, I.A.; Prots, Y.; Baitinger, M.; Schnelle, W.; Olenev, A.V.; Lebedev, O.I.; Van Tendeloo, G.; Grin, Y.; Shevelkov, A.V. doi  openurl
  Title Sn20.5-3.5As22I8: a largely disordered cationic clathrate with a new type of superstructure and abnormally low thermal conductivity Type A1 Journal article
  Year 2007 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 13 Issue 18 Pages 5090-5099  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000247708300005 Publication Date 2007-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539;1521-3765; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 44 Open Access  
  Notes Approved Most recent IF: 5.317; 2007 IF: 5.330  
  Call Number UA @ lucian @ c:irua:65684 Serial 3556  
Permanent link to this record
 

 
Author (down) Zaikina, J.V.; Kovnir, K.A.; Sobolev, A.N.; Presniakov, I.A.; Kytin, V.G.; Kulbachinskii, V.A.; Olenev, A.V.; Lebedev, O.I.; Van Tendeloo, G.; Dikarev, E.V.; Shevelkov, A.V. pdf  doi
openurl 
  Title Highly disordered crystal structure and thermoelectric properties of Sn3P4 Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue 7 Pages 2476-2483  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000254605000011 Publication Date 2008-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:69999 Serial 1470  
Permanent link to this record
 

 
Author (down) Zaikina, J.V.; Batuk, M.; Abakumov, A.M.; Navrotsky, A.; Kauziarich, S.M. pdf  url
doi  openurl
  Title Facile synthesis of Ba1-xKxFe2As2 superconductors via hydride route Type A1 Journal article
  Year 2014 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 136 Issue 48 Pages 16932-16939  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We have developed a fast, easy, and scalable synthesis method for Ba1xKxFe2As2 (0 ≤ x ≤ 1) superconductors using hydrides BaH2 and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1xKxFe2As2 obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000345883900040 Publication Date 2014-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 13 Open Access  
  Notes Approved Most recent IF: 13.858; 2014 IF: 12.113  
  Call Number UA @ lucian @ c:irua:121331 Serial 1169  
Permanent link to this record
 

 
Author (down) Zaghi, A.E.; Buffière, M.; Brammertz, G.; Batuk, M.; Lenaers, N.; Kniknie, B.; Hadermann, J.; Meuris, M.; Poortmans, J.; Vleugels, J. pdf  url
doi  openurl
  Title Mechanical synthesis of high purity Cu-In-Se alloy nanopowder as precursor for printed CISe thin film solar cells Type A1 Journal article
  Year 2014 Publication Advanced powder technology Abbreviated Journal Adv Powder Technol  
  Volume 25 Issue 4 Pages 1254-1261  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mechanical alloying and ball milling are low cost, up-scalable techniques for the preparation of high purity chalcogenide nanopowders to be used as precursor material for printing thin film solar cells. In this study, high purity copper indium selenium (Cu-In-Se) alloy nanopowders with 20-200 nm particle size were synthesized from macroscopic elemental Cu, In and Se powders via mechanical alloying and planetary ball milling. The particle size distribution, morphology, composition, and purity level of the synthesized Cu-In-Se alloy nanopowders were investigated. Thin Cu-In-Se alloy nanopowder ink coatings, deposited on Mo-coated glass substrates by doctor blading, were converted into a CuInSe2 semiconductor film by selenization heat treatment in Se vapor. The CuInSe2 film showed semiconducting band gap around 1 eV measured by photoluminescence spectroscopy. CuInSe2 absorber layer based thin film solar cell devices were fabricated to assess their performance. The solar cell device showed a total efficiency of 4.8%, as measured on 0.25 cm(2) area cell. (c) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Zeist Editor  
  Language Wos 000341871700015 Publication Date 2014-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8831; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.659 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.659; 2014 IF: 2.638  
  Call Number UA @ lucian @ c:irua:119896 Serial 1977  
Permanent link to this record
 

 
Author (down) Yuan, Y.; Wu, F.-J.; Xiao, S.-T.; Wang, Y.-T.; Yin, Z.-W.; Van Tendeloo, G.; Chang, G.-G.; Tian, G.; Hu, Z.-Y.; Wu, S.-M.; Yang, X.-Y. url  doi
openurl 
  Title Hierarchical zeolites containing embedded Cd0.2Zn0.8S as a photocatalyst for hydrogen production from seawater Type A1 Journal article
  Year 2023 Publication Chemical communications Abbreviated Journal  
  Volume 59 Issue 47 Pages 7275-7278  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Uncovering an efficient and stable photocatalytic system for seawater splitting is a highly desirable but challenging goal. Herein, Cd0.2Zn0.8S@Silicalite-1 (CZS@S-1) composites, in which CZS is embedded in the hierarchical zeolite S-1, were prepared and show remarkably high activity, stability and salt resistance in seawater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000994367000001 Publication Date 2023-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345; 1364-548x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.9; 2023 IF: 6.319  
  Call Number UA @ admin @ c:irua:197291 Serial 8878  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: