|   | 
Details
   web
Records
Author (down) Boschker, H.; Verbeeck, J.; Egoavil, R.; Bals, S.; Van Tendeloo, G.; Huijben, M.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G.
Title Preventing the reconstruction of the polar discontinuity at oxide heterointerfaces Type A1 Journal article
Year 2012 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 22 Issue 11 Pages 2235-2240
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Perovskite oxide heteroepitaxy receives much attention because of the possibility to combine the diverse functionalities of perovskite oxide building blocks. A general boundary condition for the epitaxy is the presence of polar discontinuities at heterointerfaces. These polar discontinuities result in reconstructions, often creating new functionalities at the interface. However, for a significant number of materials these reconstructions are unwanted as they alter the intrinsic materials properties at the interface. Therefore, a strategy to eliminate this reconstruction of the polar discontinuity at the interfaces is required. We show that the use of compositional interface engineering can prevent the reconstruction at the La0.67Sr0.33MnO3/SrTiO3 (LSMO/STO) interface. The polar discontinuity at this interface can be removed by the insertion of a single La0.33Sr0.67O layer, resulting in improved interface magnetization and electrical conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000304749600002 Publication Date 2012-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 72 Open Access
Notes We wish to acknowledge the financial support of the Dutch Science Foundation (NWO) and the Dutch Nanotechnology program NanoNed. S. B. acknowledges the financial support from the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. J. V. and G. V. T. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC grant N246791 – COUNTATOMS. R. E. acknowledges funding by the European Union Council under the 7th Framework Program (FP7) grant NNMP3-LA-2010-246102 IFOX. We thank Sandra Van Aert for stimulating discussions. Approved Most recent IF: 12.124; 2012 IF: 9.765
Call Number UA @ lucian @ c:irua:98907UA @ admin @ c:irua:98907 Serial 2712
Permanent link to this record
 

 
Author (down) Boschker, H.; Huijben, M.; Vailinois, A.; Verbeeck, J.; Van Aert, S.; Luysberg, M.; Bals, S.; Van Tendeloo, G.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G.
Title Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics Type A1 Journal article
Year 2011 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 44 Issue 20 Pages 205001-205001,9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, an overview of the fabrication and properties of high-quality La0.67Sr0.33MnO3 (LSMO) thin films is given. A high-quality LSMO film combines a smooth surface morphology with a large magnetization and a small residual resistivity, while avoiding precipitates and surface segregation. In the literature, typically only a few of these issues are adressed. We therefore present a thorough characterization of our films, which were grown by pulsed laser deposition. The films were characterized with reflection high energy electron diffraction, atomic force microscopy, x-ray diffraction, magnetization and transport measurements, x-ray photoelectron spectroscopy and scanning transmission electron microscopy. The films have a saturation magnetization of 4.0 µB/Mn, a Curie temperature of 350 K and a residual resistivity of 60 µΩ cm. These results indicate that high-quality films, combining both large magnetization and small residual resistivity, were realized. A comparison between different samples presented in the literature shows that focussing on a single property is insufficient for the optimization of the deposition process. For high-quality films, all properties have to be adressed. For LSMO devices, the thin-film quality is crucial for the device performance. Therefore, this research is important for the application of LSMO in devices.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000290150900001 Publication Date 2011-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 99 Open Access
Notes This research was financially supported by the Dutch Science Foundation, by NanoNed, a nanotechnology program of the Dutch Ministry of Economic Affairs, and by the NanOxide program of the European Science Foundation. This work is supported in part by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515. Approved Most recent IF: 2.588; 2011 IF: 2.544
Call Number UA @ lucian @ c:irua:89557UA @ admin @ c:irua:89557 Serial 2491
Permanent link to this record
 

 
Author (down) Bliokh, K.Y.; Schattschneider, P.; Verbeeck, J.; Nori, F.
Title Electron vortex beams in a magnetic field : a new twist on Landau levels and Aharonov-Bohm states Type A1 Journal article
Year 2012 Publication Physical review X Abbreviated Journal Phys Rev X
Volume 2 Issue 4 Pages 041011-41015
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We examine the propagation of the recently discovered electron vortex beams in a longitudinal magnetic field. We consider both the Aharonov-Bohm configuration with a single flux line and the Landau case of a uniform magnetic field. While stationary Aharonov-Bohm modes represent Bessel beams with flux- and vortex-dependent probability distributions, stationary Landau states manifest themselves as nondiffracting Laguerre-Gaussian beams. Furthermore, the Landau-state beams possess field- and vortex-dependent phases: (i) the Zeeman phase from coupling the quantized angular momentum to the magnetic field and (ii) the Gouy phase, known from optical Laguerre-Gaussian beams. Remarkably, together these phases determine the structure of Landau energy levels. This unified Zeeman-Landau-Gouy phase manifests itself in a nontrivial evolution of images formed by various superpositions of modes. We demonstrate that, depending on the chosen superposition, the image can rotate in a magnetic field with either (i) Larmor, (ii) cyclotron (double-Larmor), or (iii) zero frequency. At the same time, its centroid always follows the classical cyclotron trajectory, in agreement with the Ehrenfest theorem. Interestingly, the nonrotating superpositions reproduce stable multivortex configurations that appear in rotating superfluids. Our results open an avenue for the direct electron-microscopy observation of fundamental properties of free quantum-electron states in magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication College Park, Md Editor
Language Wos 000311551100001 Publication Date 2012-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.789 Times cited 130 Open Access
Notes Vortex ECASJO_; Approved Most recent IF: 12.789; 2012 IF: 6.711
Call Number UA @ lucian @ c:irua:105139UA @ admin @ c:irua:105139 Serial 991
Permanent link to this record
 

 
Author (down) Bliokh, K.Y.; Karimi, E.; Padgett, M.J.; Alonso, M.A.; Dennis, M.R.; Dudley, A.; Forbes, A.; Zahedpour, S.; Hancock, S.W.; Milchberg, H.M.; Rotter, S.; Nori, F.; Ozdemir, S.K.; Bender, N.; Cao, H.; Corkum, P.B.; Hernandez-Garcia, C.; Ren, H.; Kivshar, Y.; Silveirinha, M.G.; Engheta, N.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Leykam, D.; Smirnova, D.A.; Rong, K.; Wang, B.; Hasman, E.; Picardi, M.F.; Zayats, A.V.; Rodriguez-Fortuno, F.J.; Yang, C.; Ren, J.; Khanikaev, A.B.; Alu, A.; Brasselet, E.; Shats, M.; Verbeeck, J.; Schattschneider, P.; Sarenac, D.; Cory, D.G.; Pushin, D.A.; Birk, M.; Gorlach, A.; Kaminer, I.; Cardano, F.; Marrucci, L.; Krenn, M.; Marquardt, F.
Title Roadmap on structured waves Type A1 Journal article
Year 2023 Publication Journal of optics Abbreviated Journal
Volume 25 Issue 10 Pages 103001-103079
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological----- structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g. for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061350200001 Publication Date 2023-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.1 Times cited 7 Open Access Not_Open_Access: Available from 30.03.2024
Notes This work is funded by the Royal Society and EPSRC under the Grant Number EP/M01326X/1.M A A acknowledges funding from the Excellence Initiative of Aix Marseille University-A*MIDEX, a French Investissements d'Avenir' programme, and from the Agence Nationale de Recherche (ANR) through project ANR-21-CE24-0014-01.M R D acknowledges support from the EPSRC Centre for Doctoral Training in Topological Design(EP/S02297X/1).S R acknowledges support by the Austrian Science Fund (FWF, Grant P32300 WAVELAND) and by the European Commission (Grant MSCA-RISE 691209 NHQWAVE). FN is supported in part by NTT Research, and S K OE by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Award No. FA9550-21-1-0202.The authors thank their co-workers Yaron Bromberg, Hasan Yilmaz, and collaborators Joerg Bewersdorf and Mengyuan Sun for their contributions to the works presented here. They also acknowledge financial support from the Office of Naval Research (N00014-20-1-2197) and the National Science Foundation (DMR-1905465).H R acknowledges a support from the Australian Research Council DECRA Fellowship DE220101085. Y K acknowledges a support from the Australian Research Council (Grant DP210101292).M G S acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, from the Institution of Engineering and Technology (IET) under the A F Harvey Research Prize 2018, and from Instituto de Telecomunicacoes under project UIDB/50008/2020. N E acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, and from the US Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) grant number FA9550-21-1-0312.We acknowledge funding by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. Moreover, financial support from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 899275 (DAALI) is gratefully acknowledged.D L acknowledges a support from the National Research Foundation, Singapore and A*STAR under its CQT Bridging Grant. D A S acknowledges support from the Australian Research Council (FT230100058).The authors gratefully acknowledge financial support from the Israel Science Foundation (ISF), the U.S. Air Force Office of Scientific Research (FA9550-18-1-0208) through their program on Photonic Metamaterials, the Israel Ministry of Science, Technology and Space. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit(MNF & PU), Technion.This work was supported by the European Research Council projects iCOMM (789340) and Starting Grant ERC-2016-STG-714151-PSINFONI.Our work in this area has been funded by the National Science Foundation, the Office of Naval Research, and the Simons Foundation.This work was supported by the Australian Research Council Discovery Project DP190100406.J V acknowledges funding from the eBEAM Project supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101017720 (FET-Proactive EBEAM), FWO Project G042820N Exploring adaptive optics in transmission electron microscopy' and European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities Grant Agreement No. 823717-ESTEEM3. P S acknowledges the support of the Austrian Science Fund under Project Nr. P29687-N36.; The authors would like to thank their many collaborators including Wangchun Chen, Charles W Clark, Lisa DeBeer-Schmitt, Huseyin Ekinci, Melissa Henderson, Michael Huber, Connor Kapahi, Ivar Taminiau, and Kirill Zhernenkov. The authors would also like to acknowledge their funding sources: the Canadian Excellence Research Chairs (CERC) program, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada First Research Excellence Fund (CFREF).E K acknowledges the support of Canada Research Chairs, Ontario's Early Research Award, and NRC-uOttawa Joint Centre for Extreme Quantum Photonics (JCEP) via the High Throughput and Secure Networks Challenge Program at the National Research Council of Canada. Approved Most recent IF: 2.1; 2023 IF: 1.741
Call Number UA @ admin @ c:irua:199327 Serial 8925
Permanent link to this record
 

 
Author (down) Bliokh, K.Y.; Ivanov, I.P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M.A.; Schattschneider, P.; Nori, F.; Verbeeck, J.
Title Theory and applications of free-electron vortex states Type A1 Journal article
Year 2017 Publication Physics reports Abbreviated Journal Phys Rep
Volume 690 Issue 690 Pages 1-70
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406169900001 Publication Date 2017-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.425 Times cited 210 Open Access OpenAccess
Notes AFOSR, FA9550-14-1-0040 ; CREST, JPMJCR1676 ; Portuguese Fundação para a Ciência e a Tecnologia (FCT), IF/00989/2014/CP1214/CT0004 ; Austrian Science Fund, I543-N20 ; ERC, 278510 VORTEX ; We acknowledge discussions with Mark R. Dennis and Andrei Afanasev. This work was supported by the RIKEN Interdisciplinary Theoretical Science Research Group (iTHES) Project, the Multi-University Research Initiative (MURI) Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-14-1-0040), Grant-in-Aid for Scientific Research (A), Core Research for Evolutionary Science and Technology (CREST), the John Templeton Foundation, the Australian Research Council, the Portuguese Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) (contract IF/00989/2014/CP1214/CT0004 under the IF2014 Program), contracts UID/FIS/00777/2013 and CERN/FIS-NUC/0010/2015 (partially funded through POCTI, COMPETE, QREN, and the European Union), Austrian Science Fund Grant No. I543-N20, the European Research Council under the 7th Framework Program (FP7) (ERC Starting Grant No. 278510 VORTEX), and FWO PhD Fellowship grants (Aspirant Fonds Wetenschappelijk OnderzoekVlaanderen). Approved Most recent IF: 17.425
Call Number EMAT @ emat @ c:irua:143262 Serial 4574
Permanent link to this record
 

 
Author (down) Birkholzer, Y.A.; Sotthewes, K.; Gauquelin, N.; Riekehr, L.; Jannis, D.; van der Minne, E.; Bu, Y.; Verbeeck, J.; Zandvliet, H.J.W.; Koster, G.; Rijnders, G.
Title High-strain-induced local modification of the electronic properties of VO₂ thin films Type A1 Journal article
Year 2022 Publication ACS applied electronic materials Abbreviated Journal
Volume 4 Issue 12 Pages 6020-6028
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000890974900001 Publication Date 2022-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited 2 Open Access OpenAccess
Notes This work received financial support from the project Green ICT (grant number 400.17.607) of the research program NWA, which is financed by the Dutch Research Council (NWO), Research Foundation Flanders (FWO grant number G0F1320N), and the European Union’s Horizon 2020 research and innovation program within a contract for Integrating Activities for Advanced Communities (grant number 823717 − ESTEEM3). The K2 camera was funded through the Research Foundation Flanders (FWO-Hercules grant number G0H4316N – “Direct electron detector for soft matter TEM”).; esteem3reported; esteem3jra Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:192712 Serial 7309
Permanent link to this record
 

 
Author (down) Bigiani, L.; Gasparotto, A.; Maccato, C.; Sada, C.; Verbeeck, J.; Andreu, T.; Morante, J.R.; Barreca, D.
Title Dual improvement of beta-MnO₂ oxygen evolution electrocatalysts via combined substrate control and surface engineering Type A1 Journal article
Year 2020 Publication Chemcatchem Abbreviated Journal Chemcatchem
Volume Issue Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO(2)systems. Specifically,beta-MnO(2)nanostructures grown by plasma enhanced-chemical vapor deposition on fluorine-doped tin oxide (FTO) or Ni foams were decorated with Co(3)O(4)or Fe(2)O(3)nanoparticles by radio frequency sputtering. Upon functionalization, FTO-supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 Vvs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm(2)in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO(2)system provided a current density of 17.9 mA/cm(2)at 1.65 Vvs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO(2)and RuO(2)benchmarks. Overall, the control of beta-MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000571229000001 Publication Date 2020-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.5 Times cited 5 Open Access Not_Open_Access
Notes ; This work has been financially supported by Padova University DOR 2017-2019, P-DiSC #03BIRD2016-UNIPD and #03BIRD2018-UNIPD projects. A.G. acknowledges AMGA Foundation and INSTM Consortium. J.V. gratefully acknowledges funding from the GOA project “Solarpaint” of the University of Antwerp and the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717-ESTEEM3. ; esteem3TA; esteem3reported Approved Most recent IF: 4.5; 2020 IF: 4.803
Call Number UA @ admin @ c:irua:171949 Serial 6493
Permanent link to this record
 

 
Author (down) Bigiani, L.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Barreca, D.; Maccato, C.
Title Au-manganese oxide nanostructures by a plasma-assisted process as electrocatalysts for oxygen evolution : a chemico-physical investigation Type A1 Journal article
Year 2020 Publication Advanced sustainable systems Abbreviated Journal
Volume Issue Pages 2000177-11
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Earth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000572376000001 Publication Date 2020-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2366-7486 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.1 Times cited 4 Open Access Not_Open_Access
Notes ; Padova University (DOR 2017-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), are gratefully acknowledged for financial support. The Qu-Ant-EM microscope was partially funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project “Solarpaint” from the University of Antwerp and from EU H2020 823717 ESTEEM3 project. The authors thank Dr. Daniele Valbusa, Dr. Gianluca Corr, Dr. Andrea Gallo, and Dr. Dileep Khrishnan for helpful experimental assistance. ; esteem3TA; esteem3reported Approved Most recent IF: 7.1; 2020 IF: NA
Call Number UA @ admin @ c:irua:171937 Serial 6457
Permanent link to this record
 

 
Author (down) Bigiani, L.; Barreca, D.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Maccato, C.
Title Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process Type A1 Journal article
Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 284 Issue Pages 119684
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electrolysis of seawater, a significantly more abundant natural reservoir than freshwater, stands as a promising alternative for sustainable hydrogen production, provided that the competitive chloride electro-oxidation is minimized. Herein, we propose an original material combination to selectively trigger oxygen evolution from seawater at expenses of chlorine generation. The target systems, based on MnO2 or Mn2O3 decorated with Fe2O3 or Co3O4, are fabricated by plasma enhanced-chemical vapor deposition of manganese oxides, functionalization with Fe2O3 and Co3O4 by sputtering, and annealing in air/Ar to obtain Mn(IV)/Mn(III) oxides. Among the various options, MnO2 decorated with Co3O4 yields the best performances in alkaline seawater splitting, with an outstanding Tafel slope of approximate to 40 mV x dec(-1) and an overpotential of 450 mV, enabling to rule out chlorine evolution. These attractive performances, resulting from the synergistic contribution of catalytic and electronic effects, open the door to low-cost hydrogen generation from seawater under real-world conditions, paving the way to eventual large-scale applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623591500008 Publication Date 2020-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 67 Open Access OpenAccess
Notes The authors thank Padova University (DOR 2017–2020 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), for financial support. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project 'Solarpaint' (University of Antwerp) and from the EU-H2020 programme (grant agreement No. 823717 – ESTEEM3). J.R.M. and T.A. acknowledge Generalitat de Catalunya for financial support through the CERCA Programme, 27 M2E (2017SGR1246) and by ERDEF-MINECO coordinated projects ENE2017-85087-C3 and ENE2016-80788-C5-5-R. Thanks are also due to Proff. Gloria Tabacchi and Ettore Fois (Department of Science and High Technology, Insubria University, Como, Italy) for valuable discussions and support. Dr. Daniele Valbusa, Dr. Gianluca Corrò, Dr. Andrea Gallo and Dr. Dileep Khrishnan are gratefully acknowledged for helpful technical assistance. Approved Most recent IF: 9.446
Call Number UA @ admin @ c:irua:176718 Serial 6733
Permanent link to this record
 

 
Author (down) Bigiani, L.; Andreu, T.; Maccato, C.; Fois, E.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Krishnan, D.; Verbeeck, J.; Ramon Morante, J.; Barreca, D.
Title Engineering Au/MnO₂ hierarchical nanoarchitectures for ethanol electrochemical valorization Type A1 Journal article
Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
Volume 8 Issue 33 Pages 16902-16907
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The design of eco-friendly electrocatalysts for ethanol valorization is an open challenge towards sustainable hydrogen production. Herein we present an original fabrication route to effective electrocatalysts for the ethanol oxidation reaction (EOR). In particular, hierarchical MnO(2)nanostructures are grown on high-area nickel foam scaffolds by a plasma-assisted strategy and functionalized with low amounts of optimally dispersed Au nanoparticles. This strategy leads to catalysts with a unique morphology, designed to enhance reactant-surface contacts and maximize active site utilization. The developed nanoarchitectures show superior performances for ethanol oxidation in alkaline media. We reveal that Au decoration boosts MnO(2)catalytic activity by inducing pre-dissociation and pre-oxidation of the adsorbed ethanol molecules. This evidence validates our strategy as an effective route for the development of green electrocatalysts for efficient electrical-to-chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000562931300008 Publication Date 2020-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.9 Times cited 16 Open Access OpenAccess
Notes ; This work was financially supported by Padova University DOR 2016-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects, as well as by the INSTM Consortium (INSTMPD004 – NETTUNO), AMGA Foundation Mn4Energy project and Insubria University FAR2018. J. V. and D. K. acknowledge funding from the Flemish Government (Hercules), GOA project “Solarpaint” (Antwerp University) and European Union's H2020 programme under grant agreement no. 823717 ESTEEM3. The authors are grateful to Dr Gianluca Corr for skillful technical support. ; esteem3TA; esteem3reported Approved Most recent IF: 11.9; 2020 IF: 8.867
Call Number UA @ admin @ c:irua:171989 Serial 6506
Permanent link to this record
 

 
Author (down) Bhat, S.G.; Gauquelin, N.; Sebastian, N.K.; Sil, A.; Béché, A.; Verbeeck, J.; Samal, D.; Kumar, P.S.A.
Title Orthorhombic vs. hexagonal epitaxial SrIrO3 thin films : structural stability and related electrical transport properties Type A1 Journal article
Year 2018 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 122 Issue 2 Pages 28003
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Metastable orthorhombic SrIrO3 (SIO) is an arch-type spin-orbit coupled material. We demonstrate here a controlled growth of relatively thick (200 nm) SIO films that transform from bulk “6H-type” structure with monoclinic distortion to an orthorhombic lattice by controlling growth temperature. Extensive studies based on high-resolution X-ray diffraction and transmission electron microscopy infer a two distinct structural phases of SIO. Electrical transport reveals a weak temperature-dependent semi-metallic character for both phases. However, the temperature-dependent Hall-coefficient for the orthorhombic SIO exhibits a prominent sign change, suggesting a multiband character in the vicinity of E-F. Our findings thus unravel the subtle structure-property relation in SIO epitaxial thin films. Copyright (C) EPLA, 2018
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000435517300001 Publication Date 2018-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 4 Open Access Not_Open_Access
Notes ; SGB and DS acknowledge useful discussions with E. P. Houwman, University of Twente, on X-ray diffraction. DS would like to thank H. Takagi, Max-Planck Institute for Solid State Research, Stuttgart, for the fruitful discussion on the transport properties of SIO thin films. SGB and NKS thank A. Aravind, Bishop Moore College, Mavelikara, for his valuable inputs while depositing the thin films of SIO. SGB, NKS and PSAK acknowledge Nano Mission Council, Department of Science & Technology, India, for the funding. DS acknowledges the financial support from Max-Planck Society through MaxPlanck Partner Group. NG, AB and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G093417N. ; Approved Most recent IF: 1.957
Call Number UA @ lucian @ c:irua:152074UA @ admin @ c:irua:152074 Serial 5034
Permanent link to this record
 

 
Author (down) Bertoni, G.; Verbeeck, J.; Brosens, F.
Title Fitting the momentum dependent loss function in EELS Type A1 Journal article
Year 2011 Publication Microscopy research and technique Abbreviated Journal Microsc Res Techniq
Volume 74 Issue 3 Pages 212-218
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Theory of quantum systems and complex systems
Abstract Momentum dependent inelastic plasmon scattering can be measured by electron energy loss in a transmission electron microscope. From energy filtered diffraction, the characteristic angle of scattering and the cutoff angle are measured, using a thin film of aluminum as a model test. Rather than deconvolving the data (as done in previous works), a fitting technique is used to extract the loss function from angular resolved spectra, starting from a simple model simulation.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000288095200002 Publication Date 2010-07-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1059-910X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.147 Times cited 6 Open Access
Notes Fwo; Esteem; Iap; Goa Approved Most recent IF: 1.147; 2011 IF: 1.792
Call Number UA @ lucian @ c:irua:88782UA @ admin @ c:irua:88782 Serial 1222
Permanent link to this record
 

 
Author (down) Bertoni, G.; Verbeeck, J.
Title Accuracy and precision in model based EELS quantification Type A1 Journal article
Year 2008 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 108 Issue 8 Pages 782-790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present results on model based quantification of electron energy loss spectra (EELS), focusing on the factors that influence accuracy and precision in determining chemical concentrations. Several sources of systematical errors are investigated. The spectrometer entrance aperture determines the collection angle, and the effects of its position with respect to the transmitted beam are investigated, taking into account the diffraction by the crystal structure. The effect of the orientation of the sample is tested experimentally and theoretically on SrTiO3, and finally, a simulated experiment on c-BN at different thicknesses confirms the superior results of the model based method with respect to the conventional method. A test on a set of experimental reference compounds is presented, showing that remarkably good accuracy can be obtained. Recommendations are given to achieve high accuracy and precision in practice. (C) 2008 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000258241900010 Publication Date 2008-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 44 Open Access
Notes Approved Most recent IF: 2.843; 2008 IF: 2.629
Call Number UA @ lucian @ c:irua:70550UA @ admin @ c:irua:70550 Serial 42
Permanent link to this record
 

 
Author (down) Bertoni, G.; Beyers, E.; Verbeeck, J.; Mertens, M.; Cool, P.; Vansant, E.F.; Van Tendeloo, G.
Title Quantification of crystalline and amorphous content in porous TiO2 samples from electron energy loss spectroscopy Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 7 Pages 630-635
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract We present an efficient method for the quantification of crystalline versus amorphous phase content in mesoporous materials, making use of electron energy loss spectroscopy. The method is based on fitting a superposition of core-loss edges using the maximum likelihood method with measured reference spectra. We apply the method to mesoporous TiO2 samples. We show that the absolute amount of the crystalline phase can be determined with an accuracy below 5%. This method takes also the amorphous phase into account, where standard X-ray diffraction is only quantitative for crystalline phases and not for amorphous phase. (c) 2006 Elsevier B.V.. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000238479300011 Publication Date 2006-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 83 Open Access
Notes Iap-V; Goa-2005; Fwo Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:58823UA @ admin @ c:irua:58823 Serial 2741
Permanent link to this record
 

 
Author (down) Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C.
Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
Volume 13 Issue 6 Pages 1035
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000960297000001 Publication Date 2023-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.3 Times cited 3 Open Access OpenAccess
Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553
Call Number EMAT @ emat @c:irua:196115 Serial 7378
Permanent link to this record
 

 
Author (down) Benedet, M.; Andrea Rizzi, G.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Maccato, C.; Barreca, D.
Title Functionalization of graphitic carbon nitride systems by cobalt and cobalt-iron oxides boosts solar water oxidation performances Type A1 Journal article
Year 2023 Publication Applied surface science Abbreviated Journal
Volume 618 Issue Pages 156652
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The ever-increasing energy demand from the world population has made the intensive use of fossil fuels an overarching threat to global environment and human health. An appealing alternative is offered by sunlight-assisted photoelectrochemical water splitting to yield carbon-free hydrogen fuel, but kinetic limitations associated to the oxygen evolution reaction (OER) render the development of cost-effective, eco-friendly and stable electrocatalysts an imperative issue. In the present work, OER catalysts based on graphitic carbon nitride (g-C3N4) were deposited on conducting glass substrates by a simple decantation procedure, followed by functionalization with low amounts of nanostructured CoO and CoFe2O4 by radio frequency (RF)-sputtering, and final annealing under inert atmosphere. A combination of advanced characterization tools was used to investigate the interplay between material features and electrochemical performances. The obtained results highlighted the formation of a p-n junction for the g-C3N4-CoO system, whereas a Z-scheme junction accounted for the remarkable performance enhancement yielded by g-C3N4-CoFe2O4. The intimate contact between the system components also afforded an improved electrocatalyst stability in comparison to various bare and functionalized g-C3N4-based systems. These findings emphasize the importance of tailoring g-C3N4 chemico-physical properties through the dispersion of complementary catalysts to fully exploit its applicative potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000950654300001 Publication Date 2023-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited 11 Open Access OpenAccess
Notes The authors gratefully acknowledge financial support from CNR (Progetti di Ricerca @CNR – avviso 2020 – ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO – NANOMAT, INSTM21PDBARMAC – ATENA) and the European Union's Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3. The FWO-Hercules fund G0H4316N 'Direct electron detector for soft matter TEM' is also acknowledged. Many thanks are due to Prof. Luca Gavioli (Università Cattolica del Sacro Cuore, Brescia, Italy) and Dr. Riccardo Lorenzin (Department of Chemical Sciences, Padova University, Italy) for their invaluable technical support.; esteem3reported; esteem3TA Approved Most recent IF: 6.7; 2023 IF: 3.387
Call Number EMAT @ emat @c:irua:196150 Serial 7376
Permanent link to this record
 

 
Author (down) Becker, M.; Guzzinati, G.; Béché, A.; Verbeeck, J.; Batelaan, H.
Title Asymmetry and non-dispersivity in the Aharonov-Bohm effect Type A1 Journal article
Year 2019 Publication Nature communications Abbreviated Journal Nat Commun
Volume 10 Issue 10 Pages 1700
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Decades ago, Aharonov and Bohm showed that electrons are affected by electromagnetic potentials in the absence of forces due to fields. Zeilinger's theorem describes this absence of classical force in quantum terms as the “dispersionless” nature of the Aharonov-Bohm effect. Shelankov predicted the presence of a quantum “force” for the same Aharonov-Bohm physical system as elucidated by Berry. Here, we report an experiment designed to test Shelankov's prediction and we provide a theoretical analysis that is intended to elucidate the relation between Shelankov's prediction and Zeilinger's theorem. The experiment consists of the Aharonov-Bohm physical system; free electrons pass a magnetized nanorod and far-field electron diffraction is observed. The diffraction pattern is asymmetric confirming one of Shelankov's predictions and giving indirect experimental evidence for the presence of a quantum “force”. Our theoretical analysis shows that Zeilinger's theorem and Shelankov's result are both special cases of one theorem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000464338100011 Publication Date 2019-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 12 Open Access OpenAccess
Notes ; H.B. would like to thank Michael Berry for bringing the presence of a quantum “force” to our attention. A.B., G.G. and J.V. acknowledge support from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. G.G. acknowledges support from the Fonds Wetenschappelijk Onderzoek -Vlaanderen (FWO). M.B. and H.B. acknowledge support by the U.S. National Science Foundation under Grant No. 1602755. ; Approved Most recent IF: 12.124
Call Number UA @ admin @ c:irua:159341 Serial 5241
Permanent link to this record
 

 
Author (down) Béché, A.; Winkler, R.; Plank, H.; Hofer, F.; Verbeeck, J.
Title Focused electron beam induced deposition as a tool to create electron vortices Type A1 Journal article
Year 2015 Publication Micron Abbreviated Journal Micron
Volume 80 Issue 80 Pages 34-38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Focused electron beam induced deposition (FEBID) is a microscopic technique that allows geometrically controlled material deposition with very high spatial resolution. This technique was used to create a spiral aperture capable of generating electron vortex beams in a transmission electron microscope (TEM). The vortex was then fully characterized using different TEM techniques, estimating the average orbital angular momentum to be approximately 0.8variant Planck's over 2pi per electron with almost 60% of the beam ending up in the l=1 state.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000366770100006 Publication Date 2015-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 21 Open Access
Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V., R.W., H.P. and F.H. acknowledge financial support from the European Union under the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). R.W and H.P also acknowledge financial support by the COST action CELINA (Nr. CM1301) and the EUROSTARS project TRIPLE-S (Nr. E!8213). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government.; esteem2jra3 ECASJO; Approved Most recent IF: 1.98; 2015 IF: 1.988
Call Number c:irua:129203 c:irua:129203UA @ admin @ c:irua:129203 Serial 3946
Permanent link to this record
 

 
Author (down) Béché, A.; Van Boxem, R.; Van Tendeloo, G.; Verbeeck, J.
Title Magnetic monopole field exposed by electrons Type A1 Journal article
Year 2014 Publication Nature physics Abbreviated Journal Nat Phys
Volume 10 Issue 1 Pages 26-29
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The experimental search for magnetic monopole particles(1-3) has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study(4-10). Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle(11). We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole(3,11-18). This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000328940100012 Publication Date 2013-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 131 Open Access
Notes Vortex; Countatoms; Fwo ECASJO_; Approved Most recent IF: 22.806; 2014 IF: 20.147
Call Number UA @ lucian @ c:irua:113740UA @ admin @ c:irua:113740 Serial 1885
Permanent link to this record
 

 
Author (down) Béché, A.; Juchtmans, R.; Verbeeck, J.
Title Efficient creation of electron vortex beams for high resolution STEM imaging Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 178 Issue 178 Pages 12-19
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angstrom, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000403862900003 Publication Date 2016-05-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 30 Open Access OpenAccess
Notes A.B. and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V. acknowledges funding from FWO project G.0044.13N ('Charge ordering').; ECASJO_; Approved Most recent IF: 2.843
Call Number c:irua:134085 c:irua:134085UA @ admin @ c:irua:134085 Serial 4094
Permanent link to this record
 

 
Author (down) Béché, A.; Goris, B.; Freitag, B.; Verbeeck, J.
Title Development of a fast electromagnetic beam blanker for compressed sensing in scanning transmission electron microscopy Type A1 Journal article
Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 108 Issue 108 Pages 093103
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The concept of compressed sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic beam blanker placed in the condenser plane of a STEM is proposed. The beam blanker deflects the beam with a random pattern, while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both the medium scale and high resolution are acquired and reconstructed based on a discrete cosine algorithm. The obtained results confirm that compressed sensing is highly attractive to limit beam damage in experimental STEM even though some remaining artifacts need to be resolved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375329200043 Publication Date 2016-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 40 Open Access
Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2), from the GOA project SOLARPAINT and the POC project I13/009 from the University of Antwerp. B.G. acknowledges the Research Foundation Flanders (FWO Vlaanderen) for a postdoctoral research grant. The QuAnTem microscope was partially funded by the Hercules Foundation. We thank Zhaoliang Liao from the Mesa+ laboratory at the University of Twente for the perovskite test sample.; esteem2jra3 ECASJO; Approved Most recent IF: 3.411
Call Number c:irua:131895 c:irua:131895UA @ admin @ c:irua:131895 Serial 4023
Permanent link to this record
 

 
Author (down) Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Liu, Y.-L.; Grivel, J.-C.
Title Quantitative electron microscopy of (Bi,Pb)2Sr2Ca2Cu3O10+\delta/Ag multifilament tapes during initial stages of annealing Type A1 Journal article
Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 88 Issue 2 Pages 431-436
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)(2)Sr2Ca2Cu3O10+delta/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+delta to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta transformation. Ca and/or Pb-rich (Bi,Pb)(2)Sr2CaCu2O8+delta grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta formation. Apparently, a Ca/Sr ratio of around I is sufficient to keep (Bi,Pb)(2)Sr2Ca2Cu3O10+delta nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000227510200030 Publication Date 2005-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 1 Open Access
Notes Approved Most recent IF: 2.841; 2005 IF: 1.586
Call Number UA @ lucian @ c:irua:54876UA @ admin @ c:irua:54876 Serial 2754
Permanent link to this record
 

 
Author (down) Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.
Title Structural, chemical and electronic characterization of ceramic materials using quantitative (scanning) transmission electron microscopy Type A1 Journal article
Year 2007 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 13 Issue S:3 Pages 332-333
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2008-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access
Notes Approved Most recent IF: 1.891; 2007 IF: 1.941
Call Number UA @ lucian @ c:irua:96553 Serial 3224
Permanent link to this record
 

 
Author (down) Bals, S.; Batenburg, J.; Verbeeck, J.; Sijbers, J.; Van Tendeloo, G.
Title Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes Type A1 Journal article
Year 2007 Publication Nano letters Abbreviated Journal Nano Lett
Volume 7 Issue 12 Pages 3669-3674
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract The three-dimensional (3D) structure and chemical composition of bamboo-like carbon nanotubes including the catalyst particles that are. used during their growth are studied by discrete electron tomography in combination with energy-filtered transmission electron microscopy. It is found that cavities are present in the catalyst particles. Furthermore, only a small percentage of the catalyst particles consist of pure Cu, since a large volume fraction of the particles is oxidized to CU(2)0. These volume fractions are determined quantitatively from 3D reconstructions obtained by discrete tomography.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000251581600022 Publication Date 2007-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 78 Open Access
Notes Fwo; Esteem Approved Most recent IF: 12.712; 2007 IF: 9.627
Call Number UA @ lucian @ c:irua:66762UA @ admin @ c:irua:66762 Serial 2768
Permanent link to this record
 

 
Author (down) Bach, D.; Störmer, H.; Schneider, R.; Gerthsen, D.; Verbeeck, J.
Title EELS investigations of different niobium oxide phases Type A1 Journal article
Year 2006 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 12 Issue 5 Pages 416-423
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectra in conjunction with near-edge fine structures of purely stoichiometric niobium monoxide (NbO) and niobium pentoxide (Nb2O5) reference materials were recorded. The structures of the niobium oxide reference materials were checked by selected area electron diffraction to ensure a proper assignment of the fine structures. NbO and Nb2O5 show clearly different energy loss near-edge fine structures of the Nb-M-4,M-5 and -M-2,M-3 edges and of the O-K edge, reflecting the specific local environments of the ionized atoms. To distinguish the two oxides in a quantitative manner, the intensities under the Nb-M-4,M-5 as well as Nb-M-2,M-3 edges and the O-K edge were measured and their ratios calculated. k-factors were also derived from these measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000241181400007 Publication Date 2006-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 50 Open Access
Notes Approved Most recent IF: 1.891; 2006 IF: 2.108
Call Number UA @ lucian @ c:irua:60979UA @ admin @ c:irua:60979 Serial 789
Permanent link to this record
 

 
Author (down) Bach, D.; Schneider, R.; Gerthsen, D.; Verbeeck, J.; Sigle, W.
Title EELS of niobium and stoichiometric niobium-oxide phases: part 1: plasmon and Near-edges fine structure Type A1 Journal article
Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue 6 Pages 505-523
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A comprehensive electron energy-loss spectroscopy study of niobium (Nb) and stable Nb-oxide phases (NbO, NbO2, Nb2O5) was carried out. In this work (Part I), the plasmons and energy-loss near-edge structures (ELNES) of all relevant Nb edges (Nb-N2,3, Nb-M4,5, Nb-M2,3, Nb-M1, and Nb-L2,3) up to energy losses of about 2600 eV and the O-K edge are analyzed with respect to achieving characteristic fingerprints of Nb in different formal oxidation states (0 for metallic Nb, +2 for NbO, +4 for NbO2, and +5 for Nb2O5). Chemical shifts of the Nb-N2,3, Nb-M4,5, Nb-M2,3, and Nb-L2,3 edges are extracted from the spectra that amount to about 4 eV as the oxidation state increases from 0 for Nb to +5 for Nb2O5. Four different microscopes, including a 200 keV ZEISS Libra with monochromator, were used. The corresponding wide range of experimental parameters with respect to the primary electron energy, convergence, and collection semi-angles as well as energy resolution allows an assessment of the influence of the experimental setup on the ELNES of the different edges. Finally, the intensity of the Nb-L2,3 white-line edges is correlated with niobium 4d-state occupancy in the different reference materials.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000272433200005 Publication Date 2009-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited 55 Open Access
Notes Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:80320UA @ admin @ c:irua:80320 Serial 790
Permanent link to this record
 

 
Author (down) Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S.
Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials
Volume 4 Issue 2 Pages 026001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000513551200007 Publication Date 2020-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.4 Times cited 13 Open Access OpenAccess
Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA
Call Number EMAT @ emat @c:irua:167787 Serial 6376
Permanent link to this record
 

 
Author (down) Annys, A.; Jannis, D.; Verbeeck, J.; Annys, A.; Jannis, D.; Verbeeck, J.
Title Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy Type A1 Journal article
Year 2023 Publication Scientific reports Abbreviated Journal
Volume 13 Issue 1 Pages 13724
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their corresponding elements. This can be especially bothersome in spectrum imaging, where a large amount of spectra are recorded when spatially scanning over a sample area. This paper introduces a synthetic dataset with 736,000 labeled EELS spectra, computed from available generalized oscillator strength tables, that represents 107 K, L, M or N core-loss edges and 80 chemical elements. Generic lifetime broadened peaks are used to mimic the fine structure due to band structure effects present in experimental core-loss edges. The proposed dataset is used to train and evaluate a series of neural network architectures, being a multilayer perceptron, a convolutional neural network, a U-Net, a residual neural network, a vision transformer and a compact convolutional transformer. An ensemble of neural networks is used to further increase performance. The ensemble network is used to demonstrate fully automated elemental mapping in a spectrum image, both by directly mapping the predicted elemental content and by using the predicted content as input for a physical model-based mapping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001052937600046 Publication Date 2023-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access OpenAccess
Notes A.A. would like to acknowledge the resources and services used in this work provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. J.V. acknowledges the IMPRESS project. The IMPRESS project has received funding from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. Approved Most recent IF: 4.6; 2023 IF: 4.259
Call Number UA @ admin @ c:irua:198647 Serial 8846
Permanent link to this record
 

 
Author (down) Annys, A.; Jannis, D.; Verbeeck, J.
Title Core-loss EELS dataset and neural networks for element identification Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract We present a large dataset containing simulated core-loss electron energy loss spectroscopy (EELS) spectra with the elemental content as ground-truth labels. Additionally we present some neural networks trained on this data for element identification.  The simulated dataset contains zero padded core-loss spectra from 0 to 3072 eV, which represents 107 core-loss edges through all 80 elements from Be up to Bi. The core-loss edges are calculated from the generalised oscillator strength (GOS) database presented by Zhang et al.[1] Generic fine structures using lifetime broadened peaks are used to imitate fine structure due to solid-state effects in experimental spectra. Generic low-loss regions are used to imitate the effect of multiple scattering. Each spectrum contains at least one edge of a given query element and possibly additional edges depending on samples drawn from The Materials Project [2]. The dataset contains for each of the 80 elements: 7000 training spectra, 1500 test spectra, 600 validation spectra and 100 spectra representing only the query element. This results in a total 736 000 labeled spectra. Code on how to  – read the simulated data – transform HDF5 format to TFRecord format – train and evaluate neural networks using the simulated data – use the trained networks for automated element identification is available on GitHub at arnoannys/EELS_ID A full report on the simulation of the dataset and the training and evaluation of the neural networks can be found at:                    Annys, A., Jannis, D. & Verbeeck, J. Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy. Sci Rep 13, 13724 (2023). https://doi.org/10.1038/s41598-023-40943-7 [1] Zezhong Zhang, Ivan Lobato, Daen Jannis, Johan Verbeeck, Sandra Van Aert, & Peter Nellist. (2023). Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7729585 [2] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A. Persson; Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1 July 2013; 1 (1): 011002. [https://doi.org/10.1063/1.4812323](https://doi.org/10.1063/1.4812323)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203391 Serial 9015
Permanent link to this record
 

 
Author (down) Afanasov, I.M.; Shornikova, O.N.; Kirilenko, D.A.; Vlasov, I.I.; Zhang, L.; Verbeeck, J.; Avdeev, V.V.; Van Tendeloo, G.
Title Graphite structural transformations during intercalation by HNO3 and exfoliation Type L1 Letter to the editor
Year 2010 Publication Carbon Abbreviated Journal Carbon
Volume 48 Issue 6 Pages 1862-1865
Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)
Abstract Expandable graphite of two types was synthesized by (1) hydrolysis of graphite nitrate of II stage and (2) anodic polarization of graphite in 60% HNO3. Exfoliated graphite samples were produced by thermal shock of expandable graphite samples in air at 900 °C. A comparative study of microstructural distinctions of both expandable and exfoliated graphite samples was carried out using X-ray diffraction, Raman spectroscopy, electron energy loss spectroscopy and high resolution transmission electron microscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000276132800021 Publication Date 2010-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 43 Open Access
Notes Approved Most recent IF: 6.337; 2010 IF: 4.896
Call Number UA @ lucian @ c:irua:82315UA @ admin @ c:irua:82315 Serial 1379
Permanent link to this record