toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author (down) Peeters, F.M.
  Title Tuning of energy levels in a superlattice Type P1 Proceeding
  Year 1994 Publication Materials Research Society symposium proceedings Abbreviated Journal
  Volume 325 Issue Pages 471-480
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Wuhan Editor
  Language Wos A1994BA45Z00064 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0272-9172 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
  Call Number UA @ lucian @ c:irua:9381 Serial 3751
Permanent link to this record
 

 
Author (down) Peeters, B.; Daems, D.; Van der Donck, T.; Delport, F.; Lammertyn, J.
  Title Real-time FO-SPR monitoring of solid-phase DNAzyme cleavage activity for cutting-edge biosensing Type A1 Journal article
  Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal
  Volume 11 Issue 7 Pages 6759-6768
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract DNA nanotechnology has a great potential in biosensor design including nanostructuring of the biosensor surface through DNA origami, target recognition by means of aptamers, and DNA-based signal amplification strategies. In this paper, we use DNA nanotechnology to describe for the first time the concept of real-time solid-phase monitoring of DNAzyme cleavage activity for the detection of specific single-stranded DNA (ssDNA) with a fiber optic surface plasmon resonance (FO-SPR) biosensor. Hereto, we first developed a robust ligation strategy for the functionalization of the FO-SPR biosensing surface with ssDNA-tethered gold nanoparticles, serving as the substrate for the DNAzyme. Next, we established a relation between the SPR signal change, due to the cleavage activity of the 10–23 DNAzyme, and the concentration of the DNAzyme, showing faster cleavage kinetics for higher DNAzyme concentrations. Finally, we implemented this generic concept for biosensing of ssDNA target in solution. Hereto, we designed a DNAzyme–inhibitor complex, consisting of an internal loop structure complementary to the ssDNA target, that releases active DNAzyme molecules in a controlled way as a function of the target concentration. We demonstrated reproducible target detection with a theoretical limit of detection of 1.4 nM, proving that the presented ligation strategy is key to a universal DNAzyme-based FO-SPR biosensing concept with promising applications in the medical and agrofood sector.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000459642200008 Publication Date 2019-01-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:160132 Serial 8457
Permanent link to this record
 

 
Author (down) Peelaers, H.; Partoens, B.; Peeters, F.M.
  Title Electronic and dynamical properties of Si/Ge core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 82 Issue 11 Pages 113411-113411,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Full ab initio techniques are applied to study the electronic and dynamical properties of free standing, hydrogen-passivated Si/Ge core-shell nanowires oriented along the [110] direction. All studied wires exhibit a direct band gap and are found to be structurally stable. The different contributions of the core and shell atoms to the phonon spectra are identified. The acoustic phonon velocities and the frequencies of some typical optical modes are compared with those of pure Si and Ge nanowires. These depend either on the concentration or on the type of core material. Optical modes are hardened and longitudinal acoustic velocities are softened with decreasing wire diameter.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000282270000001 Publication Date 2010-09-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 13 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and NOI-BOF (University of Antwerp). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:85421 Serial 995
Permanent link to this record
 

 
Author (down) Peelaers, H.; Partoens, B.; Giantomassi, M.; Rangel, T.; Goossens, E.; Rignanese, G.-M.; Gonze, X.; Peeters, F.M.
  Title Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and the validity of scissor shifts Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 83 Issue 4 Pages 045306-045306,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Starting from fully converged density-functional theory calculations, the quasiparticle corrections are calculated for different sized Si and Ge nanowires using the GW approximation. The effectiveness of recently developed techniques in speeding up the convergence of the quasiparticle calculations is demonstrated. The complete quasiparticle band structures are also obtained using an interpolation technique based on maximallylocalized Wannier functions. From the quasiparticle results, we assess the correctness of the commonly applied scissor-shift correction. Dispersion changes are observed, which are also reflected in changes in the effective band masses calculated taking into account quasiparticle corrections.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000286771400004 Publication Date 2011-01-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 18 Open Access
  Notes ; We are grateful to Yann Pouillon for valuable technical support with the build system of ABINIT, related to the WANNIER90 library. This work was supported by the Flemish Science Foundation (FWO-Vl) and by the Interuniversity Attraction Poles Program (P6/42)-Belgian State-Belgian Science Policy. X. G. and G.-M. R. acknowledge funding from the EU's 7th Framework Programme through the ETSF I3 e-Infrastructure project (Grant No. 211956), the Communaute francaise de Belgique through the Action de Recherche Concertee 07/12-003 “Nanosystemes hybrides metal-organiques,” and the Wallon Region Project No. 816849 “ European Theoretical Spectroscopy Facility” (WALL ETSF). M. G. acknowledges funding from the FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:86905 Serial 510
Permanent link to this record
 

 
Author (down) Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M.
  Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 30 Issue 10 Pages 3285-3293
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000433403800014 Publication Date 2018-05-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess
  Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466
  Call Number EMAT @ emat @c:irua:152048 Serial 4996
Permanent link to this record
 

 
Author (down) Pearce, P.E.; Perez, A.J.; Rousse, G.; Saubanère, M.; Batuk, D.; Foix, D.; McCalla, E.; Abakumov, A.M.; Van Tendeloo, G.; Doublet, M.-L.; Tarascon, J.-M.
  Title Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3 Type A1 Journal article
  Year 2017 Publication Nature materials Abbreviated Journal Nat Mater
  Volume 16 Issue 5 Pages 580-586
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g(-1). In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a beta-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e(-) per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O-2)(n-) redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, beta-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li-0, as equivalently observed in the layered alpha-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000400004200018 Publication Date 2017-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 39.737 Times cited Open Access Not_Open_Access
  Notes The authors thank Q. Jacquet for fruitful discussions and V. Pomjakushin for his valuable help in neutron diffraction experiments. This work is based on experiments performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is greatly acknowledged. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. E.M. acknowledges financial support from the Fonds de Recherche du Quebec-Nature et Technologies. Approved Most recent IF: 39.737
  Call Number EMAT @ emat @c:irua:147502 Serial 4773
Permanent link to this record
 

 
Author (down) Payette, C.; Amaha, S.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Tarucha, S.
  Title Coherent level mixing in dot energy spectra measured by magnetoresonant tunneling spectroscopy of vertical quantum dot molecules Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 81 Issue 24 Pages 245310,1-245310,15
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study by magnetoresonant tunneling spectroscopy single-particle energy spectra of the constituent weakly coupled dots in vertical quantum dot molecules over a wide energy window. The measured energy spectra are well modeled by calculated spectra for dots with in-plane confinement potentials that are elliptical and parabolic in form. However, in the regions where two, three, or four single-particle energy levels are naively expected to cross, we observe pronounced level anticrossing behavior and strong variations in the resonant currents as a consequence of coherent mixing induced by small deviations in the nearly ideal dot confinement potentials. We present detailed analysis of the energy spectra, and focus on two examples of three-level crossings whereby the coherent mixing leads to concurrent suppression and enhancement of the resonant currents when the anticrossing levels are minimally separated. The suppression of resonant current is of particular interest since it is a signature of dark state formation due to destructive interference. We also describe in detail and compare two measurement strategies to reliably extract the resonant currents required to characterize the level mixing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000278606100003 Publication Date 2010-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes ; We thank A. Bezinger, D. Roth, and M. Malloy for assistance with some of the processing, and K. Ono, T. Kodera, T. Hatano, Y. Tokura, M. Stopa, M. Hilke, G.C. Aers, M. Korkusinski, and R. M. Abolfath for useful discussions. Part of this work is supported by NSERC (Discovery Grant No. 208201), Flemish Science Foundation (FWO-VI), Grant-in-Aid for Scientific Research S (Grant No. 191040070), B (Grant No. 18340081), and by Special Coordination Funds for Promoting Science and Technology, and MEXT. S.T. acknowledges support from QuEST program (BAA-0824). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:83095 Serial 379
Permanent link to this record
 

 
Author (down) Pavlović, S.; Peeters, F.M.
  Title Electronic properties of triangular and hexagonal MoS2 quantum dots Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 155410
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the tight-binding approach, we calculate the electronic structure of triangular and hexagonal MoS2 quantum dots. Due to the orbital asymmetry we show that it is possible to form quantum dots with the same shape but having different electronic properties. The electronic states of triangular and hexagonal quantum dots are explored, as well as the local and total density of states and the convergence towards the bulk spectrum with dot size is investigated. Our calculations show that: (1) edge states appear in the band gap, (2) that there are a larger number of electronic states in the conduction band as compared to the valence band, and (3) the relative number of edge states decreases with increasing dot size.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000352591200005 Publication Date 2015-04-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 44 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. Stefan Pavlovic is supported by JoinEU-SEE IV, Erasmus Mundus Action 2 programme. We thank J. M. Pereira for interesting discussions. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number UA @ lucian @ c:irua:132516 Serial 4170
Permanent link to this record
 

 
Author (down) Pauwels, B.; Van Tendeloo, G.; Zhurkin, E.; Hou, M.; Verschoren, G.; Kuhn, L.T.; Bouwen, W.; Lievens, P.
  Title Transmission electron microscopy and Monte Carlo simulations of ordering in Au-Cu clusters produced in a laser vaporization source Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 63 Issue Pages 165406,1-9
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000168343400086 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 64 Open Access
  Notes Approved Most recent IF: 3.836; 2001 IF: NA
  Call Number UA @ lucian @ c:irua:54737 Serial 3705
Permanent link to this record
 

 
Author (down) Pauwels, B.; Van Tendeloo, G.; Thoelen, C.; van Rhijn, W.; Jacobs, P.A.
  Title Structure determination of spherical MCM-41 particles Type A1 Journal article
  Year 2001 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 13 Issue 17 Pages 1317-1320
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000170921100008 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 91 Open Access
  Notes Approved Most recent IF: 19.791; 2001 IF: NA
  Call Number UA @ lucian @ c:irua:54809 Serial 3300
Permanent link to this record
 

 
Author (down) Pauwels, B.; Van Tendeloo, G.; Bouwen, W.; Kuhn, L.T.; Lievens, P.; Lei, H.; Hou, M.
  Title Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations Type A1 Journal article
  Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 62 Issue 15 Pages 10383-10393
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000089977100084 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 88 Open Access
  Notes Approved Most recent IF: 3.836; 2000 IF: NA
  Call Number UA @ lucian @ c:irua:54733 Serial 1849
Permanent link to this record
 

 
Author (down) Paulus, A.; Hendrickx, M.; Mayda, S.; Batuk, M.; Reekmans, G.; von Holst, M.; Elen, K.; Abakumov, A.M.; Adriaensens, P.; Lamoen, D.; Partoens, B.; Hadermann, J.; Van Bael, M.K.; Hardy, A.
  Title Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries Type A1 Journal article
  Year 2023 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.
  Volume 6 Issue 13 Pages 6956-6971
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract Layered Li-rich oxides, demonstrating both cationic and anionic redox chemistry being used as positive electrodes for Li-ion batteries,have raised interest due to their high specific discharge capacities exceeding 250 mAh/g. However, irreversible structural transformations triggered by anionic redox chemistry result in pronounced voltagefade (i.e., lowering the specific energy by a gradual decay of discharge potential) upon extended galvanostatic cycling. Activating or suppressing oxygen anionic redox through structural stabilization induced by redox-inactivecation substitution is a well-known strategy. However, less emphasishas been put on the correlation between substitution degree and theactivation/suppression of the anionic redox. In this work, Ti4+-substituted Li2MnO3 was synthesizedvia a facile solution-gel method. Ti4+ is selected as adopant as it contains no partially filled d-orbitals. Our study revealedthat the layered “honeycomb-ordered” C2/m structure is preserved when increasing the Ticontent to x = 0.2 in the Li2Mn1-x Ti (x) O-3 solidsolution, as shown by electron diffraction and aberration-correctedscanning transmission electron microscopy. Galvanostatic cycling hintsat a delayed oxygen release, due to an improved reversibility of theanionic redox, during the first 10 charge-discharge cyclesfor the x = 0.2 composition compared to the parentmaterial (x = 0), followed by pronounced oxygen redoxactivity afterward. The latter originates from a low activation energybarrier toward O-O dimer formation and Mn migration in Li2Mn0.8Ti0.2O3, as deducedfrom first-principles molecular dynamics (MD) simulations for the“charged” state. Upon lowering the Ti substitution to x = 0.05, the structural stability was drastically improvedbased on our MD analysis, stressing the importance of carefully optimizingthe substitution degree to achieve the best electrochemical performance.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001018266700001 Publication Date 2023-07-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.4 Times cited Open Access Not_Open_Access: Available from 24.12.2023
  Notes Universiteit Hasselt, AUHL/15/2 – GOH3816N ; Russian Science Foundation, 20-43-01012 ; Fonds Wetenschappelijk Onderzoek, AUHL/15/2 – GOH3816N G040116N ; The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 6.4; 2023 IF: NA
  Call Number EMAT @ emat @c:irua:198160 Serial 8809
Permanent link to this record
 

 
Author (down) Patiño, Y.; Pilehvar, S.; Díaz, E.; Ordóñez, S.; De Wael, K.
  Title Electrochemical reduction of nalidixic acid at glassy carbon electrodemodified with multi-walled carbon nanotubes Type A1 Journal article
  Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
  Volume 323 Issue B Pages 621-631
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT −MWCNT-COOH and MWCNT-NH2was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT > MWCNT-NH2 > MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH = 5.0, deposition time = 20 s and volume of MWCNT = 10 μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A = 8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LCMS).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000390513700004 Publication Date 2016-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.065 Times cited 4 Open Access
  Notes ; This work was supported by the Spanish Government (contract CTQ2011-29272-C04-02) and by the Government of the Principality of Asturias (contract FC-15-GRUPIN14-078). Y. Patifio thanks the Government of the Principality of Asturias for a Ph.D. fellowship (Severo Ochoa Program). S.P. and K.D.W. are thankful to UA for DOCPRO financial support. ; Approved Most recent IF: 6.065
  Call Number UA @ admin @ c:irua:136108 Serial 5594
Permanent link to this record
 

 
Author (down) Partoens, B.; Peeters, F.M.
  Title From graphene to graphite: electronic structure around the K point Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 74 Issue 7 Pages 075404,1-11
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000240238800090 Publication Date 2006-08-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 738 Open Access
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
  Call Number UA @ lucian @ c:irua:60807 Serial 1282
Permanent link to this record
 

 
Author (down) Partoens, B.; Peeters, F.M.
  Title Normal and Dirac fermions in graphene multilayers: tight-binding description of the electronic structure Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 75 Issue Pages 193402,1-3
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000246890800021 Publication Date 2007-05-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 130 Open Access
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
  Call Number UA @ lucian @ c:irua:69651 Serial 2366
Permanent link to this record
 

 
Author (down) Partoens, B.; Matulis, A.; Peeters, F.M.
  Title Magnetoplasma excitations in vertically coupled quantum dot systems Type A1 Journal article
  Year 1999 Publication Materials science forum Abbreviated Journal Mater Sci Forum
  Volume 297/298 Issue Pages 225-228
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000080081600043 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:24176 Serial 1920
Permanent link to this record
 

 
Author (down) Partoens, B.; Matulis, A.; Peeters, F.M.
  Title Magnetoplasma excitations of two vertically coupled dots Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 57 Issue Pages 13039-13049
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000073999400054 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 15 Open Access
  Notes Approved Most recent IF: 3.836; 1998 IF: NA
  Call Number UA @ lucian @ c:irua:24166 Serial 1921
Permanent link to this record
 

 
Author (down) Partoens, B.; Matulis, A.; Peeters, F.M.
  Title The two electron artificial molecule Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 59 Issue Pages 1617-1620
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000078291000018 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 34 Open Access
  Notes Approved Most recent IF: 3.836; 1999 IF: NA
  Call Number UA @ lucian @ c:irua:24160 Serial 3779
Permanent link to this record
 

 
Author (down) Partoens, B.; Deo, P.S.
  Title Structure and spectrum of classical two-dimensional clusters with a logarithmic interaction potential Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 69 Issue Pages 245415,1-5
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000222531800087 Publication Date 2004-06-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 12 Open Access
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
  Call Number UA @ lucian @ c:irua:62433 Serial 3296
Permanent link to this record
 

 
Author (down) Parsons, T.G.; d' Hondt, H.; Hadermann, J.; Hayward, M.A.
  Title Synthesis and structural characterization of La1-xAxMnO2.5 (A = Ba, Sr, Ca) phases: mapping the variants of the brownmillerite structure Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 21 Issue 22 Pages 5527-5538
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Analysis of the structural parameters of phases that adopt brownmillerite-type structures suggests the distribution of the different complex ordering schemes adopted within this structure type can be rationalized by considering both the size of the separation between the tetrahedral layers and the tetrahedral chain distortion angle. A systematic study using structural data obtained from La1−xAxMnO2,5 (A = Ba, Sr, Ca,) phases, prepared by the topotactic reduction of the analogous La1−xAxMnO3 perovskite phases, was performed to investigate this relationship. By manipulating the A-cation composition, both the tetrahedral layer separation and tetrahedral chain distortion angle in the La1−xAxMnO2,5 phases were controlled and from the data obtained a ¡°structure map¡± of the different brownmillerite variants was plotted as a function of these structural parameters. This map has been extended to include a wide range of reported brownmillerite phases showing the structural ideas presented are widely applicable. The complete structural characterization of La1−xAxMnO2,5 0.1 ¡Ü x ¡Ü 0.33, A = Ba; 0.15 ¡Ü x ¡Ü 0.5 A = Sr, and 0.22 ¡Ü x ¡Ü 0.5 A = Ca is described and includes compositions which exhibit complex intralayer ordered structures and Mn2+/Mn3+ charge ordering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000271756400021 Publication Date 2009-10-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 60 Open Access
  Notes Iap Vi Approved Most recent IF: 9.466; 2009 IF: 5.368
  Call Number UA @ lucian @ c:irua:79935 Serial 3435
Permanent link to this record
 

 
Author (down) Parrilla, M.; De Wael, K.
  Title Wearable self‐powered electrochemical devices for continuous health management Type A1 Journal article
  Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater
  Volume 31 Issue 50 Pages 2107042
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000694642500001 Publication Date 2021-09-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 12.124
  Call Number UA @ admin @ c:irua:181306 Serial 8750
Permanent link to this record
 

 
Author (down) Papp, G.; Vasilopoulos, P.; Peeters, F.M.
  Title Spin polarization in a two-dimensional electron gas modulated periodically by ferromagnetic and Schottky metal stripes Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 72 Issue Pages 115315,1-6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000232229100096 Publication Date 2005-09-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 51 Open Access
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
  Call Number UA @ lucian @ c:irua:69415 Serial 3095
Permanent link to this record
 

 
Author (down) Panin, R.V.; Shpanchenko, R.V.; Mironov, A.V.; Velikodny, Y.A.; Antipov, E.V.; Hadermann, J.; Tarnopolsky, V.A.; Yaroslavtsev, A.B.; Kaul, E.E.; Geibel, C.
  Title Crystal structure, polymorphism, and properties of the new vanadyl phosphate Na4VO(PO4)2 Type A1 Journal article
  Year 2004 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 16 Issue Pages 1048-1055
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000220304100014 Publication Date 2004-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 11 Open Access
  Notes Approved Most recent IF: 9.466; 2004 IF: 4.103
  Call Number UA @ lucian @ c:irua:43873 Serial 577
Permanent link to this record
 

 
Author (down) Pandey, T.; Peeters, F.M.; Milošević, M.V.
  Title Pivotal role of magnetic ordering and strain in lattice thermal conductivity of chromium-trihalide monolayers Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater
  Volume 9 Issue 1 Pages 015034
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Understanding the coupling between spin and phonons is critical for controlling the lattice thermal conductivity (kappa ( l )) in magnetic materials, as we demonstrate here for CrX3 (X = Br and I) monolayers. We show that these compounds exhibit large spin-phonon coupling (SPC), dominated by out-of-plane vibrations of Cr atoms, resulting in significantly different phonon dispersions in ferromagnetic (FM) and paramagnetic (PM) phases. Lattice thermal conductivity calculations provide additional evidence for strong SPC, where particularly large kappa ( l ) is found for the FM phase. Most strikingly, PM and FM phases exhibit radically different behavior with tensile strain, where kappa ( l ) increases with strain for the PM phase, and strongly decreases for the FM phase-as we explain through analysis of phonon lifetimes and scattering rates. Taken all together, we uncover the high significance of SPC on the phonon transport in CrX3 monolayers, a result extendable to other 2D magnetic materials, that will be useful in further design of thermal spin devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000735170300001 Publication Date 2021-12-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.5 Times cited 2 Open Access Not_Open_Access
  Notes Approved Most recent IF: 5.5
  Call Number UA @ admin @ c:irua:184642 Serial 7010
Permanent link to this record
 

 
Author (down) Pandey, T.; Peeters, F.M.; Milošević, M.V.
  Title High thermoelectric figure of merit in p-type Mg₃Si₂Te₆: role of multi-valley bands and high anharmonicity Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal
  Volume 11 Issue 33 Pages 11185-11194
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Silicon-based materials are attractive for thermoelectric applications due to their thermal stability, chemical inertness, and natural abundance of silicon. Here, using a combination of first-principles and Boltzmann transport calculations we report the thermoelectric properties of the recently synthesized compound Mg3Si2Te6. Our analysis reveals that Mg3Si2Te6 is a direct bandgap semiconductor with a bandgap of 1.6 eV. The combination of heavy and light valence bands, along with a high valley degeneracy, results in a large power factor under p-type doping. We also find that Mg is weakly bonded both within and between the layers, leading to low phonon group velocities. The vibrations of the Mg atoms are localized and make a significant contribution to phonon-phonon scattering. This high anharmonicity, coupled with low phonon group velocity, results in a low lattice thermal conductivity of & kappa;(l) = 0.5 W m(-1) K-1 at room temperature, along the cross-plane direction. Combining excellent electronic transport properties and low & kappa;(l), p-type Mg3Si2Te6 achieves figure-of-merit (zT) values greater than 1 at temperatures above 600 K. Specifically, a zT of 2.0 is found at 900 K along the cross-plane direction. Our findings highlight the importance of structural complexity and chemical bonding in electronic and phonon transport, providing guiding insights for further design of Si-based thermoelectrics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001041124900001 Publication Date 2023-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526; 2050-7534 ISBN Additional Links UA library record; WoS full record
  Impact Factor 6.4 Times cited 1 Open Access Not_Open_Access
  Notes Approved Most recent IF: 6.4; 2023 IF: 5.256
  Call Number UA @ admin @ c:irua:198296 Serial 8821
Permanent link to this record
 

 
Author (down) Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L.
  Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal
  Volume 28 Issue Pages 100881-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000876484300002 Publication Date 2022-10-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.5 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 11.5
  Call Number UA @ admin @ c:irua:192139 Serial 7329
Permanent link to this record
 

 
Author (down) Palacios, J.J.; Peeters, F.M.; Baelus, B.J.
  Title An effective lowest Landau level treatment of demagnetization in superconducting mesoscopic disks Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 64 Issue Pages 134514
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000171426700097 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 4 Open Access
  Notes Approved Most recent IF: 3.836; 2001 IF: NA
  Call Number UA @ lucian @ c:irua:37283 Serial 852
Permanent link to this record
 

 
Author (down) Pacquets, L.; Van den Hoek, J.; Arenas Esteban, D.; Ciocarlan, R.-G.; Cool, P.; Baert, K.; Hauffman, T.; Daems, N.; Bals, S.; Breugelmans, T.
  Title Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO production Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal
  Volume 5 Issue 6 Pages 7723-7732
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract A promising strategy for the inhibition of the hydrogen evolution reaction along with the stabilization of the electrocatalyst in electrochemical CO2 reduction cells involves the application of a nanoscale amorphous carbon layer on top of the active catalyst layer in a gas diffusion electrode. Without modifying the chemical nature of the electrocatalyst itself, these amorphous carbon layers lead to the stabilization of the electrocatalyst, and a significant improvement with respect to the inhibition of the hydrogen evolution reaction was also obtained. The faradaic efficiencies of hydrogen could be reduced from 31.4 to 2.1% after 1 h of electrolysis with a 5 nm thick carbon layer. Furthermore, the impact of the carbon layer thickness (5–30 nm) on this inhibiting effect was investigated. We determined an optimal thickness of 15 nm where the hydrogen evolution reaction was inhibited and a decent stability was obtained. Next, a thickness of 15 nm was selected for durability measurements. Interestingly, these durability measurements revealed the beneficial impact of the carbon layer already after 6 h by suppressing the hydrogen evolution such that an increase of only 37.9% exists compared to 56.9% without the use of an additional carbon layer, which is an improvement of 150%. Since carbon is only applied afterward, it reveals its great potential in terms of electrocatalysis in general.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000818507900001 Publication Date 2022-05-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.9 Times cited 3 Open Access OpenAccess
  Notes L.P. was supported through a Ph.D. fellowship strategic basic research (1S56920N) of the Research Foundation-Flanders (FWO). S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO. This research was financed by the Research Council of the University of Antwerp (BOF-GOA 33928). P.C. and R.-G.C. acknowledge financial support by FWO Flanders (project no. G038215N). The authors recognize the contribution of S. Pourbabak and T. Derez for the assistance with the Ag and carbon coating, Indah Prihatiningtyas and Bart Van der Bruggen for the assistance with the contact angle measurements, Daniel Choukroun for the use of the in-house-made hybrid flow cell, and Stijn Van den Broeck for his assistance with the FIB measurements. Approved Most recent IF: 5.9
  Call Number UA @ admin @ c:irua:188887 Serial 7099
Permanent link to this record
 

 
Author (down) Ozcan, M.; Ozen, S.; Yagmurcukardes, M.; Sahin, H.
  Title Structural, electronic and vibrational properties of ultra-thin octahedrally coordinated structure of EuO2 Type A1 Journal article
  Year 2020 Publication Journal Of Magnetism And Magnetic Materials Abbreviated Journal J Magn Magn Mater
  Volume 493 Issue 493 Pages 165668
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Novel stable ultra-thin phases of europium oxide are investigated by means of state-of-the-art first principles calculations. Total energy calculations show that single layers of EuO2 and Eu(OH)(2) can be stabilized in an octahedrally coordinated (1T) atomic structure. However, phonon calculations reveal that although both structures are energetically feasible, only the 1T-EuO2 phase has dynamical stability. The phonon spectrum of 1T-EuO2 displays three Raman active modes; a non-degenerate out-of-plane A(1g) mode at 353.5 cm(-1) and two doubly-degenerate in-plane E-g modes at 304.3 cm(-1). Furthermore, magnetic ground state and electronic band dispersion calculations show that the single layer EuO2 is a metal with net magnetic moment of 5(mu B) per unitcell resulting in a half-metallic ferrimagnetic behavior. Moreover, robustness of the half-metallic ferrimagnetic characteristics of EuO2 is confirmed by the application of electric field and charging. Single layer 1T-EuO2, with its stable ultra-thin structure and half-metallic ferrimagnetic feature, is a promising novel material for nanoscale electronic and spintronic applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000486397800003 Publication Date 2019-08-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.7 Times cited 1 Open Access
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 117F095. MY is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 2.7; 2020 IF: 2.63
  Call Number UA @ admin @ c:irua:162755 Serial 6323
Permanent link to this record
 

 
Author (down) Ozaydin, H.D.; Sahin, H.; Kang, J.; Peeters, F.M.; Senger, R.T.
  Title Electronic and magnetic properties of 1T-TiSe2 nanoribbons Type A1 Journal article
  Year 2015 Publication 2D materials Abbreviated Journal 2D Mater
  Volume 2 Issue 2 Pages 044002
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Motivated by the recent synthesis of single layer TiSe2, we used state-of-the-art density functional theory calculations, to investigate the structural and electronic properties of zigzag and armchair-edged nanoribbons (NRs) of this material. Our analysis reveals that, differing from ribbons of other ultra-thin materials such as graphene, TiSe2 NRs have some distinctive properties. The electronic band gap of the NRs decreases exponentially with the width and vanishes for ribbons wider than 20 angstrom. For ultranarrow zigzag-edged NRs we find odd-even oscillations in the band gap width, although their band structures show similar features. Moreover, our detailed magnetic-ground-state analysis reveals that zigzag and armchair edged ribbons have non-magnetic ground states. Passivating the dangling bonds with hydrogen at the edges of the structures influences the band dispersion. Our results shed light on the characteristic properties of T phase NRs of similar crystal structures.
  Address
  Corporate Author Thesis
  Publisher IOP Publishing Place of Publication Bristol Editor
  Language Wos 000368936600005 Publication Date 2015-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.937 Times cited 20 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAK-BIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS is supported by a FWO Pegasus Long Marie Curie Fellowship. JK is supported by a FWO Pegasus Short Marie Curie Fellowship. HDO, HS and RTS acknowledge the support from TUBITAK through project 114F397. ; Approved Most recent IF: 6.937; 2015 IF: NA
  Call Number UA @ lucian @ c:irua:131602 Serial 4169
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: