toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author (up) Zhang, L.-F.; Flammia, L.; Covaci, L.; Perali, A.; Milošević, M.V.
  Title Multifaceted impact of a surface step on superconductivity in atomically thin films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 96 Issue 10 Pages 104509
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Recent experiments show that an atomic step on the surface of atomically thin metallic films can strongly affect electronic transport. Here we reveal multiple and versatile effects that such a surface step can have on superconductivity in ultrathin films. By solving the Bogoliubov-de Gennes equations self-consistently in this regime, where quantum confinement dominates the emergent physics, we show that the electronic structure is profoundly modified on the two sides of the step, as is the spatial distribution of the superconducting order parameter and its dependence on temperature and electronic gating. Furthermore, the surface step changes nontrivially the transport properties both in the proximity-induced superconducting pair correlations and the Josephson effect, depending on the step height. These results offer a new route to tailor superconducting circuits and design atomically thin heterojunctions made of one same material.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000411076000012 Publication Date 2017-09-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 7 Open Access
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF project) and the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:146750 Serial 4790
Permanent link to this record
 

 
Author (up) Zhang, L.; Batuk, D.; Chen, G.; Tarascon, J.-M.
  Title Electrochemically activated MnO as a cathode material for sodium-ion batteries Type A1 Journal article
  Year 2017 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
  Volume 77 Issue Pages 81-84
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPFG salt decomposition above 4.2 V. we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g(-1) at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling. (C) 2017 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000399510400019 Publication Date 2017-02-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.396 Times cited 8 Open Access OpenAccess
  Notes ; This work was partially supported by the Hong Kong Research Grants Council under the General Research Fund Project #611213. L.Z. thanks the HKUST for his Postgraduate Studentship. ; Approved Most recent IF: 4.396
  Call Number UA @ lucian @ c:irua:143648 Serial 4650
Permanent link to this record
 

 
Author (up) Zhang, L.; Fernández Becerra, V.; Covaci, L.; Milošević, M.V.
  Title Electronic properties of emergent topological defects in chiral p-wave superconductivity Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 94 Issue 94 Pages 024520
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Chiral p-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000381479500002 Publication Date 2016-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 27 Open Access
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:135742 Serial 4303
Permanent link to this record
 

 
Author (up) Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A.
  Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
  Volume 31 Issue 5 Pages 055014
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000797660000001 Publication Date 2022-05-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.8 Times cited Open Access OpenAccess
  Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8
  Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069
Permanent link to this record
 

 
Author (up) Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M.
  Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
  Volume 11 Issue 11 Pages 6277-6285
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000404808000110 Publication Date 2017-05-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.942 Times cited 12 Open Access OpenAccess
  Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942
  Call Number EMAT @ emat @ c:irua:143192 Serial 4569
Permanent link to this record
 

 
Author (up) Zhang, L.; Quinn, B.K.; Hui, C.; Lian, M.; Gielis, J.; Gao, J.; Shi, P.
  Title New indices to balance α-diversity against tree size inequality Type A1 Journal article
  Year 2024 Publication Journal of forestry research Abbreviated Journal
  Volume 35 Issue 1 Pages 31-39
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract The number and composition of species in a community can be quantified with alpha-diversity indices, including species richness (R), Simpson's index (D), and the Shannon-Wiener index (HGREEK TONOS). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m x 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of alpha-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three alpha-diversity indices (i.e., R, D, and H') and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance alpha-diversity against the extent of TSI in the community: (1 – GI) x D, and (1 – GI) x H'. These new indices were significantly correlated with the original D and HGREEK TONOS, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001131698000001 Publication Date 2023-12-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 3; 2024 IF: 0.774
  Call Number UA @ admin @ c:irua:201972 Serial 9061
Permanent link to this record
 

 
Author (up) Zhang, L.; Zhang, Y.-Y.; Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.
  Title Skyrmionic chains and lattices in s plus id superconductors Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 101 Issue 6 Pages 064501
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We report characteristic vortex configurations in s + id superconductors with time-reversal symmetry breaking, exposed to magnetic field. A vortex in the s + id state tends to have an opposite phase winding between s- and d-wave condensates. We find that this peculiar feature together with the competition between s- and d-wave symmetry results in three distinct classes of vortical configurations. When either s or d condensate absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant, vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the s +/- id order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at high magnetic field. When s and d condensates have comparable strength, vortices split cores in two chiral components to form full-fledged skyrmions, i.e., coreless topological structures with an integer topological charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their identification in, e.g., scanning Hall probe and scanning SQUID experiments. These unique vortex states are relevant for high-T-c cuprate and iron-based superconductors, where the relative strength of competing pairing symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish s + is and s + id superconducting phases.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000510745600005 Publication Date 2020-02-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited 7 Open Access
  Notes ; The authors acknowledge useful discussions with Yong-Ping Zhang. This research was supported by the National Natural Science Foundation of China under Grants No. 61571277 and No. 61771298. L.-F.Z. and M.V.M. acknowledge support from Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 3.7; 2020 IF: 3.836
  Call Number UA @ admin @ c:irua:166507 Serial 6605
Permanent link to this record
 

 
Author (up) Zhang, M.-L.; March, N.H.; Peeters, A.; van Alsenoy, C.; Howard, I.; Lamoen, D.; Leys, F.
  Title Loss rate of a plasticizer in a nylon matrix calculated using macroscopic reaction-diffusion kinetics Type A1 Journal article
  Year 2003 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
  Volume 93 Issue Pages 1525-1532
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
  Abstract
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000180630200031 Publication Date 2003-02-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record;
  Impact Factor 2.068 Times cited Open Access
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
  Call Number UA @ lucian @ c:irua:41405 Serial 1844
Permanent link to this record
 

 
Author (up) Zhang, Q.; Higgins, M.J.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H.
  Title Minimizing recalcitrant organics and maximizing nitrogen removal linked to advanced biosolids processing at Blue Plains WWTP Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal
  Volume Issue Pages 12 p. T2 - IWA 2017 Conference on Sustainable Wast
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:151107 Serial 8252
Permanent link to this record
 

 
Author (up) Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H.
  Title Startup strategies of deammonification reactors treating reject water from thermally hydrolyzed solids Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal
  Volume Issue Pages 5 p. T2 - WEFTEC.17, 30 September 4 October 2017,
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:151113 Serial 8579
Permanent link to this record
 

 
Author (up) Zhang, R.; Wu, Z.; Li, X.J.; Li, L.L.; Chen, Q.; Li, Y.-M.; Peeters, F.M.
  Title Fano resonances in bilayer phosphorene nanoring Type A1 Journal article
  Year 2018 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 29 Issue 21 Pages 215202
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000428920200001 Publication Date 2018-03-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 4 Open Access
  Notes ; This work was supported by Grant No. 2017YFA0303400 from the National Key R&D Program of China, the Flemish Science Foundation, the grants No. 2016YFE0110000, No. 2015CB921503, and No. 2016YFA0202300 from the MOST of China, the NSFC (Grants Nos. 11504366, 11434010, 61674145 and 61774168) and CAS (Grants No. QYZDJ-SSW-SYS001). ; Approved Most recent IF: 3.44
  Call Number UA @ lucian @ c:irua:150713UA @ admin @ c:irua:150713 Serial 4968
Permanent link to this record
 

 
Author (up) Zhang, S.-H.; Yang, W.; Peeters, F.M.
  Title Veselago focusing of anisotropic massless Dirac fermions Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 20 Pages 205437
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000433026700005 Publication Date 2018-05-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 9 Open Access
  Notes ; This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0303400), the NSFC (Grants No. 11504018 and No. 11774021), the MOST of China (Grant No. 2014CB848700), and the NSFC program for “Scientific Research Center” (Grant No. U1530401). Support by the bilateral project (FWO-MOST) is gratefully acknowledged. S.H.Z. is also supported by “the Fundamental Research Funds for the Central Universities (ZY1824).” We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC). ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:151501UA @ admin @ c:irua:151501 Serial 5047
Permanent link to this record
 

 
Author (up) Zhang, S.H.; Xu, W.; Badalyan, S.M.; Peeters, F.M.
  Title Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 87 Issue 7 Pages 075443-75445
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study the mobility of Dirac fermions in monolayer graphene on a GaAs substrate, limited by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (PA) and of the intrinsic deformation potential of acoustical phonons in graphene (DA). In the high-temperature (T) regime, the momentum relaxation rate exhibits the same linear dependence on T but different dependencies on the carrier density n, corresponding to the mobility mu proportional to 1 root n and 1/n, respectively for the PA and DA scattering mechanisms. In the low-T Bloch-Gruneisen regime, the mobility shows the same square-root density dependence mu proportional to root n, but different temperature dependencies mu proportional to T-3 and T-4, respectively for PA and DA phonon scattering. DOI: 10.1103/PhysRevB.87.075443
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000315375200008 Publication Date 2013-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 25 Open Access
  Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:107655 Serial 2622
Permanent link to this record
 

 
Author (up) Zhang, S.H.; Xu, W.; Peeters, F.M.; Badalyan, S.M.
  Title Electron energy and temperature relaxation in graphene on a piezoelectric substrate Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 89 Issue 19 Pages 195409
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study the energy and temperature relaxation of electrons in graphene on a piezoelectric substrate. Scattering from the combined potential of extrinsic piezoelectric surface acoustical (PA) phonons of the substrate and intrinsic deformation acoustical phonons of graphene is considered for a (non) degenerate gas of Dirac fermions. It is shown that in the regime of low energies or temperatures the PA phonons dominate the relaxation and change qualitatively its character. This prediction is relevant for quantum metrology and electronic applications using graphene devices and suggests an experimental setup for probing electron-phonon coupling in graphene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000336000400008 Publication Date 2014-05-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 18 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:117675 Serial 928
Permanent link to this record
 

 
Author (up) Zhang, X.B.; Vasiliev, A.L.; Van Tendeloo, G.; He, Y.; Yu, L.-M.; Thiry, P.A.
  Title EM, XPS and LEED study of deposition of Ag on hydrogenated Si substrate prepared by wet chemical treatments Type A1 Journal article
  Year 1995 Publication Surface science : a journal devoted to the physics and chemistry of interfaces Abbreviated Journal Surf Sci
  Volume 340 Issue Pages 317-327
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1995TA17600013 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0039-6028; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.925 Times cited 11 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:13319 Serial 1032
Permanent link to this record
 

 
Author (up) Zhang, X.F.; Van Tendeloo, G.; Amelinckx, S.; Pelloquin, D.; Michel, C.; Hervieu, M.; Raveau, B.
  Title Structural aspects of Bi2-xPbxSr3.5Cu2(CO3)O8-\delta for 0\leq x\leq0.75 : an electron-microscopy study Type A1 Journal article
  Year 1994 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 113 Issue 2 Pages 327-344
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The structure and defect structure of Bi2-xPbxSr3.5Cu2 (CO3)O8-delta compounds with 0 less-than-or-equal-to x less-than-or-equal-to 0.75 are carefully investigated by electron diffraction and high-resolution electron microscopy. All compounds have an orthorhombic structure with a almost-equal-to b almost-equal-to 5.4 angstrom and c almost-equal-to 39.5 angstrom. The length of the b-axis decreases monotonically with increasing x. The space group for the basic structure is Abm2. The structure can be considered as an intergrowth of Bi2Sr2CuO6 lamellae with Sr2CuO2 (CO3) lamellae along the c-axis. CO3 groups behave as bridges connecting the CuO6 octahedra. In the x = 0 compound the carbon atoms are shifted away from their symmetry positions; the orientational ordering of the CO3 groups (or the carbon shift) in successive CO planes alternates along +b and -b. Typical Bi-type and Pb-type modulations are found along the b-axis up to a Pb content x = 0.5. Electron beam irradiation destroys the ordering of the CO3 groups and alters the modulated structure. (C) 1994 Academic press, inc.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1994PX18600016 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.133 Times cited 8 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:99810 Serial 3210
Permanent link to this record
 

 
Author (up) Zhang, X.F.; Van Tendeloo, G.; Ge, S.L.; Emmen, J.H.P.M.; Brabers, V.A.M.
  Title Two phase intergrowth in Bi2Sr2Ca0.6Y0.4Cu2Oy single crystals Type A1 Journal article
  Year 1993 Publication Physica: C : superconductivity Abbreviated Journal Physica C
  Volume 215 Issue 1/2 Pages 39-50
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In Bi2Sr2Ca0.6Y0.4Cu2Oy single crystals we have identified the intergrowth of two phases; a normal Bi2Sr2CaCu2Oy type phase with a 4.6b modulation period and a secondary,phase with a 9.4b modulation period. Both the two phases have orthorhombic basic structures with similar lattice parameters but different symmetries, i.e. Bbmb for the normal phase and Ccca for the secondary phase. The c-parameters of these two phases are found to vary independently upon changing the nominal Y content. The modulation characteristics of the secondary phase implies a close structural relation between the two phases. Both phases are discussed from a structural and a compositional point of view.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1993LY97800005 Publication Date 2002-10-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.942 Times cited 17 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:7506 Serial 3785
Permanent link to this record
 

 
Author (up) Zhang, X.F.; Van Tendeloo, G.; Hu, D.W.; Brabers, V.A.M.
  Title Room temperature (2a x 2b) superstructure formed in Sr-submitted Bi2(Sr1.6Y0.4)CaCu2Oy single crystals Type A1 Journal article
  Year 1997 Publication Physica: C : superconductivity Abbreviated Journal Physica C
  Volume 278 Issue Pages 31-38
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1997XB79300004 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record;
  Impact Factor 1.404 Times cited Open Access
  Notes Approved Most recent IF: 1.404; 1997 IF: 2.199
  Call Number UA @ lucian @ c:irua:21436 Serial 2928
Permanent link to this record
 

 
Author (up) Zhang, X.F.; Zhang, X.B.; Van Tendeloo, G.; Amelinckx, S.; op de Beeck, M.; van Landuyt, J.
  Title Carbon nano-tubes: their formation process and observation by electron microscopy Type A1 Journal article
  Year 1993 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
  Volume 130 Issue Pages 368-382
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1993LK45300003 Publication Date 2002-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.698 Times cited 190 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:6786 Serial 281
Permanent link to this record
 

 
Author (up) Zhang, Y.; Fischetti, M.V.; Sorée, B.; Magnus, W.; Heyns, M.; Meuris, M.
  Title Physical modeling of strain-dependent hole mobility in Ge p-channel inversion layers Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 106 Issue 8 Pages 083704,1-083704,9
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present comprehensive calculations of the low-field hole mobility in Ge p-channel inversion layers with SiO2 insulator using a six-band k·p band-structure model. The cases of relaxed, biaxially, and uniaxially (both tensily and compressively) strained Ge are studied employing an efficient self-consistent methodmaking use of a nonuniform spatial mesh and of the Broyden second methodto solve the coupled envelope-wave function k·p and Poisson equations. The hole mobility is computed using the KuboGreenwood formalism accounting for nonpolar hole-phonon scattering and scattering with interfacial roughness. Different approximations to handle dielectric screening are also investigated. As our main result, we find a large enhancement (up to a factor of 10 with respect to Si) of the mobility in the case of uniaxial compressive stress similarly to the well-known case of Si. Comparison with experimental data shows overall qualitative agreement but with significant deviations due mainly to the unknown morphology of the rough Ge-insulator interface, to additional scattering with surface optical phonon from the high- insulator, to Coulomb scattering interface traps or oxide chargesignored in our calculationsand to different channel structures employed.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000271358100050 Publication Date 2009-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 29 Open Access
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072
  Call Number UA @ lucian @ c:irua:80137 Serial 2617
Permanent link to this record
 

 
Author (up) Zhang, Y.; van Schayck, J.P.; Pedrazo-Tardajos, A.; Claes, N.; Noteborn, W.E.M.; Lu, P.-H.; Duimel, H.; Dunin-Borkowski, R.E.; Bals, S.; Peters, P.J.; Ravelli, R.B.G.
  Title Charging of vitreous samples in cryogenic electron microscopy mitigated by graphene Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal
  Volume 17 Issue 16 Pages 15836-15846
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Cryogenic electronmicroscopy can provide high-resolution reconstructionsof macromolecules embedded in a thin layer of ice from which atomicmodels can be built de novo. However, the interactionbetween the ionizing electron beam and the sample results in beam-inducedmotion and image distortion, which limit the attainable resolutions.Sample charging is one contributing factor of beam-induced motionsand image distortions, which is normally alleviated by including partof the supporting conducting film within the beam-exposed region.However, routine data collection schemes avoid strategies wherebythe beam is not in contact with the supporting film, whose rationaleis not fully understood. Here we characterize electrostatic chargingof vitreous samples, both in imaging and in diffraction mode. We mitigatesample charging by depositing a single layer of conductive grapheneon top of regular EM grids. We obtained high-resolution single-particleanalysis (SPA) reconstructions at 2 & ANGS; when the electron beamonly irradiates the middle of the hole on graphene-coated grids, usingdata collection schemes that previously failed to produce sub 3 & ANGS;reconstructions without the graphene layer. We also observe that theSPA data obtained with the graphene-coated grids exhibit a higher b factor and reduced particle movement compared to dataobtained without the graphene layer. This mitigation of charging couldhave broad implications for various EM techniques, including SPA andcryotomography, and for the study of radiation damage and the developmentof future sample carriers. Furthermore, it may facilitate the explorationof more dose-efficient, scanning transmission EM based SPA techniques.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001041649900001 Publication Date 2023-08-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record
  Impact Factor 17.1 Times cited Open Access OpenAccess
  Notes We thank H. Nguyen for editing the manuscript. We warmly thank the M4i Microscopy CORE Lab team of FHML Maastricht University (MU) for their support and collaboration and Eve Timlin and Ye Gao (MU) for providing protein samples. Members of the Amsterdam Scientific Instruments team are acknowledged for their Timepix detector support. This work benefited from access to The Netherlands Centre for Electron Nanoscopy (NeCEN) with assistance from Ludovic Renault and Meindert Lamers. The authors acknowledge financial support of the Netherlands Electron Microscopy Infrastructure (NEMI), project number 184.034.014 of the National Roadmap for Large-Scale Research Infrastructure of the Dutch Research Council (NWO), the PPP Allowance made available by Health-Holland, Top Sector Life Sciences & Health, to stimulate public-private partnerships, project 4DEM, number LSHM21029, and the LINK program from the Province of Limburg, The Netherlands, as well as financial support from the European Commission under the Horizon 2020 Programme by grant no. 815128 (REALNANO). Approved Most recent IF: 17.1; 2023 IF: 13.942
  Call Number UA @ admin @ c:irua:198376 Serial 8840
Permanent link to this record
 

 
Author (up) Zhang, Z.; Bourgeois, L.; Zhang, Y.; Rosalie, J.M.; Medhekar, N.
  Title Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations Type P1 Proceeding
  Year 2020 Publication MATEC web of conferences T2 – 17th International Conference on Aluminium Alloys (ICAA), October 26-29, 2020 Abbreviated Journal
  Volume Issue Pages 09003
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Precipitation is accompanied by the formation and migration of heterophase interfaces. Using the combined approach of advanced imaging and atomistic simulations, we studied the precipitate-matrix interfaces in various aluminium alloy systems, aiming to resolve their detailed atomic structures and illuminate their role in phase transformations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000652552200053 Publication Date 2020-11-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume 326 Series Issue Edition
  ISSN 2261-236x; 2274-7214 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:179147 Serial 6851
Permanent link to this record
 

 
Author (up) Zhang, Z.; Partoens, B.; Chang, K.; Peeters, F.M.
  Title First-principles study of transition metal impurities in Si Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 77 Issue 15 Pages 155201,1-8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000255457400057 Publication Date 2008-04-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 72 Open Access
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
  Call Number UA @ lucian @ c:irua:68846 Serial 1221
Permanent link to this record
 

 
Author (up) Zhang, Z.; Rosalie, J.M.; Medhekar, N.V.; Bourgeois, L.
  Title Resolving the FCC/HCP interfaces of the \gamma'(Ag2Al) precipitate phase in aluminium Type A1 Journal article
  Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater
  Volume 174 Issue 174 Pages 116-130
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The gamma'(Ag2Al) phase in the Al-Ag alloy system has served as a textbook example for understanding phase transformations, precipitating hexagonal close-packed (HCP) crystals in the face-centred cubic (FCC) aluminium matrix. The gamma' precipitates display fully coherent interfaces at their broad facets and semicoherent interfaces at their edges. Shockley partial dislocations are expected to decorate the semicoherent interface due to the FCC-HCP structural transformation. Determining the exact locations and core structures of interfacial dislocations, however, remains challenging. In this study, we used aberration-corrected scanning transmission electron microscopy and atomistic simulations to re-visit this classical system. We characterised and explained the Ag segregation at coherent interfaces in the early stage of precipitation. For semicoherent interfaces, interfacial dislocations and reconstructions were revealed by bridging advanced microstructure characterisation and atomistic simulations. In particular, we discovered a new FCC/HCP interfacial structure that displays a unique combination of Shockley partial, Lomer-Cottrell and Hirth dislocations that evolve from the known interfacial structure purely composed by Shockley partial dislocations. Our findings show that the FCC-HCP transformation is more complex than hitherto considered, due to the interplay between structure and composition confined at interfaces. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000474501300011 Publication Date 2019-05-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.301 Times cited 3 Open Access
  Notes ; The authors acknowledge funding from the Australian Research Council (LE0454166, LE110100223), the Victorian State Government and Monash University for instrumentation, and use of the facilities within the Monash Centre for Electron Microscopy. LB and NM acknowledge the financial support of the Australian Research Council (DP150100558). The authors also gratefully acknowledge the computational support from Monash Advanced Research Computing Hybrid, the National Computational Infrastructure and Pawsey Supercomputing Centre. ZZ is thankful to Monash University for a Monash Graduate Scholarship, a Monash International Postgraduate Research Scholarship and a Monash Centre for Electron Microscopy Postgraduate Scholarship. ZZ is indebted to Matthew Weyland for his training in aberration-corrected electron microscopy, Scott Findlay for his help on image simulations, Xiang Gao for alloy casting and Ian Polmear for discussions. ; Approved Most recent IF: 5.301
  Call Number UA @ admin @ c:irua:161192 Serial 5395
Permanent link to this record
 

 
Author (up) Zhang, Z.Z.; Peeters, F.M.
  Title Tuning of energy levels and optical properties of graphene quantum dots Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 77 Issue Pages 235411,1-5
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000257289500101 Publication Date 2008-06-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 228 Open Access
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
  Call Number UA @ lucian @ c:irua:69638 Serial 3750
Permanent link to this record
 

 
Author (up) Zhang, Z.Z.; Wu, Z.H.; Chang, K.; Peeters, F.M.
  Title Resonant tunneling through S- and U-shaped graphene nanoribbons Type A1 Journal article
  Year 2009 Publication Nanotechnology Abbreviated Journal Nanotechnology
  Volume 20 Issue 41 Pages 415203,1-415203,7
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000269930100007 Publication Date 2009-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.44 Times cited 32 Open Access
  Notes Approved Most recent IF: 3.44; 2009 IF: 3.137
  Call Number UA @ lucian @ c:irua:79311 Serial 2893
Permanent link to this record
 

 
Author (up) Zhao, C.X.; Xu, W.; Dong, H.M.; Peeters, F.M.
  Title Plasmon and coupled plasmon-phonon modes in graphene in the presence of a driving electric field Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 89 Issue 19 Pages 195447
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present a theoretical study of the plasmon and coupled plasmon-phonon modes induced by intraband electron-electron interaction in graphene in the presence of driving dc electric field. We find that the electric field dependence of these collective excitation modes in graphene differs significantly from that in a conventional two-dimensional electron gas with a parabolic energy spectrum. This is due mainly to the fact that graphene has a linear energy spectrum and the Fermi velocity of electrons in graphene is much larger than the drift velocity of electrons. The obtained results demonstrate that the plasmon and coupled plasmon-phonon modes in graphene can be tuned by applying not only the gate voltage but also the source-to-drain field. The manipulation of plasmon and coupled plasmon-phonon modes by source-to-drain voltage can let graphene be more conveniently applied as an advanced plasmonic material.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000336841000007 Publication Date 2014-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 9 Open Access
  Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), the Department of Science and Technology of Yunnan Province, the Chinese Academy of Sciences, and by the National Natural Science Foundation of China (Grant No. 11247002). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:117764 Serial 2642
Permanent link to this record
 

 
Author (up) Zhao, C.X.; Xu, W.; Dong, H.M.; Yu, Y.; Qin, H.; Peeters, F.M.
  Title Enhancement of plasmon-photon coupling in grating coupled graphene inside a Fabry-Perot cavity Type A1 Journal article
  Year 2018 Publication Solid state communications Abbreviated Journal Solid State Commun
  Volume 280 Issue 280 Pages 45-49
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present a theoretical investigation of the plasmon-polariton modes in grating coupled graphene inside a Fabry-Perot cavity. The cavity or photon modes of the device are determined by the Finite Difference Time Domain (FDTD) simulations and the corresponding plasmon-polariton modes are obtained by applying a many-body self-consistent field theory. We find that in such a device structure, the electric field strength of the incident electromagnetic (EM) field can be significantly enhanced near the edges of the grating strips. Thus, the strong coupling between the EM field and the plasmons in graphene can be achieved and the features of the plasmon-polariton oscillations in the structure can be observed. It is found that the frequencies of the plasmon-polariton modes are in the terahertz (THz) bandwidth and depend sensitively on electron density which can be tuned by applying a gate voltage. Moreover, the coupling between the cavity photons and the plasmons in graphene can be further enhanced by increasing the filling factor of the device. This work can help us to gain an in-depth understanding of the THz plasmonic properties of graphene-based structures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000439059600008 Publication Date 2018-06-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.554 Times cited 1 Open Access
  Notes ; This work is supported by the National Natural Science Foundation of China (Grand No. 11604192 and Grant No. 11574319); the Center of Science and Technology of Hefei Academy of Science; the Ministry of Science and Technology of China (Grant No. 2011YQ130018); Department of Science and Technology of Yunnan Province; Chinese Academy of Sciences. ; Approved Most recent IF: 1.554
  Call Number UA @ lucian @ c:irua:152369UA @ admin @ c:irua:152369 Serial 5024
Permanent link to this record
 

 
Author (up) Zhao, C.X.; Xu, W.; Li, L.L.; Zhang, C.; Peeters, F.M.
  Title Terahertz plasmon-polariton modes in graphene driven by electric field inside a Fabry-Perot cavity Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 117 Issue 117 Pages 223104
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present a theoretical study on plasmon-polariton modes in graphene placed inside an optical cavity and driven by a source-to-drain electric field. The electron velocity and electron temperature are determined by solving self-consistently the momentum-and energy-balance equations in which electron interactions with impurities, acoustic-, and optic-phonons are included. Based on many-body self-consistent field theory, we develop a tractable approach to study plasmon-polariton in an electron gas system. We find that when graphene is placed inside a Fabry-Perot cavity, two branches of the plasmon-polariton modes can be observed and these modes are very much optic-or plasmon-like. The frequencies of these modes depend markedly on driving electric field especially at higher resonant frequency regime. Moreover, the plasmon-polariton frequency in graphene is in terahertz (THz) bandwidth and can be tuned by changing the cavity length, gate voltage, and driving electric field. This work is pertinent to the application of graphene-based structures as tunable THz plasmonic devices. (C) 2015 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000356176100004 Publication Date 2015-06-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 13 Open Access
  Notes ; This work was supported by the Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. F.M.P. was a specially appointed Professor for foreign expert at the Chinese Academy of Sciences. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:127076 Serial 3507
Permanent link to this record
 

 
Author (up) Zhao, C.X.; Xu, W.; Peeters, F.M.
  Title Cerenkov emission of terahertz acoustic-phonons from graphene Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 102 Issue 22 Pages 222101-222104
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000320621600034 Publication Date 2013-06-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited 25 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 3.411; 2013 IF: 3.515
  Call Number UA @ lucian @ c:irua:109607 Serial 305
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: