|   | 
Details
   web
Records
Author (down) Hayne, M.; Jones, C.L.; Bogaerts, R.; Riva, C.; Usher, A.; Peeters, F.M.; Herlach, F.; Moshchalkov, V.V.; Henini, M.
Title Photoluminescence of negatively charged excitons in high magnetic fields Type A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 59 Issue Pages 2927-2931
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000078463100064 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 86 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:24158 Serial 2614
Permanent link to this record
 

 
Author (down) Han, I.; Song, I.S.; Choi, S.A.; Lee, T.; Yusupov, M.; Shaw, P.; Bogaerts, A.; Choi, E.H.; Ryu, J.J.
Title Bioactive Nonthermal Biocompatible Plasma Enhances Migration on Human Gingival Fibroblasts Type A1 Journal article
Year 2023 Publication Advanced healthcare materials Abbreviated Journal
Volume 12 Issue 4 Pages 2200527
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study hypothesizes that the application of low-dose nonthermal biocompatible dielectric barrier discharge plasma (DBD-NBP) to human gingival fibroblasts (HGFs) will inhibit colony formation but not cell death and induce matrix metalloproteinase (MMP) expression, extracellular matrix (ECM) degradation, and subsequent cell migration, which can result in enhanced wound healing. HGFs treated with plasma for 3 min migrate to each other across the gap faster than those in the control and 5-min treatment groups on days 1 and 3. The plasma-treated HGFs show significantly high expression levels of the cell cycle arrest-related p21 gene and enhanced MMP activity. Focal adhesion kinase (FAK) mediated attenuation of wound healing or actin cytoskeleton rearrangement, and plasma-mediated reversal of this attenuation support the migratory effect of DBD-NBP. Further, this work performs computer simulations to investigate the effect of oxidation on the stability and conformation of the catalytic kinase domain (KD) of FAK. It is found that the oxidation of highly reactive amino acids (AAs) Cys427, Met442, Cys559, Met571, Met617, and Met643 changes the conformation and increases the structural flexibility of the FAK protein and thus modulates its function and activity. Low-dose DBD-NBP-induces host cell cycle arrest, ECM breakdown, and subsequent migration, thus contributing to the enhanced wound healing process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000897762100001 Publication Date 2022-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-2640 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10 Times cited Open Access OpenAccess
Notes National Research Foundation of Korea; Kementerian Pendidikan, 2020R1I1A1A01073071 2021R1A6A1A03038785 ; Approved Most recent IF: 10; 2023 IF: 5.11
Call Number PLASMANT @ plasmant @c:irua:192804 Serial 7242
Permanent link to this record
 

 
Author (down) Gul, B.; Tinck, S.; De Schepper, P.; Aman-ur-Rehman; Bogaerts, A.
Title Numerical investigation of HBr/He transformer coupled plasmas used for silicon etching Type A1 Journal article
Year 2015 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 48 Issue 48 Pages 025202
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional hybrid Monte Carlofluid model is applied to study HBr/He inductively coupled plasmas used for etching of Si. Complete sets of gas-phase and surface reactions are presented and the effects of the gas mixing ratio on the plasma characteristics and on the etch rates are discussed. A comparison with experimentally measured etch rates is made to validate the modelling results. The etch rate in the HBr plasma is found to be quite low under the investigated conditions compared to typical etch rates of Si with F- or Cl-containing gases. This allows for a higher control and fine-tuning of the etch rate when creating ultra-small features. Our calculations predict a higher electron temperature at higher He fraction, because the electrons do not lose their energy so efficiently in vibrational and rotational excitations. As a consequence, electron impact ionization and dissociation become more important, yielding higher densities of ions, electrons and H atoms. This results in more pronounced sputtering of the surface. Nevertheless, the overall etch rate decreases upon increasing He fraction, suggesting that chemical etching is still the determining factor for the overall etch rate.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000347980100011 Publication Date 2014-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 7 Open Access
Notes Approved Most recent IF: 2.588; 2015 IF: 2.721
Call Number c:irua:121335 Serial 2394
Permanent link to this record
 

 
Author (down) Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title In Situ Plasma Studies Using a Direct Current Microplasma in a Scanning Electron Microscope Type A1 Journal Article
Year 2024 Publication Advanced Materials Technologies Abbreviated Journal Adv Materials Technologies
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Microplasmas can be used for a wide range of technological applications and to improve the understanding of fundamental physics. Scanning electron microscopy, on the other hand, provides insights into the sample morphology and chemistry of materials from the mm‐ down to the nm‐scale. Combining both would provide direct insight into plasma‐sample interactions in real‐time and at high spatial resolution. Up till now, very few attempts in this direction have been made, and significant challenges remain. This work presents a stable direct current glow discharge microplasma setup built inside a scanning electron microscope. The experimental setup is capable of real‐time in situ imaging of the sample evolution during plasma operation and it demonstrates localized sputtering and sample oxidation. Further, the experimental parameters such as varying gas mixtures, electrode polarity, and field strength are explored and experimental<italic>V</italic>–<italic>I</italic>curves under various conditions are provided. These results demonstrate the capabilities of this setup in potential investigations of plasma physics, plasma‐surface interactions, and materials science and its practical applications. The presented setup shows the potential to have several technological applications, for example, to locally modify the sample surface (e.g., local oxidation and ion implantation for nanotechnology applications) on the µm‐scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168639900001 Publication Date 2024-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2365-709X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.8 Times cited Open Access OpenAccess
Notes L.G., S.B., and J.V. acknowledge support from the iBOF-21-085 PERsist research fund. D.C., S.V.A., and J.V. acknowledge funding from a TOPBOF project of the University of Antwerp (FFB 170366). R.D.M., A.B., and J.V. acknowledge funding from the Methusalem project of the University of Antwerp (FFB 15001A, FFB 15001C). A.O. and J.V. acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. Approved Most recent IF: 6.8; 2024 IF: NA
Call Number EMAT @ emat @c:irua:204363 Serial 8995
Permanent link to this record
 

 
Author (down) Grünewald, L.; Chezganov, D.; De Meyer, R.; Orekhov, A.; Van Aert, S.; Bogaerts, A.; Bals, S.; Verbeeck, J.
Title Supplementary Information for “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Supplementary information for the article “In-situ Plasma Studies using a Direct Current Microplasma in a Scanning Electron Microscope” containing the videos of in-situ SEM imaging (mp4 files), raw data/images, and Jupyter notebooks (ipynb files) for data treatment and plots. Link to the preprint: https://doi.org/10.48550/arXiv.2308.15123 Explanation of the data files can be found in the Information.pdf file. The Videos folder contains the in-situ SEM image series mentioned in the paper. If there are any questions/bugs, feel free to contact me at lukas.grunewaldatuantwerpen.be
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203389 Serial 9100
Permanent link to this record
 

 
Author (down) Gröger, S.; Ramakers, M.; Hamme, M.; Medrano, J.A.; Bibinov, N.; Gallucci, F.; Bogaerts, A.; Awakowicz, P.
Title Characterization of a nitrogen gliding arc plasmatron using optical emission spectroscopy and high-speed camera Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 6 Pages 065201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A gliding arc plasmatron (GAP), which is very promising for purification and gas conversion,

is characterized in nitrogen using optical emission spectroscopy and high-speed photography,

because the cross sections of electron impact excitation of N 2 are well known. The gas

temperature (of about 5500 K), the electron density (up to 1.5 × 10 15 cm −3 ) and the reduced

electric field (of about 37 Td) are determined using an absolutely calibrated intensified charge-

coupled device (ICCD) camera, equipped with an in-house made optical arrangement for

simultaneous two-wavelength diagnostics, adapted to the transient behavior of a GA channel

in turbulent gas flow. The intensities of nitrogen molecular emission bands, N 2 (C–B,0–0) as

well as N +

2 (B–X,0–0), are measured simultaneously. The electron density and the reduced

electric field are determined at a spatial resolution of 30 µm, using numerical simulation and

measured emission intensities, applying the Abel inversion of the ICCD images. The temporal

behavior of the GA plasma channel and the formation of plasma plumes are studied using a

high-speed camera. Based on the determined plasma parameters, we suggest that the plasma

plume formation is due to the magnetization of electrons in the plasma channel of the GAP by

an axial magnetic field in the plasma vortex.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451745900001 Publication Date 2018-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 7 Open Access Not_Open_Access: Available from 30.11.2019
Notes The authors are very grateful to Professor Kurt Behringer for the development of the program code for simulation of emis- sion spectra of nitrogen. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:155974 Serial 5141
Permanent link to this record
 

 
Author (down) Gou, F.; Neyts, E.; Eckert, M.; Tinck, S.; Bogaerts, A.
Title Molecular dynamics simulations of Cl+ etching on a Si(100) surface Type A1 Journal article
Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 107 Issue 11 Pages 113305,1-113305,6
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations using improved TersoffBrenner potential parameters were performed to investigate Cl+ etching of a {2×1} reconstructed Si(100) surface. Steady-state Si etching accompanying the Cl coverage of the surface is observed. Furthermore, a steady-state chlorinated reaction layer is formed. The thickness of this reaction layer is found to increase with increasing energy. The stoichiometry of SiClx species in the reaction layer is found to be SiCl:SiCl2:SiCl3 = 1.0:0.14:0.008 at 50 eV. These results are in excellent agreement with available experimental data. While elemental Si products are created by physical sputtering, most SiClx (0<x<4) etch products are produced by chemical-enhanced physical sputtering.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000278907100018 Publication Date 2010-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 15 Open Access
Notes Approved Most recent IF: 2.068; 2010 IF: 2.079
Call Number UA @ lucian @ c:irua:82663 Serial 2175
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Vervloessem, E.; Nikiforov, A.; Bogaerts, A.
Title Nitrogen fixation with water vapor by nonequilibrium plasma : toward sustainable ammonia production Type A1 Journal article
Year 2020 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng
Volume 8 Issue 7 Pages 2996-3004
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ammonia is a crucial nutrient used for plant growth and as a building block in the pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing nonfossil-based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as a H source for nitrogen fixation into NH3 by nonequilibrium plasma. The highest selectivity toward NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor contents. We also studied the role of H2O vapor and of the plasma-exposed liquid H2O in nitrogen fixation by using isotopically labeled water to distinguish between these two sources of H2O. We show that added H2O vapor, and not liquid H2O, is the main source of H for NH3 generation. The studied catalyst- and H2-free method offers excellent selectivity toward NH3 (up to 96%), with energy consumption (ca. 95–118 MJ/mol) in the range of many plasma-catalytic H2-utilizing processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000516665500045 Publication Date 2020-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.4 Times cited 14 Open Access
Notes ; This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the Catalisti Moonshot project P2C, and the Methusalem project of the University of Antwerp. ; Approved Most recent IF: 8.4; 2020 IF: 5.951
Call Number UA @ admin @ c:irua:167134 Serial 6568
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Verlackt, C.C.W.; Tinck, S.; Tuenter, E.; Foubert, K.; Cos, P.; Bogaerts, A.
Title Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet Type A1 Journal article
Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 4 Pages 2797-2808
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The vast biomedical potential of cold atmospheric pressure plasmas (CAPs) is governed by the formation of reactive species. These biologically active species are formed upon the interaction of CAPs with the surroundings. In biological milieu, water plays an essential role. The development of biomedical CAPs thus requires understanding of the sources of the reactive species in aqueous media exposed to the plasma. This is especially important in case of the COST RF plasma jet, which is developed as a reference microplasma system. In this work, we investigated the formation of the OH radicals, H atoms and H2O2 in aqueous solutions exposed to the COST plasma jet. This was done by combining experimental and modelling approaches. The liquid phase species were analysed using UV-Vis spectroscopy and spin trapping with hydrogen isotopes and electron paramagnetic resonance (EPR) spectroscopy. The discrimination between the species formed from the liquid phase and the gas phase molecules was performed by EPR and 1H-NMR analyses of the liquid samples. The concentrations of the reactive species in the gas phase plasma were obtained using a zero-dimensional (0D) chemical kinetics computational model. A three-dimensional (3D) fluid dynamics model was developed to provide information on the induced humidity in the plasma effluent. The comparison of the experimentally obtained trends for the formation of the species as a function of the feed gas and effluent humidity with the modelling results suggest that all reactive species detected in our system are mostly formed in the gas phase plasma inside the COST jet, with minor amounts arising from the plasma effluent humidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000423505500066 Publication Date 2018-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 23 Open Access OpenAccess
Notes We are grateful to Volker Schulz-von der Gathen (Experimental Physics II: Application Oriented Plasma Physics, Ruhr-Universita¨t Bochum, Germany) for providing the COST RF plasma jet. We thank our colleagues at the University of Antwerp: Gilles Van Loon (Mechanical Workshop), Karen Leyssens (Research group PLASMANT), and Sylvia Dewilde (Department of Biomedical Sciences) for their help with the equipment. This work was funded by the European Marie Sklodowska-Curie Individual Fellowship ‘LTPAM’ within Horizon2020 (grant no. 657304). Stefan Tinck thanks the Fund for Scientific Research – Flanders (FWO) for supporting his work (grant no. 0880.212.840). Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @c:irua:148365 Serial 4808
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Van der Paal, J.; Van Boxem, W.; Dewilde, S.; Bogaerts, A.
Title Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research? Type A1 Journal article
Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 8 Pages 4117-4121
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma in contact with solutions has many applications, but its chemistry contains many unknowns such as the undescribed reactions with solutes. By combining experiments and modelling, we report the first direct demonstration of the reaction of chloride with oxygen atoms in aqueous solutions exposed to cold plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461722500001 Publication Date 2019-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 4 Open Access Not_Open_Access: Available from 31.01.2020
Notes H2020 Marie Skłodowska-Curie Actions, 743151 ; Fonds Wetenschappelijk Onderzoek, 11U5416N ; Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:157688 Serial 5167
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Privat-Maldonado, A.; Bogaerts, A.
Title Analysis of Short-Lived Reactive Species in Plasma–Air–Water Systems: The Dos and the Do Nots Type A1 Journal Article
Year 2018 Publication Analytical Chemistry Abbreviated Journal Anal Chem
Volume 90 Issue 22 Pages 13151-13158
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric

pressure plasmas, which are widely employed in industrial and biomedical research, as well as first

clinical applications. We summarize the progress in detection of plasma-generated short-lived

reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of

various analytical methods in plasma−liquid systems, and provide an outlook on the possible future

research goals in development of short-lived reactive species analysis methods for a general

nonspecialist audience.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451246100002 Publication Date 2018-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 17 Open Access Not_Open_Access
Notes European Commission, 743151 ; This work was supported by the European Marie Sklodowska- Curie Individual Fellowship within Horizon2020 (“LTPAM”, Grant No. 743151). Approved Most recent IF: 6.32
Call Number PLASMANT @ plasmant @c:irua:156301 Serial 5152
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Golda, J.; Gathen, V.S.; Bogaerts, A
Title Applications of the COST Plasma Jet: More than a Reference Standard Type A1 Journal article
Year 2019 Publication Plasma Abbreviated Journal Plasma
Volume 2 Issue 3 Pages 316-327
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The rapid advances in the field of cold plasma research led to the development of many plasma jets for various purposes. The COST plasma jet was created to set a comparison standard between different groups in Europe and the world. Its physical and chemical properties are well studied, and diagnostics procedures are developed and benchmarked using this jet. In recent years, it has been used for various research purposes. Here, we present a brief overview of the reported applications of the COST plasma jet. Additionally, we discuss the chemistry of the plasma-liquid systems with this plasma jet, and the properties that make it an indispensable system for plasma research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2571-6182 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes We would like to thank Deborah O’Connell (York Plasma Institute, Department of Physics, University of York, United Kingdom) and Angela Privat-Maldonado (PLASMANT, University of Antwerp) for useful discussions. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:161628 Serial 5287
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Fedirchyk, I.; Bogaerts, A.
Title Plasma catalysis in ammonia production and decomposition: Use it, or lose it? Type A1 Journal Article
Year 2024 Publication Current Opinion in Green and Sustainable Chemistry Abbreviated Journal Current Opinion in Green and Sustainable Chemistry
Volume 47 Issue Pages 100916
Keywords A1 Journal Article; Plasma Nitrogen fixation Ammonia Plasma catalysis Production and decomposition; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The combination of plasma with catalysis for the synthesis and decomposition of NH3 is an attractive route to the production of carbon-neutral fertiliser and energy carriers and its conversion into H2. Recent years have seen fast developments in the field of plasma-catalytic NH3 life cycle. This work summarises the most recent advances in plasma-catalytic and related NH3-focussed processes, identifies some of the most important discoveries, and addresses plausible strategies for future developments in plasma-based NH3 technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2452-2236 ISBN Additional Links
Impact Factor 9.3 Times cited Open Access
Notes The work was supported by the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant G0G2322N) funded by the European Union-NextGe- nerationEU, the HyPACT project funded by the Belgian Energy Transition Fund, and the MSCA4Ukraine project 1233629 funded by the European Union. Approved Most recent IF: 9.3; 2024 IF: NA
Call Number PLASMANT @ plasmant @ Serial 9117
Permanent link to this record
 

 
Author (down) Gorbanev, Y.; Engelmann, Y.; van’t Veer, K.; Vlasov, E.; Ndayirinde, C.; Yi, Y.; Bals, S.; Bogaerts, A.
Title Al2O3-Supported Transition Metals for Plasma-Catalytic NH3 Synthesis in a DBD Plasma: Metal Activity and Insights into Mechanisms Type A1 Journal article
Year 2021 Publication Catalysts Abbreviated Journal Catalysts
Volume 11 Issue 10 Pages 1230
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract N2 fixation into NH3 is one of the main processes in the chemical industry. Plasma catalysis is among the environmentally friendly alternatives to the industrial energy-intensive Haber-Bosch process. However, many questions remain open, such as the applicability of the conventional catalytic knowledge to plasma. In this work, we studied the performance of Al2O3-supported Fe, Ru, Co and Cu catalysts in plasma-catalytic NH3 synthesis in a DBD reactor. We investigated the effects of different active metals, and different ratios of the feed gas components, on the concentration and production rate of NH3, and the energy consumption of the plasma system. The results show that the trend of the metal activity (common for thermal catalysis) does not appear in the case of plasma catalysis: here, all metals exhibited similar performance. These findings are in good agreement with our recently published microkinetic model. This highlights the virtual independence of NH3 production on the metal catalyst material, thus validating the model and indicating the potential contribution of radical adsorption and Eley-Rideal reactions to the plasma-catalytic mechanism of NH3 synthesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000715656300001 Publication Date 2021-10-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.082 Times cited 19 Open Access OpenAccess
Notes Catalisti, Moonshot P2C ; Research Foundation – Flanders, GoF9618n ; European Research Council, 810182 SCOPE 815128 REALNANO ; sygmaSB Approved Most recent IF: 3.082
Call Number EMAT @ emat @c:irua:183279 Serial 6815
Permanent link to this record
 

 
Author (down) Girard-Sahun, F.; Biondo, O.; Trenchev, G.; van Rooij, G.; Bogaerts, A.
Title Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 442 Issue Pages 136268
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion by plasma technology is gaining increasing interest. We present a carbon (charcoal) bed placed after a Gliding Arc Plasmatron (GAP) reactor, to enhance the CO2 conversion, promote O/O2 removal and in­ crease the CO fraction in the exhaust mixture. By means of an innovative (silo) system, the carbon is constantly supplied, to avoid carbon depletion upon reaction with O/O2. Using this carbon bed, the CO2 conversion is enhanced by almost a factor of two (from 7.6 to 12.6%), while the CO concentration even increases by a factor of three (from 7.2 to 21.9%), and O2 is completely removed from the exhaust mixture. Moreover, the energy ef­ ficiency of the conversion process drastically increases from 27.9 to 45.4%, and the energy cost significantly drops from 41.9 to 25.4 kJ.L− 1. We also present the temperature as a function of distance from the reactor outlet, as well as the CO2, CO and O2 concentrations and the temperature in the carbon bed as a function of time, which is important for understanding the underlying mechanisms. Indeed, these time-resolved measurements reveal that the initial enhancements in CO2 conversion and in CO concentration are not maintained in our current setup. Therefore, we present a model to study the gasification of carbon with different feed gases (i.e., O2, CO and CO2 separately), from which we can conclude that the oxygen coverage at the surface plays a key role in determining the product composition and the rate of carbon consumption. Indeed, our model insights indicate that the drop in CO2 conversion and in CO concentration after a few minutes is attributed to deactivation of the carbon bed, due to rapid formation of oxygen complexes at the surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000797716700002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Horizon 2020 Marie Skłodowska-Curie Actions; European Research Council; This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Inno­vation programme under the Marie Sklodowska-Curie grant agreement No 813393 (PIONEER). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Approved Most recent IF: 15.1
Call Number PLASMANT @ plasmant @c:irua:188286 Serial 7052
Permanent link to this record
 

 
Author (down) Girard-Sahun, F.; Biondo, O.; Trenchev, G.; van Rooij, G.; Bogaerts, A.
Title Carbon bed post-plasma to enhance the CO2 conversion and remove O2 from the product stream Type A1 Journal article
Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 442 Issue Pages 136268
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 conversion by plasma technology is gaining increasing interest. We present a carbon (charcoal) bed placed after a Gliding Arc Plasmatron (GAP) reactor, to enhance the CO2 conversion, promote O/O2 removal and in­ crease the CO fraction in the exhaust mixture. By means of an innovative (silo) system, the carbon is constantly supplied, to avoid carbon depletion upon reaction with O/O2. Using this carbon bed, the CO2 conversion is enhanced by almost a factor of two (from 7.6 to 12.6%), while the CO concentration even increases by a factor of three (from 7.2 to 21.9%), and O2 is completely removed from the exhaust mixture. Moreover, the energy ef­ ficiency of the conversion process drastically increases from 27.9 to 45.4%, and the energy cost significantly drops from 41.9 to 25.4 kJ.L− 1. We also present the temperature as a function of distance from the reactor outlet, as well as the CO2, CO and O2 concentrations and the temperature in the carbon bed as a function of time, which is important for understanding the underlying mechanisms. Indeed, these time-resolved measurements reveal that the initial enhancements in CO2 conversion and in CO concentration are not maintained in our current setup. Therefore, we present a model to study the gasification of carbon with different feed gases (i.e., O2, CO and CO2 separately), from which we can conclude that the oxygen coverage at the surface plays a key role in determining the product composition and the rate of carbon consumption. Indeed, our model insights indicate that the drop in CO2 conversion and in CO concentration after a few minutes is attributed to deactivation of the carbon bed, due to rapid formation of oxygen complexes at the surface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000797716700002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Horizon 2020 Marie Skłodowska-Curie Actions; European Research Council; This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the European Union’s Horizon 2020 Research and Inno­vation programme under the Marie Sklodowska-Curie grant agreement No 813393 (PIONEER). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Govern­ment (department EWI) and the UAntwerpen. We also thank R. De Meyer, K. Leyssens and S. Defossé for performing the charcoal characterizations. Approved Most recent IF: 15.1
Call Number PLASMANT @ plasmant @c:irua:188286 Serial 7053
Permanent link to this record
 

 
Author (down) Gijbels, R.; van Straaten, M.; Bogaerts, A.
Title Mass spectrometric analysis of inorganic solids: GDMS and other methods Type A1 Journal article
Year 1995 Publication Advances in mass spectrometry Abbreviated Journal
Volume 13 Issue Pages 241-256
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1995BG78P00013 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0568-000x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 12 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12267 Serial 1952
Permanent link to this record
 

 
Author (down) Gijbels, R.; Bogaerts, A.
Title Modeling of glow discharge ion sources for mass spectrometry: potentials and limitations Type A3 Journal article
Year 1997 Publication Spectroscopy Abbreviated Journal
Volume 9 Issue 2 Pages 8-14
Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19600 Serial 2123
Permanent link to this record
 

 
Author (down) Gijbels, R.; Bogaerts, A.
Title Recent trends in solids mass spectrometry: GDMS and other methods Type A1 Journal article
Year 1997 Publication Fresenius' journal of analytical chemistry Abbreviated Journal Fresen J Anal Chem
Volume 359 Issue Pages 326-330
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1997YC02800004 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19607 Serial 2841
Permanent link to this record
 

 
Author (down) Gijbels, R.; Bogaerts, A.
Title Recent trends in solids mass spectrometry, with special emphasis on glow discharge mass spectrometry Type P3 Proceeding
Year 1996 Publication Abbreviated Journal
Volume Issue Pages 71-86
Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Perfect Prints Place of Publication Thane Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:16244 Serial 2842
Permanent link to this record
 

 
Author (down) Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
Title Transport of cystine across xC-antiporter Type A1 Journal article
Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
Volume 664 Issue Pages 117-126
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Extracellular cystine (CYC) uptake by xC antiporter is important for the cell viability. Especially in cancer cells, the upregulation of xC activity is observed, which protects these cells from intracellular oxidative stress. Hence, inhibition of the CYC uptake may eventually lead to cancer cell death. Up to now, the molecular level mechanism of the CYC uptake by xC antiporter has not been studied in detail. In this study, we applied several different simulation techniques to investigate the transport of CYC through xCT, the light subunit of the xC antiporter, which is responsible for the CYC and glutamate translocation. Specifically, we studied the permeation of CYC across three model systems, i.e., outward facing (OF), occluded (OCC) and inward facing (IF) configurations of xCT. We also investigated the effect of mutation of Cys327 to Ala within xCT, which was also studied experimentally in literature. This allowed us to qualitatively compare our computation results with experimental observations, and thus, to validate our simulations. In summary, our simulations provide a molecular level mechanism of the transport of CYC across the xC antiporter, more specifically, which amino acid residues in the xC antiporter play a key role in the uptake, transport and release of CYC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461411200014 Publication Date 2019-02-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.165 Times cited 3 Open Access OpenAccess
Notes Research Foundation − FlandersResearch Foundation − Flanders (FWO), 1200216N 1200219N ; Hercules FoundationHercules Foundation; Flemish GovernmentFlemish Government (department EWI); UAUA; M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant numbers 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:158571 Serial 5183
Permanent link to this record
 

 
Author (down) Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
Title Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
Volume 674 Issue Pages 108114
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525439700011 Publication Date 2019-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.165 Times cited Open Access
Notes Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372
Permanent link to this record
 

 
Author (down) Ghasemitarei, M.; Privat-Maldonado, A.; Yusupov, M.; Rahnama, S.; Bogaerts, A.; Ejtehadi, M.R.
Title Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell Receptors: Insights from Atomistic Simulations Type A1 Journal article
Year 2022 Publication Journal Of Chemical Information And Modeling Abbreviated Journal J Chem Inf Model
Volume 62 Issue 1 Pages 129-141
Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly reactive cysteine (Cys) amino acids of the RBD on its binding to ACE2 and GRP78. The interaction energy of both ACE2 and GRP78 with the whole RBD, as well as with the RBD main regions, is compared in both the native and oxidized RBDs. Our results show that the interaction energy between the oxidized RBD and ACE2 is strengthened by 155 kJ/mol, increasing the binding of the RBD to ACE2 after oxidation. In addition, the interaction energy between the RBD and GRP78 is slightly increased by 8 kJ/mol after oxidation, but this difference is not significant. Overall, these findings highlight the role of RONS in the binding of the SARS-CoV-2 S-glycoprotein to host cell receptors and suggest an alternative mechanism by which RONS could modulate the entrance of viral particles into the cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000740019000001 Publication Date 2022-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.6 Times cited Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 1200219N ; Binding of the SARS-CoV-2 S-glycoprotein to cell receptors is vital for the entry of the virus into cells and subsequent infection. ACE2 is the main cell receptor for SARS-CoV-2, which can attach to the C-terminal receptor-binding domain (RBD) of the SARS-CoV-2 S-glycoprotein. The GRP78 receptor plays an anchoring role, which attaches to the RBD and increases the chance of other RBDs binding to ACE2. Although high levels of reactive oxygen and nitrogen species (RONS) are produced during viral infections, it is not clear how they affect the RBD structure and its binding to ACE2 and GRP78. In this research, we apply molecular dynamics simulations to study the effect of oxidation of the highly reactive cysteine (Cys) amino acids of the RBD on its binding to ACE2 and GRP78. The interaction energy of both ACE2 and GRP78 with the whole RBD, as well as with the RBD main regions, is compared in both the native and oxidized RBDs. Our results show that the interaction energy between the oxidized RBD and ACE2 is strengthened by 155 kJ/mol, increasing the binding of the RBD to ACE2 after oxidation. In addition, the interaction energy between the RBD and GRP78 is slightly increased by 8 kJ/mol after oxidation, but this difference is not significant. Overall, these findings highlight the role of RONS in the binding of the SARS-CoV-2 S-glycoprotein to host cell receptors and suggest an alternative mechanism by which RONS could modulate the entrance of viral particles into the cells. Approved Most recent IF: 5.6
Call Number PLASMANT @ plasmant @c:irua:185485 Serial 7050
Permanent link to this record
 

 
Author (down) Ghasemitarei, M.; Ghorbi, T.; Yusupov, M.; Zhang, Y.; Zhao, T.; Shali, P.; Bogaerts, A.
Title Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations Type A1 Journal Article
Year 2023 Publication Biomolecules Abbreviated Journal Biomolecules
Volume 13 Issue 9 Pages 1371
Keywords A1 Journal Article; plasma medicine; reactive oxygen and; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071356400001 Publication Date 2023-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes This research received no external funding. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:200380 Serial 8958
Permanent link to this record
 

 
Author (down) Gerrits, N.; Jackson, B.; Bogaerts, A.
Title Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces Type A1 Journal Article
Year 2024 Publication The Journal of Physical Chemistry Letters Abbreviated Journal J. Phys. Chem. Lett.
Volume 15 Issue 9 Pages 2566-2572
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule−metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001177959900001 Publication Date 2024-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access
Notes Nick Gerrits has been financially supported through a Dutch Research Council (NWO) Rubicon grant (019.202EN.012). The computational resources and services used in this work were provided by the high performance computing (HPC) core facility CalcUA of the Universiteit Antwerpen and the Flemish Supercomputer Center (VSC) funded by the Research Foundation−Flanders (FWO) and the Flemish Government. The authors thank Mark Somers for useful discussions. Approved Most recent IF: 5.7; 2024 IF: 9.353
Call Number PLASMANT @ plasmant @c:irua:204818 Serial 9114
Permanent link to this record
 

 
Author (down) Georgieva, V.; Voter, A.F.; Bogaerts, A.
Title Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg-Al-O thin films Type A1 Journal article
Year 2011 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 11 Issue 6 Pages 2553-2558
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract It is known that film structure may change dramatically with the extent of surface diffusion during the film growth process. In the present work, surface diffusion, induced thermally or activated by energetic impacts, is investigated theoretically under conditions appropriate for magnetron sputter-deposition of MgAlO thin films with varying stoichiometry. The distribution of surface diffusion energy barriers available to the system was determined for each stoichiometry, which allowed assessing in a qualitative way how much surface diffusion will take place on the time scale available between deposition events. The activation energy barriers increase with the Al concentration in the film, and therefore, the surface diffusion rates in the time frame of typical deposition rates drop, which can explain the decrease in crystallinity in the film structure and the transition to amorphous structure. The deposition process and the immediate surface diffusion enhanced by the energetic adatoms are simulated by means of a molecular dynamics model. The longer-time thermal surface diffusion and the energy landscape are studied by the temperature accelerated dynamics method, applied in an approximate way. The surface diffusion enhanced by the energetic impacts appears to be very important for the film structure in the low-temperature deposition regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000291074600068 Publication Date 2011-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 14 Open Access
Notes Approved Most recent IF: 4.055; 2011 IF: 4.720
Call Number UA @ lucian @ c:irua:89566 Serial 3806
Permanent link to this record
 

 
Author (down) Georgieva, V.; Todorov, I.T.; Bogaerts, A.
Title Molecular dynamics simulation of oxide thin film growth: importance of the inter-atomic interaction potential Type A1 Journal article
Year 2010 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
Volume 485 Issue 4/6 Pages 315-319
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A molecular dynamics (MD) study of MgxAlyOz thin films grown by magnetron sputtering is presented using an ionic model and comparing two potential sets with formal and partial charges. The applicability of the model and the reliability of the potential sets for the simulation of thin film growth are discussed. The formal charge potential set was found to reproduce the thin film structure in close agreement with the structure of the experimentally grown thin films. Graphical abstract A molecular dynamics study of growth of MgxAlyOz thin films is presented using an ionic model and comparing two potential sets with formal and partial charges. The simulation results with the formal charge potential set showed a transition in the film from a crystalline to an amorphous structure, when the Mg metal content decreases below 50% in very close agreement with the structure of the experimentally deposited films.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000273782600010 Publication Date 2010-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.815 Times cited 16 Open Access
Notes Approved Most recent IF: 1.815; 2010 IF: 2.282
Call Number UA @ lucian @ c:irua:80023 Serial 2170
Permanent link to this record
 

 
Author (down) Georgieva, V.; Saraiva, M.; Jehanathan, N.; Lebelev, O.I.; Depla, D.; Bogaerts, A.
Title Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue 6 Pages 065107,1-065107,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using a molecular dynamics model the crystallinity of MgxAlyOz thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al2O3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the MgAlO film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline MgAlO films have a MgO structure with Al atoms in between.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000263824200024 Publication Date 2009-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 37 Open Access
Notes Iwt Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:73246 Serial 3110
Permanent link to this record
 

 
Author (down) Georgieva, V.; Bogaerts, A.; Gijbels, R.
Title Numerical investigation of ion energy distribution functions in single and dual frequency capacitively coupled plasma reactors Type A1 Journal article
Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 69 Issue Pages 026406
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220255500058 Publication Date 2004-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 97 Open Access
Notes Approved Most recent IF: 2.366; 2004 IF: NA
Call Number UA @ lucian @ c:irua:44025 Serial 2395
Permanent link to this record
 

 
Author (down) Georgieva, V.; Bogaerts, A.; Gijbels, R.
Title Numerical study of Ar/CF4/N2 discharges in single and dual frequency capacitively coupled plasma reactors Type A1 Journal article
Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 94 Issue Pages 3748-3756
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000185419600009 Publication Date 2003-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 90 Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:44014 Serial 2408
Permanent link to this record