toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Li, J.; Pereira, P.J.; Yuan, J.; Lv, Y.-Y.; Jiang, M.-P.; Lu, D.; Lin, Z.-Q.; Liu, Y.-J.; Wang, J.-F.; Li, L.; Ke, X.; Van Tendeloo, G.; Li, M.-Y.; Feng, H.-L.; Hatano, T.; Wang, H.-B.; Wu, P.-H.; Yamaura, K.; Takayama-Muromachi, E.; Vanacken, J.; Chibotaru, L.F.; Moshchalkov, V.V. url  doi
openurl 
  Title Nematic superconducting state in iron pnictide superconductors Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 1 Pages 1880  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba 0.5 K 0.5 Fe 2 As 2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416933400002 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access OpenAccess  
  Notes The authors J.L., P.J.P., and J.Y. contributed equally to this work. J.L. and J.Y. designed the experiments. J.L., H.-L.F., K.Y., and E.T.-M. grew the single crystals. J.L., J.Y., Y.-Y.L., M.-P.J., D.L., M.-Y.L., T.H., H.-B.W., P.-H.W., K.Y., E.T.-M., J.V., and V.V.M. fabricated the devices and measured transport properties. J.L., Y.-Y.L., Z.-Q.L., Y.-J.L., J.-F.W., and L.L. studied on the pulsed high field measurements. X.K. and G.V.T. measured the low temperature TEM. All authors discussed the data. J.L., P.J.P., and L.F.C. proposed the model and simulated the results. J.L., P.J.P., K.Y., E.T.-M., and L.F.C. analyzed the data and prepared the manuscript. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:147348 Serial 4772  
Permanent link to this record
 

 
Author (up) Li, J.; Zhao, C.; Yang, Y.; Li, C.; Hollenkamp, T.; Burke, N.; Hu, Z.-Y.; Van Tendeloo, G.; Chen, W. pdf  doi
openurl 
  Title Synthesis of monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors Type A1 Journal article
  Year 2019 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 810 Issue 810 Pages 151841  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Binary metal oxides with superior charge capacity and electrochemical activity have gained great interests. In this work, monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons were fabricated by a facile self-developed impregnation method. The synthesized hybrids possess improved wettability, high specific surface area (> 700m(2)/g) and regular mesoporous channels (similar to 4 nm), resulting in improved electrochemical performance for supercapacitors. These well-dispersed CoMoO4 nanoclusters exhibit a significant specific capacitance up to 367 F/g in the aqueous KNO3 electrolyte and good reversibility with a cycling efficiency of 99.8%. It is proposed that the mesoporous structure can facilitate the diffusion of electrolyte ions and then accelerate the electrochemical utilization of CoMoO4 nanoclusters. The results demonstrate that the produced binary metal oxide nanoclusters with excellent capacitance and good retention can be used as promising electrodes for the environment-friendly supercapacitors. (C) 2019 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486596000030 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 6 Open Access  
  Notes ; Financial support by the National Key R&D Program of China (2016YB0303900) and the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX) are gratefully acknowledged. The authors extend their appreciation to the support by CSIRO. ; Approved Most recent IF: 3.133  
  Call Number UA @ admin @ c:irua:162759 Serial 5398  
Permanent link to this record
 

 
Author (up) Li, J.; Zhu, W.; Dong, H.; Yang, Z.; Zhang, P.; Qiang, Z. pdf  doi
openurl 
  Title Impact of carrier on ammonia and organics removal from zero-discharge marine recirculating aquaculture system with sequencing batch biofilm reactor (SBBR) Type A1 Journal article
  Year 2020 Publication Environmental Science And Pollution Research Abbreviated Journal Environ Sci Pollut R  
  Volume 27 Issue 28 Pages 34614-34623  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Marine recirculating aquaculture system (MRAS) is an effective technology that provides sustainable farming of food fish globally. However, dissolved organics material (chemical oxygen demand, COD) and especially ammonia are produced from uneaten feed and metabolic wastes of fish. To purify the MRAS water, this study adopted a sequencing biofilm batch reactor (SBBR) and comparatively investigated the performances of four different carriers on ammonia and COD removal. Results indicated that the NH4+-N removal rates were 0.045 +/- 0.05, 0.065 +/- 0.008, 0.089 +/- 0.005, and 0.093 +/- 0.003 kg/(m(3)center dot d), and the COD removal rates were 0.019 +/- 0.010, 0.213 +/- 0.010, 0.255 +/- 0.015, and 0.322 +/- 0.010 kg/(m(3)center dot d) in the SBBRs packed with porous plastic, bamboo ring, maifan stone, and ceramsite carriers, respectively. Among the four carriers, ceramsite exhibited the best performance for both NH4+-N (80%) and COD (33%) removal after the SBBR reached the steady-state operation conditions. For all carriers studied, the NH4+-N removal kinetics could be well simulated by the first-order model, and the NH4+-N and COD removal rates were logarithmically correlated with the carrier's specific surface area. Due to its high ammonia removal, stable performance and easy operation, the ceramsite-packed SBBR is feasible for MRAS water treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565020300005 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0944-1344; 1614-7499 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.8 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 5.8; 2020 IF: 2.741  
  Call Number UA @ admin @ c:irua:171932 Serial 6542  
Permanent link to this record
 

 
Author (up) Li, K.; Béché, A.; Song, M.; Sha, G.; Lu, X.; Zhang, K.; Du, Y.; Ringer, S.P.; Schryvers, D. doi  openurl
  Title Atomistic structure of Cu-containing \beta" precipitates in an Al-Mg-Si-Cu alloy Type A1 Journal article
  Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater  
  Volume 75 Issue Pages 86-89  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The beta '' precipitates in a peak-aged Al-Mg-Si-Cu alloy were measured with an average composition of 28.6Al-38.7Mg-26.5Si-5.17Cu (at.%) using atom probe tomography. High-angle annular dark-field observations revealed that Cu incompletely substitutes for the Mg-1 and Si-3 columns, preferentially for one column in each pair of Si-3. Cu-free Si columns form a parallelogram-shaped network that constitutes the basis of subsequent precipitates in the system, with a = 0.37 nm, b = 0.38 nm, gamma = 113 degrees and c = 0.405 nm. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000331025200022 Publication Date 2013-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.747 Times cited 22 Open Access  
  Notes Approved Most recent IF: 3.747; 2014 IF: 3.224  
  Call Number UA @ lucian @ c:irua:115749 Serial 201  
Permanent link to this record
 

 
Author (up) Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D. pdf  url
doi  openurl
  Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
  Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 118 Issue 118 Pages 352-362  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383292000042 Publication Date 2016-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 9 Open Access  
  Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @ c:irua:137171 Serial 4334  
Permanent link to this record
 

 
Author (up) Li, K.; Liu, J.-L.; Li, X.-S.; Lian, H.-Y.; Zhu, X.; Bogaerts, A.; Zhu, A.-M. pdf  url
doi  openurl
  Title Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 353 Issue Pages 297-304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose a novel Power to Synthesis Gas (P2SG) approach, composed of two high-efficiency and renewable electricity-driven units, i.e., plasma catalytic reforming (PCR) and water electrolysis (WE), to produce high quality syngas from CH4, CO2 and H2O. As WE technology is already commercial, we mainly focus on the PCR unit, consisting of gliding arc plasma and Ni-based catalyst, for oxidative dry reforming of methane. An energy efficiency of 78.9% and energy cost of 1.0 kWh/Nm3 at a CH4 conversion of 99% and a CO2 conversion of 79% are obtained. Considering an energy efficiency of 80% for WE, the P2SG system yields an overall energy efficiency of 79.3% and energy cost of 1.8 kWh/Nm3. High-quality syngas is produced without the need for posttreatment units, featuring the ideal stoichiometric number of 2, with concentration of 94.6 vol%, and a desired CO2 fraction of 1.9 vol% for methanol synthesis. The PCR unit has the advantage of fast response to adapting to fluctuation of renewable electricity, avoiding local hot spots in the catalyst bed and coking, in contrast to conventional catalytic processes. Moreover, pure O2 from the WE unit is directly utilized by the PCR unit for oxidative dry reforming of methane, and thus, no air separation unit, like in conventional processes, is required. This work demonstrates the viability of the P2SG approach for large-scale energy storage of renewable electricity via electricity-to-fuel conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441527900029 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 7 Open Access OpenAccess  
  Notes This project is supported by the National Natural Science Foundation of China (11705019, 11475041), the Fundamental Research Funds for the Central Universities (DUT16QY49, DUT16LK16) and the Fund for Scientific Research Flanders (FWO; grant G.0383.16N). Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:153059 Serial 5049  
Permanent link to this record
 

 
Author (up) Li, L. url  openurl
  Title First-principles studies of novel two-dimensional dirac materials Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 152 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:160527 Serial 5214  
Permanent link to this record
 

 
Author (up) Li, L. openurl 
  Title Untangling microbial community assembly in rainforest and grassland soils under increasing precipitation persistence Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages 179 p.  
  Keywords Doctoral thesis; Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Climate change is causing alterations in precipitation patterns, leading to adverse ecological consequences in many ecosystems. Recently, an increasingly persistent weather pattern has emerged, characterized by lengthening the duration of alternating dry and wet periods, which is more complex than exclusively drought or increasing precipitation. It is currently unclear how soil microbial communities respond to these new regimes in relation to their interactions with plants, especially in precipitation-sensitive ecosystems, such as tropical rainforests and grasslands. In this thesis, we explored responses of soil bacterial and fungal communities to increasing weather persistence in rainforests and grasslands, using high throughput sequencing technology. We firstly investigated the resistance and resilience of microbial communities to prolonged drought in a mature seasonal tropical rainforest which experiences unusually intensive dry seasons in the current century. Through excluding rainfall during and after the dry season, a simulated prolongation of the dry season by five months was compared to the control. Our results indicate that as rain exclusion progressed, the microbial communities increasingly diverged from the control, indicating a moderate resistance to prolonged drought. However, when the drought ceased, the composition and co-occurrence patterns of soil microbial communities immediately recovered to that in the control, implying a high resilience. To further investigate the ecological roles of soil microbial communities in response to increasing weather persistence, we set up grassland mesocosm experiments. In these experiments, precipitation frequency was adjusted along a series, ranging from 1 to 60 consecutive days alternating of dry and wet periods, while keeping the total precipitation constant. Our results show that microbial community assembly tended to be more stochastic processes at intermediate persistence of dry and wet alternations while more deterministic processes dominated at low and high persistence within 120 days regime exposure. Moreover, more persistent precipitation reduced the fungal diversity and network connectivity but barely impacted that of bacterial communities. The prior experiences of persistent weather events for one year caused legacy effects. The soil microbial legacy induced by soil microbial communities subjected to prior persistent weather events was more enduring in subsequent fungal communities than bacterial communities, likely due to slower growth of fungi compared to bacteria. However, a minor effect of soil microbial legacy  was observed on plant performance. In addition, we kept the grassland mesocosm experiment for two growing seasons. The effects of precipitation persistence on soil microbial communities increased in the second year. The dissimilarities of microbial communities between the first and second year were less with more persistent precipitation, potentially resulting in more vulnerable microbial communities, due to some taxa disappearing and a reduction in functional redundancy under more persistent weather. To conclude, our findings provide a comprehensive theoretical understanding of soil microbial communities in response to the current and future climate change, drawing from both natural and experimental systems. It helps in predicting and managing the impacts of future climate change on ecosystems mediated by microbial communities. Additionally, the findings of microbe-mediated legacy effects on grassland ecosystems can provide practical guidance for their application in agriculture, specifically for using an inoculum to mitigate the impacts of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:198498 Serial 9240  
Permanent link to this record
 

 
Author (up) Li, L.; Kong, X.; Chen, X.; Li, J.; Sanyal, B.; Peeters, F.M. pdf  doi
openurl 
  Title Monolayer 1T-LaN₂ : Dirac spin-gapless semiconductor of p-state and Chern insulator with a high Chern number Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 117 Issue 14 Pages 143101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional transition-metal dinitrides have attracted considerable attention in recent years due to their rich magnetic properties. Here, we focus on rare-earth-metal elements and propose a monolayer of lanthanum dinitride with a 1T structural phase, 1T-LaN2. Using first-principles calculations, we systematically investigated the structure, stability, magnetism, and band structure of this material. It is a flexible and stable monolayer exhibiting a low lattice thermal conductivity, which is promising for future thermoelectric devices. The monolayer shows the ferromagnetic ground state with a spin-polarized band structure. Two linear spin-polarized bands cross at the Fermi level forming a Dirac point, which is formed by the p atomic orbitals of the N atoms, indicating that monolayer 1T-LaN2 is a Dirac spin-gapless semiconductor of p-state. When the spin-orbit coupling is taken into account, a large nontrivial indirect bandgap (86/354meV) can be opened at the Dirac point, and three chiral edge states are obtained, corresponding to a high Chern number of C=3, implying that monolayer 1T-LaN2 is a Chern insulator. Importantly, this kind of band structure is expected to occur in more monolayers of rare-earth-metal dinitride with a 1T structural phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000578551800001 Publication Date 2020-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 13 Open Access  
  Notes ; This work was supported by the Natural Science Foundation of Hebei Province (Grant No. A2020202031), the FLAG-ERA project TRANS2DTMD, the Swedish Research Council project grant (No. 2016-05366), and the Swedish Research Links program grant (No. 2017-05447). The resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government, and Swedish National Infrastructure for Computing (SNIC). A portion of this research (Xiangru Kong) was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Xin Chen thanks the China scholarship council for financial support from the China Scholarship Council (CSC, No. 201606220031). ; Approved Most recent IF: 4; 2020 IF: 3.411  
  Call Number UA @ admin @ c:irua:172674 Serial 6564  
Permanent link to this record
 

 
Author (up) Li, L.; Kong, X.; Leenaerts, O.; Chen, X.; Sanyal, B.; Peeters, F.M. pdf  doi
openurl 
  Title Carbon-rich carbon nitride monolayers with Dirac cones : Dumbbell C4N Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal Carbon  
  Volume 118 Issue 118 Pages 285-290  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon nitride materials play an important role in energy-harvesting, energy-storage and environmental applications. Recently, a new carbon nitride, 2D polyaniline (C3N) was proposed [PNAS 113 (2016) 7414-7419]. Based on the structure model of this C3N monolayer, we propose two new carbon nitride monolayers, named dumbbell (DB) C4N-I and C4N-II. Using first-principles calculations, we systematically study the structure, stability, and band structure of these two materials. In contrast to other carbon nitride monolayers, the orbital hybridization of the C/N atoms in the DB C4N monolayers is sp(3). Remarkably, the band structures of the two DB C4N monolayers have a Dirac cone at the K point and their Fermi velocities (2.6/2.4 x 10(5) m/s) are comparable to that of graphene. This makes them promising materials for applications in high-speed electronic devices. Using a tight-binding model, we explain the origin of the Dirac cone. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000401120800033 Publication Date 2017-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 36 Open Access  
  Notes Approved Most recent IF: 6.337  
  Call Number UA @ lucian @ c:irua:143726 Serial 4588  
Permanent link to this record
 

 
Author (up) Li, L.; Kong, X.; Peeters, F.M. pdf  doi
openurl 
  Title New nanoporous graphyne monolayer as nodal line semimetal : double Dirac points with an ultrahigh Fermi velocity Type A1 Journal article
  Year 2019 Publication Carbon Abbreviated Journal Carbon  
  Volume 141 Issue 141 Pages 712-718  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon materials play an important role in nanomaterials. We propose a new carbon monolayer, named hexagonal-4,4,4-graphyne (H-4,H-4,H-4-graphyne), which is a nanoporous structure composed of rectangular carbon rings and triple bonds of carbon. Using first-principles calculations, we systematically studied the structure, stability, and band structure of this new material. We found that its total energy is lower than that of experimentally synthesized beta-graphdiyne and it is stable at least up to 1500 K. In contrast to the single Dirac point band structure of other 2D carbon monolayers, the band structure of H-4,H-4,H-4-graphyne exhibits double Dirac points along the high-symmetry points and the corresponding Fermi velocities (1.04-1.27 x 10(6) m/s) are asymmetric and higher than that of graphene. The origin of these double Dirac points is traced back to the nodal line states, which can be well explained by a tight-binding model. The H-4,H-4,H-4-graphyne forms a moire superstructure when placed on top of a hexagonal boron nitride substrate. These properties make H-4,H-4,H-4-graphyne a promising semimetal material for applications in high-speed electronic devices. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450312600072 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 38 Open Access  
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA project TRANS2DTMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government -department EWI. ; Approved Most recent IF: 6.337  
  Call Number UA @ admin @ c:irua:155364 Serial 5222  
Permanent link to this record
 

 
Author (up) Li, L.; Leenaerts, O.; Kong, X.; Chen, X.; Zhao, M.; Peeters, F.M. pdf  doi
openurl 
  Title Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators Type A1 Journal article
  Year 2017 Publication Nano Research Abbreviated Journal Nano Res  
  Volume 10 Issue 10 Pages 2168-2180  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Quantum spin Hall (QSH) insulators with a large topologically nontrivial bulk gap are crucial for future applications of the QSH effect. Among these, group III-V monolayers and their halides, which have a chair structure (regular hexagonal framework), have been widely studied. Using first-principles calculations, we formulate a new structure model for the functionalized group III-V monolayers, which consist of rectangular GaBi-X-2 (X = I, Br, Cl) monolayers with a distorted hexagonal framework (DHF). These structures have a far lower energy than the GaBi-X-2 monolayers with a chair structure. Remarkably, the DHF GaBi-X-2 monolayers are all QSH insulators, which exhibit sizeable nontrivial band gaps ranging from 0.17 to 0.39 eV. The band gaps can be widely tuned by applying different spin-orbit coupling strengths, resulting in a distorted Dirac cone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401320700029 Publication Date 2017-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.354 Times cited 15 Open Access  
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-department EWI. ; Approved Most recent IF: 7.354  
  Call Number UA @ lucian @ c:irua:143739 Serial 4598  
Permanent link to this record
 

 
Author (up) Li, L.; Liao, Z.; Gauquelin, N.; Minh Duc Nguyen; Hueting, R.J.E.; Gravesteijn, D.J.; Lobato, I.; Houwman, E.P.; Lazar, S.; Verbeeck, J.; Koster, G.; Rijnders, G. pdf  doi
openurl 
  Title Epitaxial stress-free growth of high crystallinity ferroelectric PbZr0.52Ti0.48O3 on GaN/AlGaN/Si(111) substrate Type A1 Journal article
  Year 2018 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 5 Issue 2 Pages 1700921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Due to its physical properties gallium-nitride (GaN) is gaining a lot of attention as an emerging semiconductor material in the field of high-power and high-frequency electronics applications. Therefore, the improvement in the performance and/or perhaps even extension in functionality of GaN based devices would be highly desirable. The integration of ferroelectric materials such as lead-zirconate-titanate (PbZrxTi1-xO3) with GaN has a strong potential to offer such an improvement. However, the large lattice mismatch between PZT and GaN makes the epitaxial growth of Pb(Zr1-xTix)O-3 on GaN a formidable challenge. This work discusses a novel strain relaxation mechanism observed when MgO is used as a buffer layer, with thicknesses down to a single unit cell, inducing epitaxial growth of high crystallinity Pb(Zr0.52Ti0.48)O-3 (PZT) thin films. The epitaxial PZT films exhibit good ferroelectric properties, showing great promise for future GaN device applications.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000423173800005 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 15 Open Access Not_Open_Access  
  Notes ; L.L., Z.L.L., and N.G. contributed equally to this work. L.L. acknowledges financial support from Nano Next NL (Grant no. 7B 04). The authors acknowledge NXP for providing the GaN/AlGaN/Si (111) wafer. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and J.V. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) project 42/FA070100/6088 “nieuwe eigenschappen in complexe Oxides.” N.G. acknowledges the EUROTAPES project (FP7-NMP.2011.2.2-1 Grant no. 280432) which partly funded this study. ; Approved Most recent IF: 4.279  
  Call Number UA @ lucian @ c:irua:148427UA @ admin @ c:irua:148427 Serial 4872  
Permanent link to this record
 

 
Author (up) Li, L.; Lin, Q.; Nijs, I.; De Boeck, H.; Beemster, G.T.S.; Asard, H.; Verbruggen, E. file  url
doi  openurl
  Title More persistent weather causes a pronounced soil microbial legacy but does not impact subsequent plant communities Type A1 Journal article
  Year 2023 Publication The science of the total environment Abbreviated Journal  
  Volume 903 Issue Pages 166570-166578  
  Keywords A1 Journal article; Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract A soil history of exposure to extreme weather may impact future plant growth and microbial community assembly. Currently, little is known about whether and how previous precipitation regime (PR)-induced changes in soil microbial communities influence plant and soil microbial community responses to a subsequent PR. We exposed grassland mesocosms to either an ambient PR (1 day wet-dry alternation) or a persistent PR (30 days consecutive wet-dry alternation) for one year. This conditioned soil was then inoculated as a 10 % fraction into 90 % sterilized “native” soil, after which new plant communities were established and subjected to either the ambient or persistent PR for 60 days. We assessed whether past persistent weather-induced changes in soil microbial community composition affect soil microbial and plant community responses to subsequent weather persistence. The historical regimes caused enduring effects on fungal communities and only temporary effects on bacterial communities, but did not trigger soil microbial legacy effects on plant productivity when exposed to either current PR. This study provides experimental evidence for soil legacy of climate persistence on grassland ecosystems in response to subsequent climate persistence, helping to understand and predict the influences of future climate change on soil biota.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001116596100001 Publication Date 2023-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:200463 Serial 9213  
Permanent link to this record
 

 
Author (up) Li, L.; Nijs, I.; De Boeck, H.; Vinduskova, O.; Reynaert, S.; Donnelly, C.; Zi, L.; Verbruggen, E. file  doi
openurl 
  Title Longer dry and wet spells alter the stochasticity of microbial community assembly in grassland soils Type A1 Journal article
  Year 2023 Publication Soil biology and biochemistry Abbreviated Journal  
  Volume 178 Issue Pages 108969-9  
  Keywords A1 Journal article; ADReM Data Lab (ADReM); Integrated Molecular Plant Physiology Research (IMPRES); Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Climate change is increasing the duration of alternating wet and dry spells. These fluctuations affect soil water availability and other soil properties which are crucial drivers of soil microbial communities. While soil microbial communities have a moderate capacity to recover once a drought ceases, the expected alternation of strongly opposing regimes can challenge their capacity to adapt. Here, we set up experimental grassland mesocosms where precipitation frequency was adjusted along a gradient while holding total precipitation constant. The gradient varied the duration of wet and dry spells from 1 to 60 days during a total of 120 days, where we hy-pothesized that especially intermediate durations would increase the importance of stochastic community as-sembly due to frequent alternation of opposing environmental regimes. We examined bacterial and fungal community composition, diversity, co-occurrence patterns and assembly mechanisms across these different precipitation treatments. Our results show that 1) intermediate regimes of wet and dry spells increased the stochasticity of microbial community assembly whereas microbial communities at low and high regimes were subjected to more deterministic assembly, and 2) more persistent precipitation regimes (>6 days duration) reduced the fungal diversity and network connectivity but had little effect on bacterial communities. Collec-tively, these findings indicate that longer alternating wet and dry events lead to a less predictable and connected soil microbial community. This study provides new insight into the likely mechanisms through which precipi-tation persistence alters soil microbial communities and their predictability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930582500001 Publication Date 2023-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-0717 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:195257 Serial 9211  
Permanent link to this record
 

 
Author (up) Li, L.L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F.M.; Yagmurcukardes, M. url  doi
openurl 
  Title Single-layer Janus black arsenic-phosphorus (b-AsP): optical dichroism, anisotropic vibrational, thermal, and elastic properties Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 13 Pages 134102-134109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory (DFT) calculations, we predict a puckered, dynamically stable Janus single-layer black arsenic-phosphorus (b-AsP), which is composed of two different atomic sublayers, arsenic and phosphorus atoms. The calculated phonon spectrum reveals that Janus single-layer b-AsP is dynamically stable with either pure or coupled optical phonon branches arising from As and P atoms. The calculated Raman spectrum indicates that due to the relatively strong P-P bonds, As atoms have no contribution to the highfrequency optical vibrations. In addition, the orientation-dependent isovolume heat capacity reveals anisotropic contributions of LA and TA phonon branches to the low-temperature thermal properties. Unlike pristine single layers of b-As and b-P, Janus single-layer b-AsP exhibits additional out-of-plane asymmetry which leads to important consequences for its electronic, optical, and elastic properties. In contrast to single-layer b-As, Janus single-layer b-AsP is found to possess a direct band gap dominated by the P atoms. Moreover, real and imaginary parts of the dynamical dielectric function, including excitonic effects, reveal the highly anisotropic optical feature of the Janus single-layer. A tight-binding (TB) model is also presented for Janus single-layer b-AsP, and it is shown that, with up to seven nearest hoppings, the TB model reproduces well the DFT band structure in the low-energy region around the band gap. This TB model can be used in combination with the Green's function approach to study, e.g., quantum transport in finite systems based on Janus single-layer b-AsP. Furthermore, the linear-elastic properties of Janus single-layer b-AsP are investigated, and the orientation-dependent in-plane stiffness and Poisson ratio are calculated. It is found that the Janus single layer exhibits strong in-plane anisotropy in its Poisson ratio much larger than that of single-layer b-P. This Janus single layer is relevant for promising applications in optical dichroism and anisotropic nanoelasticity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000524531900001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 30 Open Access  
  Notes ; This work was supported by the German Science Foundation (DFG) within SFB/TRR80 (project G3) and the FLAGERA project TRANS-2D-TMD. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). Computational resources were provided by the Flemish Supercomputer Center (VSC) and Leibniz Supercomputer Centrum (project pr87ro). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168554 Serial 6602  
Permanent link to this record
 

 
Author (up) Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
  Year 2023 Publication Applied physics letters Abbreviated Journal  
  Volume 123 Issue 3 Pages 033102-33106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033604700003 Publication Date 2023-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4; 2023 IF: 3.411  
  Call Number UA @ admin @ c:irua:198382 Serial 8823  
Permanent link to this record
 

 
Author (up) Li, L.L.; Moldovan, D.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Aharonov-Bohm oscillations in phosphorene quantum rings Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 20 Pages 205426  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Aharonov-Bohm (AB) effect in square phosphorene quantum rings, with armchair and zigzag edges, is investigated using the tight-binding method. The energy spectra and wave functions of such rings, obtained as a function of the magnetic flux Phi threading the ring, are strongly influenced by the ringwidthW, an in-plane electric field E-p, and a side-gating potential V-g. Compared to a square dot, the ring shows an enhanced confinement due to its inner edges and an interedge coupling along the zigzag direction, both of which strongly affect the energy spectrum and the wave functions. The energy spectrum that is gapped consists of a regular part, of conduction (valence) band states, that shows the usual AB oscillations in the higher-(lower-) energy region, and of edge states, in the gap, that exhibit no AB oscillations. As the width W decreases, the AB oscillations become more distinct and regular and their period is close to Phi(0)/2, where the flux quantum Phi(0) = h/e is the period of an ideal circular ring (W -> 0). Both the electric field E-p and the side-gating potential V-g reduce the amplitude of the AB oscillations. The amplitude can be effectively tuned by E-p or V-g and exhibits an anisotropic behavior for different field directions or side-gating configurations.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000402003700010 Publication Date 2017-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes ; This work was financially supported by the Chinese Academy of Sciences, the Flemish Science Foundation (FWO-V1), and by the Canadian NSERC Grant No. OGP0121756 (P.V.). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144267 Serial 4638  
Permanent link to this record
 

 
Author (up) Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M. pdf  doi
openurl 
  Title Electric-and magnetic-field dependence of the electronic and optical properties of phosphorene quantum dots Type A1 Journal article
  Year 2017 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 28 Issue 8 Pages 085702  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to- edge transitions differently due to the different responses of bulk and edge states to these fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000403100700001 Publication Date 2017-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 32 Open Access  
  Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant Nos. 11304316 and 11574319), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.44  
  Call Number UA @ lucian @ c:irua:144325 Serial 4648  
Permanent link to this record
 

 
Author (up) Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Electronic properties of bilayer phosphorene quantum dots in the presence of perpendicular electric and magnetic fields Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 15 Pages 155425  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we investigate the electronic properties of bilayer phosphorene (BLP) quantum dots (QDs) in the presence of perpendicular electric and magnetic fields. Since BLP consists of two coupled phosphorene layers, it is of interest to examine the layer-dependent electronic properties of BLP QDs, such as the electronic distributions over the two layers and the so-produced layer-polarization features, and to see how these properties are affected by the magnetic field and the bias potential. We find that in the absence of a bias potential only edge states are layer polarized while the bulk states are not, and the layer-polarization degree (LPD) of the unbiased edge states increases with increasing magnetic field. However, in the presence of a bias potential both the edge and bulk states are layer polarized, and the LPD of the bulk (edge) states depends strongly (weakly) on the interplay of the bias potential and the interlayer coupling. At high magnetic fields, applying a bias potential renders the bulk electrons in a BLP QD to be mainly distributed over the top or bottom layer, resulting in layer-polarized bulk Landau levels (LLs). In the presence of a large bias potential that can drive a semiconductor-to-semimetal transition in BLP, these bulk LLs exhibit different magnetic-field dependences, i.e., the zeroth LLs exhibit a linearlike dependence on the magnetic field while the other LLs exhibit a square-root-like dependence.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000412699800005 Publication Date 2017-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant No. 11574319), and the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:146686 Serial 4782  
Permanent link to this record
 

 
Author (up) Li, L.L.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Tuning the electronic properties of gated multilayer phosphorene : a self-consistent tight-binding study Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 15 Pages 155424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000430459400005 Publication Date 2018-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 26 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150752UA @ admin @ c:irua:150752 Serial 4988  
Permanent link to this record
 

 
Author (up) Li, L.L.; Partoens, B.; Xu, W.; Peeters, F.M. pdf  url
doi  openurl
  Title Electric-field modulation of linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 1 Pages 015032  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electro-optical modulators, which use an electric voltage (or an electric field) to modulate a beam of light, are essential elements in present-day telecommunication devices. Using a self-consistent tight-binding approach combined with the standard Kubo formula, we show that the optical conductivity and the linear dichroism of few-layer phosphorene can be modulated by a perpendicular electric field. We find that the field-induced charge screening plays a significant role in modulating the optical conductivity and the linear dichroism. Distinct absorption peaks are induced in the conductivity spectrum due to the strong quantum confinement along the out-of-plane direction and to the field-induced forbidden-to-allowed transitions. The field modulation of the linear dichroism becomes more pronounced with increasing number of phosphorene layers. We also show that the Faraday rotation is present in few-layer phosphorene even in the absence of an external magnetic field. This optical Hall effect is induced by the reduced lattice symmetry of few-layer phosphorene. The Faraday rotation is greatly influenced by the field-induced charge screening and is strongly dependent on the strength of perpendicular electric field and on the number of phosphorene layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454321100002 Publication Date 2018-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 19 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:156776 Serial 5207  
Permanent link to this record
 

 
Author (up) Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title Quantum transport in defective phosphorene nanoribbons : effects of atomic vacancies Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 7 Pages 075414  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Defects are almost inevitably present in realistic materials and defective materials are expected to exhibit very different properties than their nondefective (perfect) counterparts. Here, using a combination of the tight-binding approach and the scattering matrix formalism, we investigate the electronic transport properties of defective phosphorene nanoribbons (PNRs) containing atomic vacancies. We find that for both armchair PNRs (APNRs) and zigzag PNRs (ZPNRs), single vacancies can create quasilocalized states, which can affect their conductance. With increasing vacancy concentration, three different transport regimes are identified: ballistic, diffusive, and Anderson localized ones. In particular, ZPNRs that are known to be metallic due to the presence of edge states become semiconducting: edge conductance vanishes and transport gap appears due to Anderson localization. Moreover, we find that for a fixed vacancy concentration, both APNRs and ZPNRs of narrower width and/or longer length are more sensitive to vacancy disorder than their wider and/or shorter counterparts, and that for the same ribbon length and width, ZPNRs are more sensitive to vacancy disorder than APNRs.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000424901800006 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 30 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the FLAG-ERA TRANS 2D TMD, and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:149255UA @ admin @ c:irua:149255 Serial 4946  
Permanent link to this record
 

 
Author (up) Li, L.L.; Peeters, F.M. url  doi
openurl 
  Title Strain engineered linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 114 Issue 24 Pages 243102  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate theoretically the linear dichroism and the Faraday rotation of strained few-layer phosphorene, where strain is applied uniaxially along the armchair or zigzag direction of the phosphorene lattice. We calculate the optical conductivity tensor of uniaxially strained few-layer phosphorene by means of the Kubo formula within the tight-binding approach. We show that the linear dichroism and the Faraday rotation of few-layer phosphorene can be significantly modulated by the applied strain. The modulation depends strongly on both the magnitude and direction of strain and becomes more pronounced with increasing number of phosphorene layers. Our results are relevant for mechano-optoelectronic applications based on optical absorption and Hall effects in strained few-layer phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472599100029 Publication Date 2019-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 11 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.411  
  Call Number UA @ admin @ c:irua:161327 Serial 5428  
Permanent link to this record
 

 
Author (up) Li, L.L.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 23 Pages 235422-235422,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286768800007 Publication Date 2010-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88909 Serial 1717  
Permanent link to this record
 

 
Author (up) Li, L.L.; Xu, W.; Peeters, F.M. doi  openurl
  Title Optical conductivity of topological insulator thin films Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 175305  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k . p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi2Se3-based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy (h) over bar omega < 200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200 < (h) over bar omega < 300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value sigma(0) = e(2) / (8<(h)over bar>) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime ((h) over bar omega > 300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000354984100615 Publication Date 2015-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 11304316), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:126412 Serial 2473  
Permanent link to this record
 

 
Author (up) Li, L.L.; Zarenia, M.; Xu, W.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 045409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic-field dependence of the energy spectrum, wave function, binding energy, and oscillator strength of exciton states confined in a circular graphene quantum dot (CGQD) is obtained within the configuration interaction method. We predict that (i) excitonic effects are very significant in the CGQD as a consequence of a combination of geometric confinement, magnetic confinement, and reduced screening; (ii) two types of excitons (intravalley and intervalley) are present in the CGQD because of the valley degree of freedom in graphene; (iii) the intravalley and intervalley exciton states display different magnetic-field dependencies due to the different electron-hole symmetries of the single-particle energy spectra; (iv) with increasing magnetic field, the exciton ground state in the CGQD undergoes an intravalley to intervalley transition accompanied by a change of angular momentum; (v) the exciton binding energy does not increase monotonically with the magnetic field due to the competition between geometric and magnetic confinements; and (vi) the optical transitions of the intervalley and intravalley excitons can be tuned by the magnetic field, and valley-dependent excitonic transitions can be realized in a CGQD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391856000006 Publication Date 2017-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work was financially supported by the China Scholarship Council (CSC), the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grants No. 11304316, No. 11574319, and No. 11604380), and by the Chinese Academy of Sciences (CAS). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:141444 Serial 4555  
Permanent link to this record
 

 
Author (up) Li, M.-R.; Deng, Z.; Lapidus, S.H.; Stephens, P.W.; Segre, C.U.; Croft, M.; Sena, R.P.; Hadermann, J.; Walker, D.; Greenblatt, M. pdf  doi
openurl 
  Title Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9: in Search of Jahn-Teller Distorted Cr(II) Oxide Type A1 Journal article
  Year 2016 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 55 Issue 55 Pages 10135-10142  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel 6H-type hexagonal perovskite Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 was prepared at high pressure (6 GPa) and temperature (1773 K). Both transmission electron microscopy and synchrotron powder X-ray diffraction data demonstrate that Ba-3(Cr0.97(1)Te0.03(1))(2)TeO9 crystallizes in P6(3)/mmc with face-shared (Cr0.97(1)Te0.03(1))O-6 octahedral pairs interconnected with TeO6 octahedra via corner-sharing. Structure analysis shows a mixed Cr2+/Cr3+ valence state with similar to 10% Cr2+. The existence of Cr2+ in Ba-3(Cr0.10(1)2+Cr0.87(1)3+Te0.036+)(2)TeO9 is further evidenced by X-ray absorption near-edge spectroscopy. Magnetic properties measurements show a paramagnetic response down to 4 K and a small glassy-state curvature at low temperature. In this work, the octahedral Cr2+O6 component is stabilized in an oxide material for the first time; the expected Jahn-Teller distortion of high-spin (d(4)) Cr2+ is not found, which is attributed to the small proportion of Cr2+ (similar to 10%) and the face-sharing arrangement of CrO6 octahedral pairs, which structurally disfavor axial distortion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000385785700026 Publication Date 2016-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857  
  Call Number UA @ lucian @ c:irua:140313 Serial 4440  
Permanent link to this record
 

 
Author (up) Li, Q.; Niklas, K.J.J.; Niinemets, U.; Zhang, L.; Yu, K.; Gielis, J.; Gao, J.; Shi, P. url  doi
openurl 
  Title Stomatal shape described by a superellipse in four Magnoliaceae species Type A1 Journal article
  Year 2023 Publication Botany letters Abbreviated Journal  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Stomata are essential for the exchange of water vapour and atmospheric gases between vascular plants and their external environments. The stomatal geometries of many plants appear to be elliptical. However, prior studies have not tested whether this is a mathematical reality, particularly since many natural shapes that appear to be ellipses are superellipses with greater or smaller edge curvature than predicted for an ellipse. Compared with the ellipse equation, the superellipse equation includes an additional parameter that allows generation of a larger range of shapes. We randomly selected 240 stomata from each of four Magnoliaceae species to test whether the stomatal geometries are superellipses or ellipses. The stomatal geometries for most stomata (943/960) were found to be described better using the superellipse equation. The traditional “elliptical stomata hypothesis” resulted in an underestimation of the area of stomata, whereas the superellipse equation accurately predicted stomatal area. This finding has important implications for the estimation of stomatal area in studies looking at stomatal shape, geometry, and function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001024190300001 Publication Date 2023-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.5 Times cited Open Access Not_Open_Access: Available from 12.01.2024  
  Notes Approved Most recent IF: 1.5; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:197847 Serial 8935  
Permanent link to this record
 

 
Author (up) Li, Q.N.; Xu, W.; Xiao, Y.M.; Ding, L.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Optical absorption window in Na₃Bi based three-dimensional Dirac electronic system Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 128 Issue 15 Pages 155707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of the optoelectronic properties of a Na3Bi based three-dimensional Dirac electronic system (3DDES). The optical conductivity is evaluated using the energy-balance equation derived from a Boltzmann equation, where the electron Hamiltonian is taken from a simplified k . p approach. We find that for short-wavelength irradiation, the optical absorption in Na3Bi is mainly due to inter-band electronic transitions. In contrast to the universal optical conductance observed for graphene, the optical conductivity for Na3Bi based 3DDES depends on the radiation frequency but not on temperature, carrier density, and electronic relaxation time. In the radiation wavelength regime of about 5 mu m, < lambda < 200 mu m, an optical absorption window is found. This is similar to what is observed in graphene. The position and width of the absorption window depend on the direction of the light polarization and sensitively on temperature, carrier density, and electronic relaxation time. Particularly, we demonstrate that the inter-band optical absorption channel can be switched on and off by applying the gate voltage. This implies that similar to graphene, Na3Bi based 3DDES can also be applied in infrared electro-optical modulators. Our theoretical findings are helpful in gaining an in-depth understanding of the basic optoelectronic properties of recently discovered 3DDESs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000585807400004 Publication Date 2020-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (NNSFC Nos. U1930116, U1832153, 11764045, 11574319, and 11847054) and the Center of Science and Technology of Hefei Academy of Science (No. 2016FXZY002). Applied Basic Research Foundation of Department of Science and Technology of Yunnan Province (No. 2019FD134), the Department of Education of Yunnan Province (No. 2018JS010), the Young Backbone Teachers Training Program of Yunnan University, and the Department of Science and Technology of Yunnan Province are acknowledged. ; Approved Most recent IF: 3.2; 2020 IF: 2.068  
  Call Number UA @ admin @ c:irua:173591 Serial 6571  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: