|
Record |
Links |
|
Author |
Li, L.L.; Xu, W.; Peeters, F.M. |
|
|
Title |
Optical conductivity of topological insulator thin films |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
Journal of applied physics |
Abbreviated Journal |
J Appl Phys |
|
|
Volume |
117 |
Issue |
117 |
Pages |
175305 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k . p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi2Se3-based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy (h) over bar omega < 200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200 < (h) over bar omega < 300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value sigma(0) = e(2) / (8<(h)over bar>) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime ((h) over bar omega > 300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF. (C) 2015 AIP Publishing LLC. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Institute of Physics |
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000354984100615 |
Publication Date |
2015-05-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-8979;1089-7550; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.068 |
Times cited |
9 |
Open Access |
|
|
|
Notes |
; This work was supported by the National Natural Science Foundation of China (Grant No. 11304316), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; |
Approved |
Most recent IF: 2.068; 2015 IF: 2.183 |
|
|
Call Number |
c:irua:126412 |
Serial |
2473 |
|
Permanent link to this record |