toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yang, X.-Y.; Li, Y.; Van Tendeloo, G.; Xiao, F.-S.; Su, B.-L. pdf  doi
openurl 
  Title One-pot synthesis of catalytically stable and active nanoreactors: encapsulation of size-controlled nanoparticles within a hierarchically macroporous core@ordered mesoporous shell system Type A1 Journal article
  Year 2009 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 21 Issue 13 Pages 1368-1372  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Size-controlled, catalytically active nanoparticles are successfully encapsulated in a one-pot synthesis to form novel hierarchical macroporous core@mesoporous shell structures, where macroporous cores are connected by uniform and ordered mesoporous channels. Most importantly, the encapsulated nanoparticles can be used as nanoreactors, with high activities and excellent long-term recycling stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000265432700011 Publication Date 2009-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 61 Open Access  
  Notes Iap Approved (up) Most recent IF: 19.791; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:77316 Serial 2466  
Permanent link to this record
 

 
Author Leroux, F.; Gysemans, M.; Bals, S.; Batenburg, K.J.; Snauwaert, J.; Verbiest, T.; van Haesendonck, C.; Van Tendeloo, G. pdf  doi
openurl 
  Title Three-dimensional characterization of helical silver nanochains mediated by protein assemblies Type A1 Journal article
  Year 2010 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 22 Issue 19 Pages 2193-2197  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Characterization methods for the structural investigation of biotemplates for nanodevices remain widely unexplored, despite the fact that biotemplating methods for nanodevice fabrication are becoming more widespread. In this study several techniques are used to characterize the morphology and 3D distribution of silver nanoparticles deposited on insulin fibrils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000278601400016 Publication Date 2010-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648;1521-4095; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 51 Open Access  
  Notes Esteem 026019; Fwo Approved (up) Most recent IF: 19.791; 2010 IF: NA  
  Call Number UA @ lucian @ c:irua:83296 Serial 3645  
Permanent link to this record
 

 
Author Idrissi, H.; Wang, B.; Colla, M.S.; Raskin, J.P.; Schryvers, D.; Pardoen, T. pdf  doi
openurl 
  Title Ultrahigh strain hardening in thin palladium films with nanoscale twins Type A1 Journal article
  Year 2011 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 23 Issue 18 Pages 2119-2122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline Pd thin films containing coherent growth twin boundaries are deformed using on-chip nanomechanical testing. A large work-hardening capacity is measured. The origin of the observed behavior is unraveled using transmission electron microscopy and shows specific dislocations and twin boundaries interactions. The results indicate the potential for large strength and ductility balance enhancement in Pd films, as needed in membranes for H technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000291164200013 Publication Date 2011-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 57 Open Access  
  Notes Iap Approved (up) Most recent IF: 19.791; 2011 IF: 13.877  
  Call Number UA @ lucian @ c:irua:90103 Serial 3794  
Permanent link to this record
 

 
Author Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; van Dyck, D. pdf  url
doi  openurl
  Title Advanced electron microscopy for advanced materials Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 42 Pages 5655-5675  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The idea of this Review is to introduce newly developed possibilities of advanced electron microscopy to the materials science community. Over the last decade, electron microscopy has evolved into a full analytical tool, able to provide atomic scale information on the position, nature, and even the valency atoms. This information is classically obtained in two dimensions (2D), but can now also be obtained in 3D. We show examples of applications in the field of nanoparticles and interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310602200001 Publication Date 2012-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 107 Open Access  
  Notes This work was supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No 246791 – COUNTATOMS. J.V. Acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium). The Qu-Ant-EM microscope was partly funded by the Hercules Fund from the Flemish Government. We thank Rafal Dunin-Borkowski for providing Figure 5d. The authors would like to thank the colleagues who have contributed to this work over the years, including K.J. Batenburg, R. Erni, B. Goris, F. Leroux, H. Lichte, A. Lubk, B. Partoens, M. D. Rossell, P. Schattschneider, B. Schoeters, D. Schryvers, H. Tan, H. Tian, S. Turner, M. van Huis. ECASJO_; Approved (up) Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:100470UA @ admin @ c:irua:100470 Serial 70  
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H. pdf  doi
openurl 
  Title Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy Type A1 Journal article
  Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 24 Issue 4 Pages 523-527  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO3. The displacements are 36 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000299156400011 Publication Date 2011-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 150 Open Access  
  Notes Fwo Approved (up) Most recent IF: 19.791; 2012 IF: 14.829  
  Call Number UA @ lucian @ c:irua:94110 Serial 717  
Permanent link to this record
 

 
Author Verbeeck, J.; Tian, H.; Van Tendeloo, G. pdf  doi
openurl 
  Title How to manipulate nanoparticles with an electron beam? Type A1 Journal article
  Year 2013 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 25 Issue 8 Pages 1114-1117  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000315102600003 Publication Date 2012-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 75 Open Access  
  Notes FWO; VORTEX; Countatoms ECASJO_; Approved (up) Most recent IF: 19.791; 2013 IF: 15.409  
  Call Number UA @ lucian @ c:irua:105287UA @ admin @ c:irua:105287 Serial 1494  
Permanent link to this record
 

 
Author Breynaert, E.; Emmerich, J.; Mustafa, D.; Bajpe, S.R.; Altantzis, T.; Van Havenbergh, K.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Kirschhock, C.E.A.; Martens, J.A.; pdf  url
doi  openurl
  Title Enhanced self-assembly of metal oxides and metal-organic frameworks from precursors with magnetohydrodynamically induced long-lived collective spin states Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 30 Pages 5173-5178  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Magneto-hydrodynamic generation of long-lived collective spin states and their impact on crystal morphology is demonstrated for three different, technologically relevant materials: COK-16 metal organic framework, manganese oxide nanotubes, and vanadium oxide nano-scrolls.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000340546300015 Publication Date 2014-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 7 Open Access OpenAccess  
  Notes IAP-PAI; Marie Curie IEF; 262348 ESMI; 335078 COLOURATOM; 246791 COUNTATOMS; IWT; Methusalem; FWO; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved (up) Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:118827 Serial 1053  
Permanent link to this record
 

 
Author Zhang, G.; Turner, S.; Ekimov, E.A.; Vanacken, J.; Timmermans, M.; Samuely, T.; Sidorov, V.A.; Stishov, S.M.; Lu, Y.; Deloof, B.; Goderis, B.; Van Tendeloo, G.; Van de Vondel, J.; Moshchalkov, V.V.; pdf  doi
openurl 
  Title Global and local superconductivity in boron-doped granular diamond Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 13 Pages 2034-2040  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Strong granularity-correlated and intragrain modulations of the superconducting order parameter are demonstrated in heavily boron-doped diamond situated not yet in the vicinity of the metal-insulator transition. These modulations at the superconducting state (SC) and at the global normal state (NS) above the resistive superconducting transition, reveal that local Cooper pairing sets in prior to the global phase coherence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333616700008 Publication Date 2013-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Methusalem Funding; FWO projects; MP1201 COST Action; ERC Grant N246791-COUNTATOMS; post-doctoral grant (S.T.) and for project no. G.0568.10N.;Hercules Foundation Approved (up) Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:116150 Serial 1346  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Karkin, A.E.; Morozova, N.V.; Shchennikov, V.V.; Bykova, E.; Abakumov, A.M.; Tsirlin, A.A.; Glazyrin, K.V.; Dubrovinsky, L. pdf  url
doi  openurl
  Title A hard oxide semiconductor with a direct and narrow bandgap and switchable pn electrical conduction Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 48 Pages 8185-8191  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An oxide semiconductor (perovskite-type Mn2O3) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000346480800016 Publication Date 2014-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 27 Open Access  
  Notes Approved (up) Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:122230 Serial 1408  
Permanent link to this record
 

 
Author Tian, H.; Verbeeck, J.; Brück, S.; Paul, M.; Kufer, D.; Sing, M.; Claessen, R.; Van Tendeloo, G. pdf  doi
openurl 
  Title Interface-induced modulation of charge and polarization in thin film Fe3O4 Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 3 Pages 461-465  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Charge and polarization modulations in Fe3O4 are controlled by taking advantage of interfacial strain effects. The feasibility of oxidation state control by strain modification is demonstrated and it is shown that this approach offers a stable configuration at room temperature. Direct evidence of how a local strain field changes the atomic coordination and introduces atomic displacements leading to polarization of Fe ions is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000334289300011 Publication Date 2013-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 15 Open Access  
  Notes Vortex; FWO; Countatoms; Hercules ECASJO_; Approved (up) Most recent IF: 19.791; 2014 IF: 17.493  
  Call Number UA @ lucian @ c:irua:112419UA @ admin @ c:irua:112419 Serial 1694  
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V. doi  openurl
  Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
  Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 38 Pages 6554-6559  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343763200004 Publication Date 2014-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4095 ISBN Additional Links  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Approved (up) Most recent IF: 19.791; 2014 IF: NA  
  Call Number EMAT @ emat @ Serial 4541  
Permanent link to this record
 

 
Author Li, M.R.; Croft, M.; Stephens, P.W.; Ye, M.; Vanderbilt, D.; Retuerto, M.; Deng, Z.; Grams, C.P.; Hemberger, J.; Hadermann, J.; Li, W.M.; Jin, C.Q.; Saouma, F.O.; Jang, J.I.; Akamatsu, H.; Gopalan, V.; Walker, D.; Greenblatt, M.; pdf  doi
openurl 
  Title Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide Type A1 Journal article
  Year 2015 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 27 Issue 27 Pages 2177-2181  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mn22+Fe2+W6+O6, a new polar magnetic phase, adopts the corundum-derived Ni3TeO6-type structure with large spontaneous polarization (P-S) of 67.8 mu C cm-2, complex antiferromagnetic order below approximate to 75 K, and field-induced first-order transition to a ferrimagnetic phase below approximate to 30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000352548900004 Publication Date 2015-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 32 Open Access  
  Notes Approved (up) Most recent IF: 19.791; 2015 IF: 17.493  
  Call Number c:irua:126002 Serial 3545  
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M. T.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J. T.-W.; Verbeeck, J.; Boyen, H.-G. url  doi
openurl 
  Title A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families Type A1 Journal article
  Year 2016 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 28 Issue 28 Pages 10701-10709  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and expedient gas quenching method is developed for the solution deposition of hybrid perovskite thin films. The method offers a reliable standard practice for the fabrication of a non-exhaustive variety of perovskites exhibiting excellent film morphology and commensurate high performance in both regular and inverted structured solar cell architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000392728200014 Publication Date 2016-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1521-4095 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 95 Open Access  
  Notes This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by Imec and FWO. M.T.K. acknowledges funding from the EPSRC project EP/M024881/1 “Organic-inorganic Perovskite Hybrid Tandem Solar Cells”. S.B. is a VINNMER Fellow and Marie Skłodowska-Curie Fellow. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. The authors thank Johnny Baccus and Jan Mertens for technical support.; ECASJO_; Approved (up) Most recent IF: 19.791; 2016 IF: NA  
  Call Number EMAT @ emat @ c:irua:138597 Serial 4318  
Permanent link to this record
 

 
Author Jin, B.; Liang, F.; Hu, Z.-Y.; Wei, P.; Liu, K.; Hu, X.; Van Tendeloo, G.; Lin, Z.; Li, H.; Zhou, X.; Xiong, Q.; Zhai, T. pdf  doi
openurl 
  Title Nonlayered CdSe flakes homojunctions Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 30 Pages 1908902  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract 2D homojunctions have stimulated extensive attention because of their perfect thermal and lattice matches, as well as their tunable band structures in 2D morphology, which provide fascinating opportunities for novel electronics and optoelectronics. Recently, 2D nonlayered materials have attracted the attention of researchers owing to their superior functional applications and diverse portfolio of the 2D family. Therefore, 2D nonlayered homojunctions would open the door to a rich spectrum of exotic 2D materials. However, they are not investigated due to their extremely difficult synthesis methods. Herein, nonlayered CdSe flakes homojunctions are obtained via self-limited growth with InCl3 as a passivation agent. Interestingly, two pieces of vertical wurtzite-zinc blende (WZ-ZB) homojunctions epitaxially integrate into WZ/ZB lateral junctions. These homojunctions show a divergent second-harmonic generation intensity, strongly correlated to the multiple twinned ZB phase, as identified by aberration-corrected scanning transmission electron microscopy and theoretical calculations. Impressively, the photodetector based on this WZ/ZB CdSe homojunction shows excellent performances, integrating a high photoswitching ratio (3.4 x 10(5)) and photoresponsivity (3.7 x 10(3) A W-1), suggesting promising potential for applications in electronics and optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508624800001 Publication Date 2020-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 8 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant Nos. 21825103, 51727809, and 51802103), the Hubei Provincial Natural Science Foundation of China (2019CFA002), and the Fundamental Research Funds for the Central Universities (HUST: 2019kfyXMBZ018; WUT: 2019III012GX). Here the authors also thank the support from Analytical and Testing Center in HUST and the State Key Laboratory of Silicate Materials for Architectures in WUT. ; Approved (up) Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:165654 Serial 6314  
Permanent link to this record
 

 
Author Tran Phong Le, P.; Hofhuis, K.; Rana, A.; Huijben, M.; Hilgenkamp, H.; Rijnders, G.A.J.H.M.; ten Elshof, J.E.; Koster, G.; Gauquelin, N.; Lumbeeck, G.; Schuessler-Langeheine, C.; Popescu, H.; Fortuna, F.; Smit, S.; Verbeek, X.H.; Araizi-Kanoutas, G.; Mishra, S.; Vaskivskyi, I.; Duerr, H.A.; Golden, M.S. url  doi
openurl 
  Title Tailoring vanadium dioxide film orientation using nanosheets : a combined microscopy, diffraction, transport, and soft X-ray in transmission study Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 1 Pages 1900028  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Vanadium dioxide (VO2) is a much-discussed material for oxide electronics and neuromorphic computing applications. Here, heteroepitaxy of VO2 is realized on top of oxide nanosheets that cover either the amorphous silicon dioxide surfaces of Si substrates or X-ray transparent silicon nitride membranes. The out-of-plane orientation of the VO2 thin films is controlled at will between (011)(M1)/(110)(R) and (-402)(M1)/(002)(R) by coating the bulk substrates with Ti0.87O2 and NbWO6 nanosheets, respectively, prior to VO2 growth. Temperature-dependent X-ray diffraction and automated crystal orientation mapping in microprobe transmission electron microscope mode (ACOM-TEM) characterize the high phase purity, the crystallographic and orientational properties of the VO2 films. Transport measurements and soft X-ray absorption in transmission are used to probe the VO2 metal-insulator transition, showing results of a quality equal to those from epitaxial films on bulk single-crystal substrates. Successful local manipulation of two different VO2 orientations on a single substrate is demonstrated using VO2 grown on lithographically patterned lines of Ti0.87O2 and NbWO6 nanosheets investigated by electron backscatter diffraction. Finally, the excellent suitability of these nanosheet-templated VO2 films for advanced lensless imaging of the metal-insulator transition using coherent soft X-rays is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000505545800010 Publication Date 2019-10-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 1 Open Access OpenAccess  
  Notes P.T.P.L. and K.H. contributed equally to this work. The authors thank Mark A. Smithers for performing high-resolution scanning electron microscopy and electron backscattering diffraction. The authors also thank Dr. Nicolas Jaouen for his contribution to the soft X-ray imaging experiments. This work is part of the DESCO research program of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). P.T.P.L. acknowledges the NWO/CW ECHO grant ECHO.15.CM2.043. N.G. acknowledges funding from the Geconcentreerde Onderzoekacties (GOA) project “Solarpaint” of the University of Antwerp and the FLAG-ERA JTC 2017 project GRAPH-EYE. G.L. acknowledges financial support from the Flemish Research Fund (FWO) under project G.0365.15N. I.V. acknowledges support by the U.S. Department of Energy, Office of Science under Award Number 0000231415. Approved (up) Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:165705 Serial 6325  
Permanent link to this record
 

 
Author Canossa, S.; Ji, Z.; Wuttke, S. url  doi
openurl 
  Title Circumventing Wear and Tear of Adaptive Porous Materials Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 1908547  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The assessment of the architectural stability of molecular porous materials is not yet a common practice, but critical to their understanding and development. The conformational adaptation of porous materials to guest binding and other chemical dynamics poses a risk of architectural damage, leading to performance deterioration during their prolonged usage. The deformation of the framework backbone and the disconnection of building units are driven by chemical, mechanical, and thermal perturbations, and can be quantitatively described by the term connection completeness. Analytical means that can be used to measure this parameter are presented in order to provide a standard, practical protocol for evaluating architectural damage made to framework materials. Preventive and remedial strategies are proposed for enhancing the architectural integrity of frameworks without compromising their functional mechanisms, paving the way to the design of robust yet adaptive materials. In this way, the discussion on architectural stability is initiated, and readers are encouraged to carefully characterize molecular porous materials for a better understanding of their structure-property relationship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000511238300001 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 12ZV120N ; Approved (up) Most recent IF: 19; 2020 IF: 12.124  
  Call Number EMAT @ emat @c:irua:166505 Serial 6387  
Permanent link to this record
 

 
Author Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O.M. url  doi
openurl 
  Title Pore Chemistry of Metal–Organic Frameworks Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 41 Pages 2000238  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532830900001 Publication Date 2020-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access OpenAccess  
  Notes (Not present) Approved (up) Most recent IF: 19; 2020 IF: 12.124  
  Call Number EMAT @ emat @c:irua:169485 Serial 6422  
Permanent link to this record
 

 
Author Jin, B.; Zuo, N.; Hu, Z.-Y.; Cui, W.; Wang, R.; Van Tendeloo, G.; Zhou, X.; Zhai, T. pdf  doi
openurl 
  Title Excellent excitonic photovoltaic effect in 2D CsPbBr₃/CdS heterostructures Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 2006166-2006168  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract P-n photovoltaic junctions are essential building blocks for optoelectronic devices for energy conversion. However, this photovoltaic efficiency has almost reached its theoretical limit. Here, a brand-new excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures is revealed. These heterostructures, synthesized by epitaxial growth, display a clean interface and a strong interlayer coupling. The excitonic photovoltaic effect is a function of both the built-in equilibrium electrical potential energy and the chemical potential energy, which is generated by the significant concentration gradient of electrons and holes at the heterojunction interface. Excitingly, this novel photovoltaic effect results in a large open-circuit voltage of 0.76 V and a high power conversion efficiency of 17.5%. In addition, high photodetection performance, including a high photoswitch ratio (I-light/I-dark) of 10(5)and a fast response rate of 23 mu s are obtained. These findings provide a new platform for photovoltaic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000567829000001 Publication Date 2020-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 1 Open Access Not_Open_Access  
  Notes ; B.J., N.Z., and Z.Y.H. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (Grant No. 21825103 and 51802103), the Hubei Provincial Natural Science Foundation of China (Grant No. 2019CFA002), and the Fundamental Research Funds for the Central University (Grant No. 2019kfyXMBZ018, WUT: 2019III012GX). Here the authors also thank the support from Analytical and Testing Center in HUST and the State Key Laboratory of Silicate Materials for Architectures in WUT. ; Approved (up) Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171970 Serial 6514  
Permanent link to this record
 

 
Author Canossa, S.; Wuttke, S. pdf  url
doi  openurl
  Title Functionalization chemistry of porous materials Type Editorial
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 41 Pages 2003875  
  Keywords Editorial; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580514700004 Publication Date 2020-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 1 Open Access OpenAccess  
  Notes ; ; Approved (up) Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:173614 Serial 6524  
Permanent link to this record
 

 
Author Nicolas-Boluda, A.; Yang, Z.; Dobryden, I.; Carn, F.; Winckelmans, N.; Pechoux, C.; Bonville, P.; Bals, S.; Claesson, P.M.; Gazeau, F.; Pileni, M.P. pdf  doi
openurl 
  Title Intracellular fate of hydrophobic nanocrystal self-assemblies in tumor cells Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 40 Pages 2004274-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Control of interactions between nanomaterials and cells remains a biomedical challenge. A strategy is proposed to modulate the intralysosomal distribution of nanoparticles through the design of 3D suprastructures built by hydrophilic nanocrystals (NCs) coated with alkyl chains. The intracellular fate of two water-dispersible architectures of self-assembled hydrophobic magnetic NCs: hollow deformable shells (colloidosomes) or solid fcc particles (supraballs) is compared. These two self-assemblies display increased cellular uptake by tumor cells compared to dispersions of the water-soluble NC building blocks. Moreover, the self-assembly structures increase the NCs density in lysosomes and close to the lysosome membrane. Importantly, the structural organization of NCs in colloidosomes and supraballs are maintained in lysosomes up to 8 days after internalization, whereas initially dispersed hydrophilic NCs are randomly aggregated. Supraballs and colloidosomes are differently sensed by cells due to their different architectures and mechanical properties. Flexible and soft colloidosomes deform and spread along the biological membranes. In contrast, the more rigid supraballs remain spherical. By subjecting the internalized suprastructures to a magnetic field, they both align and form long chains. Overall, it is highlighted that the mechanical and topological properties of the self-assemblies direct their intracellular fate allowing the control intralysosomal density, ordering, and localization of NCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559913300001 Publication Date 2020-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited 11 Open Access Not_Open_Access  
  Notes ; F.G. and M.P.P. contributed equally to this work. Dr. J. Teixeira from Laboratoire Leon Brillouin CEA Saclay is thanked for fruitful discussions on SAXS measurement. Dr. J.M. Guinier is thanked for cryoTEM experiments. A.N.-B. received a Ph.D. fellowship from the Institute thematique multi-organismes (ITMO) Cancer and the doctoral school Frontieres du Vivant (FdV)-Programme Bettencourt and the Fondation ARC pour la recherche sur le cancer. ; Approved (up) Most recent IF: 19; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171145 Serial 6551  
Permanent link to this record
 

 
Author Yang, C.-Q.; Yin, Z.-W.; Li, W.; Cui, W.-J.; Zhou, X.-G.; Wang, L.-D.; Zhi, R.; Xu, Y.-Y.; Tao, Z.-W.; Sang, X.; Cheng, Y.-B.; Van Tendeloo, G.; Hu, Z.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Atomically deciphering the phase segregation in mixed halide perovskite Type A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mixed-halide perovskites show promising applications in tandem solar cells owing to their adjustable bandgap. One major obstacle to their commercialization is halide phase segregation, which results in large open-circuit voltage deficiency and J-V hysteresis. However, the ambiguous interplay between structural origin and phase segregation often results in aimless and unspecific optimization strategies for the device's performance and stability. An atomic scale is directly figured out the abundant Ruddlesden-Popper anti-phase boundaries (RP-APBs) within a CsPbIBr2 polycrystalline film and revealed that phase segregation predominantly occurs at RP-APB-enriched interfaces due to the defect-mediated lattice strain. By compensating their structural lead halide, such RP-APBs are eliminated, and the decreasing of strain can be observed, resulting in the suppression of halide phase segregation. The present work provides the deciphering to precisely regulate the perovskite atomic structure for achieving photo-stable mixed halide wide-bandgap perovskites of high-efficiency tandem solar cell commercial applications. The phase segregation in mixed halide perovskite film predominantly occurs at Ruddlesden-Popper anti-phase boundaries (RP-APBs)-enriched interfaces due to the defect-mediated lattice strain. The RP-APBs defects can be eliminated by compensating for their structural lead halide deficiency, resulting in the suppression of halide phase segregation. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200673300001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Approved (up) Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:205509 Serial 9134  
Permanent link to this record
 

 
Author Wang, G.; Xie, C.; Wang, H.; Li, Q.; Xia, F.; Zeng, W.; Peng, H.; Van Tendeloo, G.; Tan, G.; Tian, J.; Wu, J. pdf  doi
openurl 
  Title Mitigated oxygen loss in lithium-rich manganese-based cathode enabled by strong Zr-O affinity Type A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 2313672  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxygen loss is a serious problem of lithium-rich layered oxide (LLO) cathodes, as the high capacity of LLO relies on reversible oxygen redox. Oxygen release can occur at the surface leading to the formation of spinel or rock salt structures. Also, the lattice oxygen will usually become unstable after long cycling, which remains a major roadblock in the application of LLO. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in LLO due to the high affinity between Zr and O. A simple sol-gel method is used to dope Zr4+ into the LLOs to adjust the local electronic structure and inhibit the diffusion of oxygen anions to the surface during cycling. Compared with untreated LLOs, LLO-Zr cathodes exhibit a higher cycling stability, with 94% capacity retention after 100 cycles at 0.4 C, up to 223 mAh g-1 at 1 C, and 88% capacity retention after 300 cycles. Theoretical calculations show that due to the strong Zr-O covalent bonding, the formation energy of oxygen vacancies has effectively increased and the loss of lattice oxygen under high voltage can be suppressed. This study provides a simple method for developing high-capacity and cyclability Li-rich cathode materials for lithium-ion batteries. Oxygen release can occur at the cathode surface leading to the formation of spinel or rock salt structures. Here, it is shown that Zr doping is an effective strategy to retain lattice oxygen in lithium-rich layered oxides (LLO) due to the high affinity between Zr and O. LLO-Zr exhibit higher cycling stability, with 88% capacity retention after 300 cycles at 1 C. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001159843800001 Publication Date 2024-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Approved (up) Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:203812 Serial 9161  
Permanent link to this record
 

 
Author Sercu, S.; Zhang, L.; Merregaert, J. doi  openurl
  Title The extracellular matrix protein 1: its molecular interaction and implication in tumor progression Type A1 Journal article
  Year 2008 Publication Cancer investigation Abbreviated Journal Cancer Invest  
  Volume 26 Issue 4 Pages 375-384  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000255370000008 Publication Date 2008-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0735-7907;1532-4192; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.007 Times cited 41 Open Access  
  Notes Approved (up) Most recent IF: 2.007; 2008 IF: 1.976  
  Call Number UA @ lucian @ c:irua:68573 Serial 1160  
Permanent link to this record
 

 
Author Pittarello, L.; Mckibbin, S.; Yamaguchi, A.; Ji, G.; Schryvers, D.; Debaille, V.; Claeys, P. pdf  doi
openurl 
  Title Two generations of exsolution lamellae in pyroxene from Asuka 09545 : Clues to the thermal evolution of silicates in mesosiderite Type A1 Journal article
  Year 2019 Publication The American mineralogist Abbreviated Journal Am Mineral  
  Volume 104 Issue 11 Pages 1663-1672  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesosiderite meteorites consist of a mixture of crustal basaltic or gabbroic material and metal. Their formation process is still debated due to their unexpected combination of crust and core materials, possibly derived from the same planetesimal parent body, and lacking an intervening mantle component. Mesosiderites have experienced an extremely slow cooling rate from ca. 550 degrees C, as recorded in the metal (0.25-0.5 degrees C/Ma). Here we present a detailed investigation of exsolution features in pyroxene from the Antarctic mesosiderite Asuka (A) 09545. Geothermobarometry calculations, lattice parameters, lamellae orientation, and the presence of clinoenstatite as the host were used in an attempt to constrain the evolution of pyroxene from 1150 to 570 degrees C and the formation of two generations of exsolution lamellae. After pigeonite crystallization at ca. 1150 degrees C, the first exsolution process generated the thick augite lamellae along (100) in the temperature interval 1000-900 degrees C. By further cooling, a second order of exsolution lamellae formed within augite along (001), consisting of monoclinic low-Ca pyroxene, equilibrated in the temperature range 900-800 degrees C. The last process, occurring in the 600-500 degrees C temperature range, was likely the inversion of high to low pigeonite in the host crystal, lacking evidence for nucleation of orthopyroxene. The formation of two generations of exsolution lamellae, as well as of likely metastable pigeonite, suggest non-equilibrium conditions. Cooling was sufficiently slow to allow the formation of the lamellae, their preservation, and the transition from high to low pigeonite. In addition, the preservation of such fine-grained lamellae limits long-lasting, impact reheating to a peak temperature lower than 570 degrees C. These features, including the presence of monoclinic low-Ca pyroxene as the host, are reported in only a few mesosiderites. This suggests a possibly different origin and thermal history from most mesosiderites and that the crystallography (i.e., space group) of low-Ca pyroxene could be used as parameter to distinguish mesosiderite populations based on their cooling history.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494707400014 Publication Date 2019-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-004x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.021 Times cited Open Access  
  Notes Approved (up) Most recent IF: 2.021  
  Call Number UA @ admin @ c:irua:164645 Serial 6331  
Permanent link to this record
 

 
Author Salje, E.K.H.; Buckley, A.; Van Tendeloo, G.; Ishibashi, Y.; Nord, G.L. openurl 
  Title Needle twins and right-angled twins in minerals: comparison between experiment and theory Type A1 Journal article
  Year 1998 Publication The American mineralogist Abbreviated Journal Am Mineral  
  Volume 83 Issue Pages 811-822  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000074717900013 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-004x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.021 Times cited 43 Open Access  
  Notes Approved (up) Most recent IF: 2.021; 1998 IF: 2.124  
  Call Number UA @ lucian @ c:irua:25675 Serial 2288  
Permanent link to this record
 

 
Author Joutsensaari, J.; Ahonen, P.P.; Kauppinen, E.I.; Brown, D.P.; Lehtinen, K.E.J.; Jokiniemi, J.K.; Pauwels, B.; Van Tendeloo, G. openurl 
  Title Aerosol synthesis of fullerene nanocrystals in controlled flow reactor conditions Type A1 Journal article
  Year 2000 Publication Journal of nanoparticle research Abbreviated Journal J Nanopart Res  
  Volume 2 Issue 1 Pages 53-74  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000208067100007 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-0764 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.02 Times cited 5 Open Access  
  Notes Approved (up) Most recent IF: 2.02; 2000 IF: NA  
  Call Number UA @ lucian @ c:irua:54748 Serial 79  
Permanent link to this record
 

 
Author Turner, S.; Tavernier, S.M.F.; Huyberechts, G.; Bals, S.; Batenburg, K.J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution Type A1 Journal article
  Year 2010 Publication Journal of nanoparticle research Abbreviated Journal J Nanopart Res  
  Volume 12 Issue 2 Pages 615-622  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Nano-sized ZnO particles with a narrow size distribution and high crystallinity were prepared from aqueous solutions with high concentrations of Zn2+ containing salts and citric acid in a conventional spray pyrolysis setup. Structure, morphology and size of the produced material were compared to ZnO material produced by simple spray pyrolysis of zinc nitrates in the same experimental setup. Using transmission electron microscopy and electron tomography it has been shown that citric acid-assisted spray pyrolysed material is made up of micron sized secondary particles comprising a shell of lightly agglomerated, monocrystalline primary ZnO nanoparticles with sizes in the 2030 nm range, separable by a simple ultrasonic treatment step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000275318700025 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-0764;1572-896X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.02 Times cited 27 Open Access  
  Notes Esteem 026019 Approved (up) Most recent IF: 2.02; 2010 IF: 3.253  
  Call Number UA @ lucian @ c:irua:81771 Serial 156  
Permanent link to this record
 

 
Author Callaert, C.; Bercx, M.; Lamoen, D.; Hadermann, J. pdf  url
doi  openurl
  Title Interstitial defects in the van der Waals gap of Bi2Se3 Type A1 Journal article
  Year 2019 Publication Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online) Abbreviated Journal Acta Crystallogr B  
  Volume 75 Issue 4 Pages 717-732  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Bi<sub>2</sub>Se<sub>3</sub>is a thermoelectric material and a topological insulator. It is slightly conducting in its bulk due to the presence of defects and by controlling the defects different physical properties can be fine tuned. However, studies of the defects in this material are often contradicting or inconclusive. Here, the defect structure of Bi<sub>2</sub>Se<sub>3</sub>is studied with a combination of techniques: high-resolution scanning transmission electron microscopy (HR-STEM), high-resolution energy-dispersive X-ray (HR-EDX) spectroscopy, precession electron diffraction tomography (PEDT), X-ray diffraction (XRD) and first-principles calculations using density functional theory (DFT). Based on these results, not only the observed defects are discussed, but also the discrepancies in results or possibilities across the techniques. STEM and EDX revealed interstitial defects with mainly Bi character in an octahedral coordination in the van der Waals gap, independent of the applied sample preparation method (focused ion beam milling or cryo-crushing). The inherent character of these defects is supported by their observation in the structure refinement of the EDT data. Moreover, the occupancy probability of the defects determined by EDT is inversely proportional to their corresponding DFT calculated formation energies. STEM also showed the migration of some atoms across and along the van der Waals gap. The kinetic barriers calculated using DFT suggest that some paths are possible at room temperature, while others are most probably beam induced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480512600024 Publication Date 2019-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.032 Times cited Open Access  
  Notes University of Antwerp, 31445 ; Acknowledgements We thank Artem M. Abakumov for providing the original Bi2Se3 sample and are also very grateful to Christophe Vandevelde for trying repeatedly to get good single crystal X-ray diffraction data out of each of our failed attempts at making an undeformed single crystal. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved (up) Most recent IF: 2.032  
  Call Number EMAT @ emat @c:irua:161847 Serial 5295  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J. url  doi
openurl 
  Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
  Year 2015 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B  
  Volume 71 Issue 71 Pages 127-143  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000352166500002 Publication Date 2015-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.032 Times cited 11 Open Access  
  Notes Fwo G039211n Approved (up) Most recent IF: 2.032; 2015 IF: NA  
  Call Number c:irua:124411 Serial 3408  
Permanent link to this record
 

 
Author Pardoen, T.; Colla, M.-S.; Idrissi, H.; Amin-Ahmadi, B.; Wang, B.; Schryvers, D.; Bhaskar, U.K.; Raskin, J.-P. pdf  url
doi  openurl
  Title A versatile lab-on-chip test platform to characterize elementary deformation mechanisms and electromechanical couplings in nanoscopic objects Type A1 Journal article
  Year 2016 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 17 Issue 17 Pages 485-495  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A nanomechanical on-chip test platform has recently been developed to deform under a variety of loading conditions freestanding thin films, ribbons and nanowires involving submicron dimensions. The lab-on-chip involves thousands of elementary test structures from which the elastic modulus, strength, strain hardening, fracture, creep properties can be extracted. The technique is amenable to in situ transmission electron microscopy (TEM) investigations to unravel the fundamental underlying deformation and fracture mechanisms that often lead to size-dependent effects in small-scale samples. The method allows addressing electrical and magnetic couplings as well in order to evaluate the impact of large mechanical stress levels on different solid-state physics phenomena. We had the chance to present this technique in details to Jacques Friedel in 2012 who, unsurprisingly, made a series of critical and very relevant suggestions. In the spirit of his legacy, the paper will address both mechanics of materials related phenomena and couplings with solids state physics issues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000373524300020 Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 7 Open Access  
  Notes This research has been performed with the financial support of the “Politique scientifique fédérale” under the framework of the interuniversity attraction poles program, IAP7/21, as well as with the support of the “Communauté française de Belgique” under the program “Actions de recherche concertées” ARC 05/10-330 and ARC Convention No. 11/16-037. The support of the “Fonds belge pour la recherche dans l'industrie et l'agriculture (FRIA)” for M.-S. Colla is also gratefully acknowledged as are the FWO research projects G012012N “Understanding nanocrystalline mechanical behavior from structural investigations” for B. Amin-Ahmadi. Approved (up) Most recent IF: 2.048  
  Call Number c:irua:129995 Serial 4014  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: